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Linear response of crystals to electromagnetic fields: Microscopic charge-current density,
polarization, and magnetization
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We present an electrodynamic approach to the description of the linear response of solids to electromagnetic
fields. For time and spatially varying applied fields we solve the dynamical equations satisfied by the gauge-
invariant Green function and find microscopic charge and current densities that result in a form allowing for an
easy construction of the multipole expansion of applied fields. Restricting ourselves to static and uniform electric
and magnetic fields, we construct microscopic expressions for polarization and magnetization fields associated
with each lattice site. The approach is in the spirit of the Power-Zienau-Wooley (PZW) treatment but generalized
to account for the motion of the charge between lattice sites. We show that the macroscopic polarization and
magnetization can be understood as the spatial average of the generalized PZW microscopic fields.

DOI: 10.1103/PhysRevB.90.125115 PACS number(s): 75.20.−g, 75.30.Cr, 77.22.−d, 32.10.Dk

I. INTRODUCTION

In elementary treatments of the electrodynamics of molec-
ular fluids, the macroscopic polarization and magnetization
fields are associated with the electric and magnetic dipole
moments of the molecules. Systematic generalizations to
include higher order moments were introduced almost half
a century ago [1], where the whole analysis can be drasti-
cally simplified by introducing microscopic polarization and
magnetization fields via the Power-Zienau-Wooley (PZW)
gauge transformation [2,3]. An expansion of electromagnetic
fields around the center of a molecule within expressions for
polarization and magnetization fields leads in a natural way
to molecular multipole moments, the effects of which can be
derived up to any order.

Such an approach cannot be immediately extended to
crystalline solids, where electrons cannot be assumed to be
confined to particular molecules or unit cells. It was only
with the advent of the “modern theory of polarization” [4],
anticipated by the early work of Adams and Blount [5], that
progress was made in developing a theory for the macroscopic
polarization of crystals. It was argued [4,6] that only the
change in any alleged macroscopic polarization has physical
significance, since this corresponds to the current density.
Nonetheless, that polarization could then be linked with the
dipole moment of the Wannier functions, with a quantum of
ambiguity in its definition linked to the ambiguity in how
the Wannier functions are associated with the lattice sites.
Recent work [7] has addressed the more difficult problem of
determining the orbital magnetoelectric polarizability.

An additional complication arises when magnetization is
considered. For an insulator in the ground state [8,9], the
magnetization was shown to contain a contribution due to
the magnetic dipole moment of the Wannier functions, but
also a contribution due to the moment of a current involving
Wannier functions at different lattice sites. The formulation of
magnetization in terms of these moments was subsequently
extended to systems in a uniform applied electric field [10],
while the susceptibility governing the response of the orbital
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magnetization to the magnetic field has been extracted from
the evaluation of the energy in the presence of the magnetic
field [11–14].

Approaches based on the energy of systems in the presence
of applied fields cannot immediately be generalized in a
rigorous way to take into account the response to time-
dependent fields, which is necessary for the treatment of
problems in optics. Here a number of the processes one
would like to describe, including forbidden second harmonic
generation [15] and optical activity of solids [16,17], depend on
the variation of electromagnetic fields through the crystal. Phe-
nomenological treatments [18] of such processes, for which an
underlying microscopic theory should provide expressions for
the response coefficients that appear, are often based on the
introduction of multipole moments per unit volume.

All this motivates the calculation of the response to elec-
tromagnetic fields from an electrodynamic perspective rather
than from energy considerations, and a modern introduction of
microscopic polarization and magnetization fields in extended
solids, as an approach to the construction of macroscopic
multipole moments per unit volume.

One might object to this strategy on the grounds that
the freedom in choosing Wannier functions would lead to
an ambiguity in the higher order moments more drastic
than the quantized ambiguity that arises, for example, in the
polarization of the ground state. Ambiguities in higher order
moments are not just a problem for the treatment of extended
solids, of course. Even in the description of a molecular fluid,
if the dipole moment of a molecule is nonvanishing, then its
quadrupole moment will depend on the choice of the origin.
This might lead one to suspect the validity—or at least the
uniqueness—of a usual description of the optical activity of
such a medium, where the response of the quadrupole moment
per unit volume to the electric field enters, as well as the
response of the magnetic dipole moment per unit volume to
the electric field and the response of the dipole moment per unit
volume to the magnetic field and variation of the electric field.
However, in that theory it is discovered that only combinations
of these different responses that are insensitive to the choice of
origin enter in the description of physical phenomena such as
the rotation of the plane of polarization of light [19,20]. While
the situation is more complicated for extended solids, the result
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for molecular fluid shows that higher order multipoles need not
be eschewed simply because there is some ambiguity in their
definition, and that examining the possibility of constructing
microscopic polarization and magnetization, and using them
as the basis of multipole expansions, is worth investigating.
This is the program we initiate in this paper.

In this first investigation we show how the approach can
be used to treat an insulator responding linearly to applied
uniform and static electric and magnetic fields. With a view
towards ultimate applications in the optical regime, in Sec. II
we consider the linear response of an insulator of Chern class
zero to an arbitrary applied electromagnetic field. In a manner
that allows for a natural expansion of an electromagnetic
field varying little over the distance between lattice sites, we
construct the nonequilibrium Green function that results. In
this initial paper we work within the independent particle
approximation, but the Green function approach is generally a
powerful one because it need not be restricted to considering
only the Hamiltonian evolution that is often assumed in
calculating the response to applied fields; any appropriate self-
energy can be considered. Thus it connects naturally to modern
approaches for the computation of material properties based
on density functional theory and its generalizations [21]. For
simplicity and to more clearly demonstrate the strategy we also
neglect electron spin, assume that the bands are nondegenerate,
and neglect local field corrections and any induced lattice
distortion. We will turn to generalizations to include these in
later communications. Once the Green function is determined,
the microscopic charge and current densities immediately
follow. Earlier density matrix calculations in the presence of
static and uniform fields [7] can be seen as precursors to this
approach.

While microscopic polarization and magnetization fields
do not uniquely follow from the charge and current densities
they describe, we show in Sec. III that there is a natural way
to construct the microscopic polarization and magnetization
fields associated with each site by employing the perturbed
Wannier functions. There is some ambiguity left in the
definition of the microscopic fields, which is related to
the nonuniqueness of Wannier functions. However, the first
moments of these fields are either gauge invariant, or have
a quantum of ambiguity that simply reflects the well-known
ambiguity at the macroscopic level. The higher moments do
not contribute to the macroscopic response in the case of static
and uniform electric and magnetic fields, nevertheless these
are nonunique; this is expected, as even in the extreme case
of a molecular crystal, to which a more general PZW theory
of a solid should reduce in the appropriate limit, the higher
moments depend on the choice of the expansion point with
respect to which the moments are taken.

In Sec. IV we verify that the spatial averaging of the
generalized PZW microscopic fields introduced in Sec. III
results in the macroscopic polarization and magnetization
in agreement with earlier calculations. In the absence of
applied fields we recover the established expressions for the
polarization and magnetization in the ground state [4,8]. In
the presence of the perturbation we recover the established
response coefficients of the polarization to the applied electric
field [22,23] and of the magnetization to the magnetic field

[12], what might be called the “diagonal susceptibilities.”
While the second of these has been calculated before, our
approach does not begin from the evaluation of the energy in a
magnetic field. We also recover the response coefficients that
describe the response of the polarization to the magnetic field
and of the magnetization to the electric field [10], which might
be called the “mixed susceptibilities.”

The ground state polarization and magnetization, and both
the diagonal and mixed susceptibilities, have been derived
from a common framework. It is based on electrodynamics,
rather than energy considerations or thermodynamic poten-
tials, and microscopic polarization and magnetization fields
have been introduced associated with individual lattice sites.
While only the first moments of these fields arise in the
response to static and uniform fields, the theory we present
provides a step towards a more general description of systems
in spatially varying and time-dependent electromagnetic fields.

We present our conclusions in Sec. V.

II. LINEAR RESPONSE TO TIME AND SPATIALLY
DEPENDENT FIELDS

We consider electrons interacting with an external classical
electromagnetic field and with the periodic potential of
a lattice, in the independent particle approximation. The
interaction is described with the use of the minimal-coupling
Hamiltonian

Ĥ (T ) =
∫

d3xψ̂†(x,T )H(x,T )ψ̂(x,T ), (1)

with the Hamiltonian density given by

H(x,T ) = 1

2m

[
�

i
∇ − e

c
A(x,T )

]2

+ eU(x,T ) + V (x). (2)

Here we use a notation where ψ̂(x,T ) is a field operator,
A(x,T ) and U(x,T ) are, respectively, the vector and scalar
potentials of the applied electromagnetic fields, and V (x) is
the lattice potential. We describe the system with the use of
the Green functions, and write for the usual “lesser” function

GGD(x, y; T ) = i〈ψ̂†( y,T )ψ̂(x,T )〉. (3)

We take both coordinates in (3) to be at equal time, since the
equal-time function is sufficient to describe the microscopic
charge and current densities induced by electromagnetic fields.
The time evolution of the Green function (3) is driven by the
minimal coupling Hamiltonian,

i�
∂GGD(x, y; T )

∂T
= [H(x,T ) − H∗( y,T )]GGD(x, y; T ),

and obviously depends on the gauge of the electromagnetic
potentials.

A. Gauge-invariant Green function and
the PZW transformation

The gauge-dependent formulation of the dynamics often
leads to the presence of apparent divergences in the calcula-
tions of the response coefficients, and requires an identification
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of sum rules [12,22,24]. Therefore, rather than simply using
(3), we perform a generalized Peierls transformation intro-
duced earlier [25] to arrive at the gauge-invariant Green
function

G(x, y; T ) = e−i�(x, y;T )GGD(x, y; T ), (4)

where we put

�(x, y; T ) = e

�c

[
�(x, y; T ) − �(x,x; T ) + �( y, y; T )

2

]
,

with the Peierls phase �(x, y; T ) defined as

�(x, y; T ) =
∫ ufinal

uinitial

∂ z(u; x, y)

∂u
· A(z(u; x, y),T )du. (5)

Here the function z(u; x, y) parametrizes a path in space con-
necting the Green function coordinates y to x as u varies from
uinitial to ufinal. The path can be chosen arbitrarily, provided that
z(u; x, y) is differentiable in all its variables and satisfies the
boundary conditions z(uinitial; x, y) = y and z(ufinal; x, y) = x;
there is thus a kind of freedom in the description of the
system, related to the choice of a path, which replaces the
gauge freedom associated with electromagnetic potentials
when the usual Green function is used. For simplicity we take
z(u; x, y) = z(ufinal − u + uinitial; y,x); that is, we assume that
the path from y to x is a reverse of the path from x to y;
this will be true of the paths used in this paper. The dynamics
of the gauge-invariant Green function (4) is described in the
independent particle approximation by a kinetic equation [25],

i�
∂G(x, y; T )

∂T
= [H0(x) − H∗

0( y)]G(x, y; T )

+U (x, y; T )G(x, y; T ), (6)

where the differential operator on the right-hand side is split
into a free Hamiltonian term H0(x) = − �

2

2m
∇2 + V (x), and

the differential operator that depends on the externally applied
fields is given by

U (x, y; T ) = 1

2m

(
p(x) + e

c
X(x, y; T )

)2

− p2(x)

2m

− 1

2m

(
p( y) + e

c
Y (x, y; T )

)2

+ p2( y)

2m

+ eT (x, y; T ). (7)

In Eq. (7) we put pj (x) = −i�∂/∂xj for the momentum
operator. The functions X(x, y; T ), Y (x, y; T ), T (x, y; T )
are defined in terms of the derivatives of the Peierls phase
�(x, y; T ) and electromagnetic potentials

Xj (x, y; T ) ≡ ∂�(x, y; T )

∂xj
− Aj (x,T ), (8)

Yj (x, y; T ) ≡ ∂�(x, y; T )

∂yj
+ Aj ( y,T ) (9)

T (x, y; T ) ≡ 1

c

∂�(x, y; T )

∂T
+ U(x,T ) − U( y,T ), (10)

FIG. 1. The path going through a special point R leading to the
PZW transformation. In the simplest case the straight line paths
between points are chosen.

but they can be shown to be gauge invariant as they can be
rewritten in terms of the electromagnetic fields [25],

Xj (x, y; T ) =
∫ x

y

∂zk

∂xj
[d z × B(z,T )]k, (11)

Yj (x, y; T ) =
∫ x

y

∂zk

∂yj
[d z × B(z,T )]k, (12)

T (x, y; T ) = −
∫ x

y
d z · E(z,T ). (13)

The dynamical equation (6), as well as the expressions for the
microscopic charge and current densities [25]

ρ(x,T ) = −ieG(x,x; T ), (14)

j (x,T ) = − ie

2m
lim
y→x

[ p(x) − p( y)]G(x, y; T )

− ie2

2mc
[X(x,x; T ) − Y (x,x; T )]G(x,x; T ) (15)

are thus explicitly gauge invariant, with (11)–(13) valid for a
general path in space.

An important special case of the general Peierls transfor-
mation (4) is the Power-Zienau-Wooley (PZW) transformation
[2,3], which is a standard tool in the quantum mechanical
description of the optical response of atoms and molecules. The
PZW transformation is recovered within the Green function
formalism for the paths z(u; x, y) in (5) that go through a
special point R in space, such that the path from y to R
is a reverse of the path from R to x (see Fig. 1). For the
paths from this category the Peierls phase is of the form
�(x, y; T ) = γR(x,T ) − γR( y,T ), and the Green function (4)
is formed from the transformed field operators [25,26]

ψ̂ ′(x,T ) = e− ie
�c

γR(x,T )ψ̂(x,T ). (16)

The interaction terms (11)–(13) take the simple form [25]

XR
j (x, y; T ) = −�R

j (x,T ), (17)

Y R
j (x, y; T ) = �R

j ( y; T ), (18)

T R(x, y; T ) = �R
0 ( y,T ) − �R

0 (x,T ), (19)

where

�R
0 (x,T ) =

∫
d3wE(w,T ) · s(w,x; R), (20)

�R
j (x,T ) =

∫
d3wBl(w,T )αlj (w,x; R), (21)
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with the line integrals s(w,x; R) and αlj (w,x; R) depending
on the specific choice of a path; in the simplest case of points
y, R, x connected by straight lines they are given by

s(w,x; R) = xR

∫ 1

0
duδ(wR − uxR), (22)

αlj (w,x; R) = xm
R εlmj

∫ 1

0
uduδ(wR − uxR), (23)

where we put wR = w − R, xR = x − R. The corresponding
dynamics (6),

i�
∂G(x, y; T )

∂T
= [HR(x,T ) − H∗

R( y,T )]G(x, y; T ),

with the Hamiltonian density

HR(x,T ) = 1

2m

(
p(x) − e

c
�R(x,T )

)2

− e�R
0 (x,T ) + V (x), (24)

can be shown to arise from the PZW Hamiltonian [25], which
is formulated in terms of the polarization and magnetization
fields.

Microscopic polarization and magnetization fields are the
basic entities of the PZW formalism, and are related to the
charge and current density operators ρ̂(x,T ) and ĵ (x,T ) by
[2,3]

p̂(x,T ) =
∫

d3ys(x, y; R)ρ̂( y,T ), (25)

m̂j (x,T ) = 1

c

∫
d3yαjk(x, y; R)ĵ k( y,T ). (26)

Different choices of paths in Fig. 1 correspond to different
polarization and magnetization fields, giving rise to a new
freedom in the PZW formalism that replaces the gauge
freedom of the minimal-coupling Hamiltonian; the most
common choice is to use the straight line path integrals (22)
and (23). In the usual applications, the fields (25) and (26) are
expanded to yield multipole moments up to the order required,
by formally expanding the Dirac δ function in (22) and (23),

δ(xR − u yR) = δ(xR) − uyi
R

∂

∂xi
δ(xR) + · · · . (27)

Expansion (27), when used in (25) and (26) yields

p̂i(x,T ) = μ̂i(T )δ(x − R) − q̂ij (T )
∂δ(x − R)

∂xj
+ · · · , (28)

m̂i(x,T ) = v̂i(T )δ(x − R) + · · · , (29)

with the first few multipole moments defined as

μ̂(T ) =
∫

d3y( y − R)ρ̂( y,T ), (30)

q̂ij (T ) = 1

2

∫
d3y(yi − Ri)(yj − Rj )ρ̂( y,T ), (31)

v̂(T ) = 1

2c

∫
d3y( y − R) × ĵ ( y,T ). (32)

The polarization and magnetization fields couple to the
electric and magnetic fields in the gauge-invariant PZW
Hamiltonian. In the new representation, the interaction part
of the Hamiltonian (24) is given by [27]

Ĥ int
PZW(T ) = −

∫
d3x p̂(x,T ) · E(x,T ) −

∫
d3xm̂(P )(x,T ) ·

× B(x,T ) − 1

2

∫
d3xm̂(D)(x,T ) · B(x,T ), (33)

where m̂(P,D)( y,T ) stand for the para- and dia-magnetic
contributions to magnetization. The expansions (28) and
(29), when used in (33), lead to the usual expression for the
interaction of the electromagnetic fields and their gradients
with the multipole moments. But apart from introducing a
new formulation of the dynamics, expansions of the form
(28) and (29) after macroscopic averaging are also typically
used to formulate the material Maxwell equations [28], and
to describe optical processes, such as optical activity [19,20],
in systems where the molecules can be approximated as units
where charges do not move from molecule to molecule.

B. Construction of the multipole Green function

The PZW formalism, although very powerful, can be
usefully applied only to small systems compared with the
wavelength of light. In an extended system the Peierls
transformation (4) cannot globally depend on one special
point in space, and the charge transfer between atoms in a
solid prohibits carrying out a transformation independently
for each atom. For these reasons we consider a Peierls phase
that depends on x and y coordinates only, and for simplicity
choose the path z(u; x, y) in (5) to be a straight line connecting
the two coordinates; we will refer to the phase resulting from
this choice of a path as the “global Peierls phase,” and denote
it by �GL(x, y; T ). For the Green function (4) defined with the
phase �GL(x, y; T ) we seek a solution of (6) in a form such
that a multipole expansion around lattice sites of the induced
charges and currents and their interaction with the applied
fields can easily be generated; we will refer to this form of the
Green function as the “multipole Green function.” The strategy
we adopt resembles the PZW treatment, with the difference
that we account for the motion of charge between lattice sites.
Thus instead of evaluating the interaction terms X(x, y; T ),
Y (x, y; T ), T (x, y; T ) directly from Eqs. (11)–(13) for the
straight line path, we locally rewrite this path in the neighbor-
hood of each lattice site as a path going through a lattice site
together with a path forming a closed loop (see Fig. 2). The path
going through R defines a phase �R

PZW(x, y; T ) leading to the

FIG. 2. The path defining the global Peierls phase �GL(x, y; T ),
represented as a sum of the path leading to the PZW transformation
plus a correction.

125115-4



LINEAR RESPONSE OF CRYSTALS TO . . . PHYSICAL REVIEW B 90, 125115 (2014)

usual PZW transformation with the multipole expansion point
at R. The closed loop defines a phase φ(x, y,R; T ) that is a flux
of the magnetic field through a triangle spanned by x, y, and
R, which we denote by x yR. For any site R we can thus write

�GL(x, y; T ) = �R
PZW(x, y; T ) + φ(x, y,R; T ), (34)

where

φ(x, y,R; T ) =
∫

x yR

B(s,T ) · n, (35)

with

n = − (x − R) × ( y − R)

|(x − R) × ( y − R)| . (36)

We now use (34) to evaluate the interaction terms (11)–(13).
Differentiating (34) with respect to T and using (10) together
with (19) we arrive at a relation

T GL(x, y,T ) = −�R
0 (x,T ) + �R

0 ( y,T )

+ 1

c

∂

∂T
φ(x, y,R; T ). (37)

Similarly, taking space derivatives of (34) and using (8), (9),
(17), and (18) we arrive at

XGL
j (x, y,T ) = −�R

j (x,T ) + ∂

∂xj
φ(x, y,R; T ), (38)

Y GL
j (x, y,T ) = �R

j ( y,T ) + ∂

∂yj
φ(x, y,R; T ). (39)

Relations (37)–(39) are exact and in principle hold even for
the points x, y, and R far apart. Physically however, the
relation (34) is only useful when carried out locally, and will
be applied to the projections of G(x, y; T ) on lattice sites
rather than for the Green function itself.

With relations (37)–(39) in hand we can now construct
the multipole Green function. Within the independent particle
approximation, the dynamical equation (6) is exact and
completely general. We now assume we are dealing with an
insulator at zero temperature and neglect the spin degrees of
freedom; then before any perturbing fields are applied the
lesser Green function is given by

G(0)(x, y) = i
∑

v

∫
BZ

d3kψvk(x)ψ∗
vk( y), (40)

where as indicated the integral ranges over the Brillouin zone,
and we write ψnk(x) for the unperturbed Bloch function for
band index n and crystal momentum k,

H0(x)ψnk(x) = Enkψnk(x), (41)

normalized according to∫
d3xψ∗

nk(x)ψnk′(x) = δnn′δ(k − k′), (42)

where v denotes valence bands. Introducing

I (1)(x, y; T ) = U (x, y; T )G(0)(x, y; T ), (43)

where we restrict ourselves to terms in U (x, y; T ) linear
in X(x, y; T ), Y (x, y; T ), and T (x, y; T ), we solve (6) for

G(x, y; T ) to linear order in the electromagnetic field, writing
the first order correction to G(0)(x, y) as G(1)(x, y; T ). We find

G
(1)
n1 k1;n2 k2

(T ) = lim
η→0+

1

i�

∫ T

−∞
dt ′I (1)

n1 k1;n2 k2
(t ′)

× exp

[
i

�
(En1 k1 − En2 k2 − iη)(t ′ − T )

]
, (44)

where the Bloch representation of a general function of the
form g(x, y; T ) is given in terms of coefficients gn1 k1;n2 k2 (T )
by

g(x, y; T ) =
∑
n1n2

∫
BZ

d3k1d
3k2ψn1 k1 (x)ψ∗

n2 k2
( y)

× gn1 k1;n2 k2 (T ). (45)

To make use of (37)–(39) we now recast the Green function into
the Wannier function representation. We assume that for the
material in the ground state a complete, orthonormal set of well
localized Wannier functions can be introduced. For the case of
nondegenerate bands we consider in this paper, the Wannier
and Bloch functions are related through transformations [29]

WnR(x) =
√

Vc

(2π )3

∫
BZ

d3ke−ik·Rψnk(x), (46)

ψnk(x) =
√

Vc

(2π )3

∑
R

eik·RWnR(x), (47)

where Vc is the volume of a unit cell and R labels lattice sites.
Introducing a Wannier representation of a general function of
the form g(x, y; T ),

g(x, y; T ) =
∑
n1n2
RR′

Wn1 R(x)W ∗
n2 R′( y)gn1 R;n2 R′ (T ), (48)

from (44) we find

G
(1)
n1 R;n2 R′ (T ) = 1

i�
lim

η→0+

[
Vc

(2π )3

]2 ∫
BZ

d3k1d
3k2

∫ T

−∞
dt ′exp

×
[

i

�

(
En1 k1 − En2 k2 − iη

)
(t ′ − T )

]

×
∑
R1 R2

eik1·(R−R1)eik2·(R2−R′)I
(1)
n1 R1;n2 R2

(t ′).

(49)

In each term G
(1)
n1 R;n2 R′ (T ) we now employ the relations (37)–

(39) to arrive at the multipole expansions of the interaction with
the applied electromagnetic fields around sites R and R′. We
do this in a symmetric way, taking the average of expansions
around sites R and R′,

I
(1)
n1 R1;n2 R2

(t ′) = 1
2I

(1)
n1 R1;n2 R2

(t ′,R) + 1
2I

(1)
n1 R1;n2 R2

(t ′,R′), (50)

where the second argument in the bracket indicates an
expansion point. Assuming the applied electromagnetic fields
to be of the form

E(x,T ) = E(x,ω)e−iωT + E(x, − ω)eiωT ,

B(x,T ) = B(x,ω)e−iωT + B(x, − ω)eiωT ,
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we find

I
(1)
n1 R1;n2 R2

(t ′,R) = I
(1)
n1 R1;n2 R2

(ω,R)e−iωt ′

+ I
(1)
n1 R1;n2 R2

(−ω,R)eiωt ′ , (51)

with

I
(1)
n1 R1;n2 R2

(ω,R) = ifn2n1〈n1 R1|Ĥ (1)
R (ω)|n2 R2〉

+ ie

�c

∫
d3z1d

3z2G
(0)(z1,z2)φ(z1,z2,R; ω)

×[H0(z1) − H0(z2) − �ω]W ∗
n1 R1

(z1)Wn2 R2 (z2).

Here we put

〈n1 R1|Ĥ (1)
R (ω)|n2 R2〉 =

∫
d3zW ∗

n1 R1
(z)H(1)

R (z,ω)Wn2 R2 (z),

where H(1)
R (z,ω) is the frequency component of the PZW

Hamiltonian density (24) that is linear in fields,

H(1)
R (x,ω) = ie�

2mc

[
2�R

j (x,ω)
∂

∂xj
+ ∂�R

j (x,ω)

∂xj

]

− e�R
0 (x,ω),

and in writing (51) we have employed
∑

v[δn1v − δn2v] = fn1n2

with fn1n2 = fn1 − fn2 , where the occupation factor fn =∑
v δnv . Carrying out a similar calculation for In1 R1,n2 R2 (t ′,R′),

using (50) in (49), employing

φ(z1,z2,R1; ω) = φ(z1,z2,R2; ω) − φ(R1,z2,R2; ω)

−φ(z1,R1,R2; ω), (52)

and invoking the completeness of Wannier functions we arrive
at our final result,

G(1)(x, y; T ) = G(1)(x, y; ω)e−iωT + G(1)(x, y; −ω)eiωT .

(53)

The frequency component of the Green function is given by

G(1)(x, y; ω)

= e

c�

∑
vR

φ(x, y,R; ω)WvR(x)W ∗
vR( y)

− e

2c�

∑
nv

RR′

WnR(x)W ∗
vR′( y)〈nR|φ(R,R′; ω)|vR′〉

− e

2c�

∑
nv

RR′

WvR(x)W ∗
nR′( y)〈vR|φ(R,R′; ω)|nR′〉

+
∑
RR′

∑
n1n2

Wn1 R(x)W ∗
n2 R′( y)fn2n1On1 R;n2 R′(ω), (54)

where we define

〈n1 R|φ(R,R′; ω)|n2 R′〉
=

∫
d3zW ∗

n1 R(z)φ(z,R,R′; ω)Wn2 R′(z),

and we put

On1 R;n2 R′(ω) = 1

i

∑
R1 R2

[
Vc

(2π )3

]2

F RR′
n1 R1;n2 R2

(ω)

× lim
η→0+

∫
BZ

d3k1d
3k2

eik1·(R−R1)e−ik2·(R′−R2)

En1 k1 − En2 k2 − �ω − iη
,

with

F RR′
n1 R1;n2 R2

(ω) = 1
2 〈n1 R1|Ĥ (1)

R (ω)|n2 R2〉
+ 1

2 〈n1 R1|Ĥ (1)
R′ (ω)|n2 R2〉.

The Green function (53) is the main result of this section and
gives an exact, microscopic information about the charge and
current density response to the linear order in EM fields. Al-
though no approximations regarding the spatial variation of the
applied fields were made in deriving this result, the multipole
expansion of the interaction with the applied fields in (53) is
most useful in situations where the electron correlation length
is much smaller than the distance over which the electromag-
netic field varies significantly; in treating the optical response
of materials, this is identified by the wavelength of light.

The response (53) takes a particularly simple form for a
static, homogenous electromagnetic field to which we restrict
our considerations in the remaining part of the paper. In this
special case we note that (20), (21), and (35) reduce to exact
expressions

�R
0 (x) = E · (x − R), (55)

�R(x) = 1
2 B × (x − R), (56)

φ(x, y,R) = 1
2 B · [( y − R) × (x − R)], (57)

where E = 2E(ω = 0), etc. We now use (55)–(57) in Eq. (53),
and evaluate moments of Wannier functions as k-space
integrals over Brillouin zone. We find

G
(1)
DC(x, y) =

∑
n1n2

∫
BZ

d3kψn1 k(x)ψ∗
n2 k( y)βn1n2 (k)

+
∑
nv

∫
BZ

d3kψnk(x)ψ∗
vk( y)γnv(k)

+
∑
nv

∫
BZ

d3kψvk(x)ψ∗
nk( y)γvn(k)

+ e

c�

∑
vR

φ(x, y,R)WvR(x)W ∗
vR( y), (58)

where we use a notation

βn1n2 (k) = ie
fn2n1

En1n2 (k)

(
E · ζ n1n2 (k)

+ 1

2mc
B · [

Ln1n2 (k) + Xn1n2 (k)
])

, (59)

γn1n2 (k) = − ie

4c�
B · Dn1n2 (k). (60)
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Here we define vectors

Ln1n2 (k) = 1

2

∑
s

ζ sn2 (k) × pn1s(k)

+ 1

2

∑
s

ζ n1s(k) × psn2 (k), (61)

Xn1n2 (k) = m

2�

[
ζ n1n2 (k) × ∂

(
En1 k + En2 k

)
∂k

]
, (62)

Dn1n2 (k) = ∂

∂k
× ζ n1n2 (k), (63)

and write ζ n1n2 (k) for Berry connection

ζ n1n2 (k) = 1

Vc

∫
Vc

d3xu∗
n1 k(x)i

∂

∂k
un2 k(x),

with unk(x) being the periodic part of the Bloch function
ψnk(x) = (2π )−3/2unk(x)eik·x , and for the momentum matrix
element we put 〈n1k| p̂|n2k′〉 = pn1n2 (k)δ(k − k′). The first
term in (58), which involves the difference of Fermi factors
fn2n1 , is of the usual type expected in perturbation theory [30],
with βn1n2 (k) (59) indicating a perturbation energy divided
by the energy difference En1n2 (k) = En1 (k) − En2 (k) between
two Bloch states, which are eigenstates of the unperturbed
Hamiltonian. Recalling that the electric and (para)-magnetic
dipole moment matrix elements between Wannier functions at
the same site, found using (46) and a partial integration, are
given by [8]∫

d3xW ∗
n0(x)xWm0(x) = Vc

(2π )3

∫
BZ

d3kζ nm(k), (64)

∫
d3xW ∗

n0(x)x × p̂(x)Wm0(x) = Vc

(2π )3

∫
BZ

d3kLnm(k),

(65)

we see that the first two terms on the right-hand side of (59)
are what one would expect were appropriate k components
of the atomiclike matrix elements (64) and (65) associated
with each transition energy En1n2 (k). Since the group velocity
associated with a given band n and wave vector k is given by
∂Enk/∂(�k), the last term on the right-hand side of (59) can be
identified as a perturbation term involving the magnetic energy
associated with the motion of electrons through the bands. The
terms involving γn1n2 (k) in (58) are more complicated, and
describe effects due to the variation of the Berry connections
throughout the Brillouin zone. The last term in (58) we leave
in a real space representation, in which it has a simple form;
in the next section we indicate the physical significance of this
term.

III. POLARIZATION AND MAGNETIZATION FIELDS
ASSOCIATED WITH LATTICE SITES

The microscopic charge and current distribution driven
by an applied electromagnetic field can be found using the
expression (53) for the Green function. However, when the
variation of the applied field is over a length scale much larger
than the lattice constant in a normal material, a coarse-grained
description with the charge and current densities averaged

over the microscopic degrees of freedom is of more interest.
For a fluid, this can be an ensemble average [1]; in a solid
it can be a spatial average [31]. In the PZW treatment, a
coarse-grained description is formulated by introducing the
microscopic polarization and magnetization fields (25) and
(26) in an electrodynamic approach that is also valid for sys-
tems driven out of equilibrium. The definitions (25) and (26)
however, although useful in the treatment of isolated atoms
and molecules, are not immediately applicable to extended
systems like solids. In this section we formulate a generalized
description in the spirit of the PZW treatment, where we
introduce microscopic polarization and magnetization fields
taking into account the motion of electrons between lattice
sites. We restrict ourselves here to the case of static, uniform
fields and plan to turn to the general case of arbitrary fields in
future publications.

The system we consider in this section is described by
the Green function G(x, y) = G(0)(x, y) + G

(1)
DC(x, y), with

the ground-state contribution given by (40), and the linear
order correction given by (58). The difficulty in introducing
polarization and magnetization fields is related to the fact that
the charge and current densities that follow from G(x, y) are
not localized. In a material with short electron correlation
lengths we can avoid these difficulties by searching for
a decomposition of the Green function into contributions
associated with lattice sites GR(x, y), each of which is nonzero
only if x and y are within a few lattice constants of R. We
construct such a decomposition, ensuring that in the isolated
atom limit GR(x, y) reduces to a Green function formed from
the transformed field operators (16) introduced in the PZW
approach.

The PZW treatment can be applied to a molecular crystal
where Wannier functions associated with different lattice sites
are assumed to have no common support, and it is equivalent to
introducing a gauge-invariant Hamiltonian (33) at each lattice
site using the Peierls phase �R

PZW(x, y; T ). In this limit of a
molecular crystal, the global Peierls phase �GL(x, y; T ) used
to define G(x, y; T ) in Sec. II differs from the PZW phase
by a flux term φ(x, y,R; T ) = �GL(x, y; T ) − �R

PZW(x, y; T )
at each R. So in the more general problem we seek a
decomposition of the form

G(x, y) =
∑

R

GR(x, y)e− ie
�c

φ(x, y,R) (66)

in the limit of static, uniform fields [see (35) and (57)]. Here
Eq. (66) does not yet define GR(x, y) uniquely, rather a sum∑

R G
(n)
R (x, y) at each order n in electromagnetic fields. From

(40) we see than in the zeroth order we have∑
R

G
(0)
R (x, y) = i

∑
vR

WvR(x)W ∗
vR( y), (67)

and the obvious physical choice of GR(x, y) before an
electromagnetic field is applied is

G
(0)
R (x, y) = i

∑
v

WvR(x)W ∗
vR( y). (68)

Here we consider Wannier functions (46) for an insulator with
nondegenerate bands, as the formalism of Sec. II is restricted
to that special case. For the first order term we use (58) and
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(68) to find∑
R

G
(1)
R (x, y) =

∑
n1n2

∫
BZ

d3kψn1 k(x)ψ∗
n2 k( y)βn1n2 (k)

+
∑
nv

∫
BZ

d3kψnk(x)ψ∗
vk( y)γnv(k)

+
∑
nv

∫
BZ

d3kψvk(x)ψ∗
nk( y)γvn(k), (69)

showing that the last term in (58) arises from using a global
rather than a local Peierls phase for each site. Note that in
(67) the Wannier functions provide a Schmidt (biorthogonal)
decomposition of the function

∑
R G

(0)
R (x, y). Even with the

application of an electromagnetic field, we can always seek a
Schmidt decomposition of

∑
R GR(x, y). Of course, if there is

degeneracy in the amplitudes of the product functions [as there
is in (67)], that Schmidt decomposition will not be unique; for
example, both Eqs. (40) and (67) provide equivalent Schmidt
decompositions of G(0)(x, y). Nonetheless, at least within a
perturbative approach a natural strategy would be to seek a
Schmidt decomposition of the form

GR(x, y) = i
∑

v

W̃vR(x)W̃ ∗
vR( y), (70)

where the W̃vR(x) are Wannier functions modified by the
applied electromagnetic field but still satisfying∫

W̃ ∗
vR(x)W̃v′ R(x)d3x = δvv′ . (71)

Furthermore, in the special case we consider here, of a
perturbative response to uniform fields, we would expect
the Wannier functions associated with each lattice site to
be identical except for translation; that is W̃vR(x − R) =
W̃vR′(x − R′). With this assumption we can introduce Bloch
functions ψ̃vk(x) associated with the W̃vR(x),

ψ̃vk(x) =
√

Vc

(2π )3

∑
R

eik·RW̃vR(x), (72)

satisfying ψ̃vk(x + R) = eik·Rψ̃vk(x), and write∑
R

GR(x, y) = i
∑

v

∫
BZ

d3kψ̃vk(x)ψ̃∗
vk( y). (73)

These natural assumptions, together with (69), are enough to
significantly constrain the possible W̃vR(x), as we now show.
Noting that in the absence of an applied field ψ̃

(0)
vk (x) = ψvk(x)

[see (68) and (72)], from (73) and (69) we immediately see
than one of the solutions is given by

ψ̃vk(x) = φvk(x) ≡ ψvk(x) + 1

i

∑
c

ψck(x)βcv(k)

+ 1

i

∑
n

ψnk(x)γnv(k). (74)

The general solution is a unitary transformation of (74),

ψ̃vk(x) =
∑
v′

Uv′v(k)φv′k(x), U
(0)
v′v(k) = δv′v, (75)

which however does not affect the dipole moment contri-
butions to polarization and magnetization, while the higher
order moments do not contribute in the case of uniform
electromagnetic fields, as we will show in Sec. IV. Thus in
the simple case we consider in this paper we can choose
ψ̃vk(x) = φvk(x). More generally, for nonuniform fields or
degenerate energy bands a unitary transformation of the Bloch
functions could be considered to minimize the spread of the
Wannier function. The modified Wannier function follows
from the inverse of (72),

W̃vR(x) =
√

Vc

(2π )3

∫
BZ

d3ke−ik·Rφvk(x), (76)

and the lattice-site Green function (70) can be constructed.
The charge and current densities that correspond to it,

ρR(x) = −ieGR(x,x), (77)

jk
R(x) = − ie

2m
lim
y→x

[
�

i

∂

∂xk
− �

i

∂

∂yk

]
GR(x, y)

+ ie2

mc
�R

k (x)GR(x,x), (78)

when summed over lattice sites lead to the total charge and
current densities

ρ(x) =
∑

R

ρR(x), j k(x) =
∑

R

jk
R(x). (79)

The densities ρR(x) and j R(x) [(77) and (78)] are localized
about R and their moments are well defined. We can thus
use them to introduce polarization and local circulation
magnetization fields, in an approach that follows the PZW
definitions (25) and (26). We write

pi
R(x) =

∫
d3ysi(x, y; R)ρR( y), (80)

mi
R(x) = 1

c

∫
d3yαik(x, y; R)jk

R( y), (81)

where the functions si(x, y; R) and αik(x, y; R) are given by
(22) and (23), and satisfy relations

∂si(x, y; R)

∂xi
= −δ(x − y) + δ(x − R), (82)

∂si(x, y; R)

∂yk
= δikδ(x − y) − εipj ∂αjk(x, y; R)

∂xp
, (83)

where R is a lattice site. Using relations (82) and (83) we can
rewrite the charge and current densities as

ρ(x) = −
∑

R

∇ · pR(x) + ρref(x), (84)

j (x) = c
∑

R

∇ × mR(x) + j̃ (x), (85)

where we define the reference charge density,

ρref(x) =
∑

R

δ(x − R)QR, QR =
∫

d3yρR( y), (86)
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and an additional current density,

j̃ (x) = −
∑

R

∫
d3ys(x, y; R)�R( y). (87)

A term ∂ pR/∂T would normally be present on the right-hand
side of (84), but is absent because we have assumed that
all fields are time independent. Were that time dependence
reintroduced, both �R(x) and j̃ (x) would also become time
dependent, with �R(x,T ) = ∂ρR(x,T )/∂T + ∇ · j R(x,T );
in the time-independent problem we consider here, �R(x) =
∇ · j R(x). This term thus describes the fact that although the
total charge-current density (ρ(x), j (x)) naturally satisfies the
continuity equation, the individual charge-current densities
we have introduced, (ρR(x), j R(x)), need not. And so we
can identify j̃ (x) as a current associated with the motion of
electrons between sites, or a “hopping current” for short. Using
(70) and (78) we find

�R(x) = ie

�

∑
v

W̃ ∗
vR(x)HR(x)W̃vR(x) + c.c., (88)

where HR(x) is the static limit of the PZW Hamiltonian (24)
associated with site R,

HR(x) = 1

2m

[
p(x) − e

2c
B × (x − R)

]2

+ V (x)

− eE · (x − R).

Equation (88) is valid in general for the Green function
decomposition of the form (66) and (70), with the densities
defined through (77) and (78). However, since we identified
the modified Wannier functions (76) only up to linear order in
the applied electromagnetic fields, when using Eq. (76) in (88)
only terms up to linear order should be kept; this applies also
to the remaining equations in this section, for which we drop
the subscripts indicating the order of the perturbation theory
for a clearer notation.

Equation (85) is not yet in its final form. For a collection
of isolated molecules �R(x) = j̃ (x) = 0, and then mR(x)
given by (81) is the total contribution to the magnetization
per lattice site; but this is not the case for a solid where
the hopping current j̃ (x) gives rise to the itinerant part of
magnetization. We note that physically the change in the
charge-current densities leading to the violation of the “site
continuity equation” �R(x) should be understood as the influx
of charge from neighboring sites diminished by the outflow to
other sites. To identify the hopping matrix elements in the
presence of external electromagnetic fields, we first need to
establish the dynamical equation satisfied by the lattice-site
Green function. Using the decomposition (66) in (6) together
with relations (37)–(39) we have in the static case∑

R

e− ie
c�

φ(x, y,R)[HR(x) − H∗
R( y)]GR(x, y) = 0. (89)

Now we only need to integrate out one of the variables in
(89). This can be easily done since the Wannier functions (76),
rather than being orthonormal, satisfy∫

d3xW̃ ∗
v1 R1

(x)W̃v2 R2 (x)e− ie
c�

φ(x,R1,R2) = δv1v2δR1 R2 (90)

up to linear order. We note here that the relation (90)
guarantees indempotency of the usual gauge-dependent den-
sity matrix −iGGD(x, y; T ) = −iG(x, y; T )ei�(x, y;T ), with
G(x, y; T ) given by (66) and (70). Multiplying now both sides
of Eq. (89) by exp[ ie

c�
φ(x, y,R′)]W̃v′ R′ ( y), using (52) and (90)

and integrating over space, we arrive at

HR(x)W̃vR(x) =
∑
v′ R′

tv
′v

R′ RW̃v′ R′(x)e− ie
c�

φ(x,R,R′),

with the hopping matrix elements

tv
′v

R′ R =
∫

d3xW̃ ∗
v′ R′(x)e− ie

c�
φ(x,R′,R)HR(x)W̃vR(x)

=
∫

d3xW̃ ∗
v′ R′(x)HR′(x)e− ie

c�
φ(x,R′,R)W̃vR(x)

satisfying [tv
′v

R′ R]∗ = tvv′
RR′ . Having identified the hopping matrix

elements it is now straightforward to construct a decomposi-
tion

�R(x) =
∑

R′
[�R′ R(x) − �RR′ (x)] (91)

of the function (88), where

�R′ R(x) = ie

�

∑
vv′

tv
′v

R′ RW̃ ∗
vR(x)W̃v′ R′(x)e− ie

c�
φ(x,R,R′)

describes the motion of charge from R′ to R. From (91) we
now see that the hopping current (87) is an inherently two-site
quantity, and we can identify the part of j̃ (x) associated with
hopping between sites R and R′,

j̃ RR′(x) = −1

2

∫
d3y[�R′ R( y) − �RR′( y)]

× [s(x, y; R) − s(x, y; R′)]. (92)

Assigning half of the current (92) to site R and half to R′, we
put

j̃ R(x) = 1

2

∑
R′

[ j̃ RR′(x) + j̃ R′ R(x)]. (93)

The current (93) is divergenceless and thus can be represented
as the curl of an itinerant magnetization

m̃i
R(x) = 1

c

∫
d3yαik(x, y; R)j̃ k

R( y). (94)

We now arrive at the final representation of the charge and
current densities,

ρ(x) = −
∑

R

∇ · pR(x), (95)

j (x) = c
∑

R

∇ × [mR(x) + m̃R(x)], (96)

where to write (95) we use the fact that in linear response
the reference charge density (86) vanishes after the ionic
background is included. The polarization and magnetization
fields in Eqs. (95) and (96) serve as a basis for constructing a
multipole expansion of the charge and current distributions that
when spatially averaged leads to a macroscopic description of
a system.
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IV. MULTIPOLE EXPANSION OF POLARIZATION AND
MAGNETIZATION FIELDS

We are interested in applying the formalism of Sec. III and
its generalizations to problems where normal materials are
subject to radiation with wavelengths in the optical regime or
longer. In general any polarization and magnetization fields
that describe charge-current densities not confined in space
must be linked with those densities in a nonlocal way [25].
But for normal materials the Green function G(x, y; T ) can
be expected to vanish as the distance between x and y is
increased beyond a few lattice spacings, and the GR(x, y)
(70) constructed perturbatively from (68) can be expected to
vanish for x and y removed from R by a few lattice spacings,
a distance over which the electromagnetic field varies little. A
multipole expansion of the charge and current densities asso-
ciated with each site R within the expressions for polarization
and magnetization fields can then be successfully introduced
which, when complemented with a spatial averaging procedure
to define macroscopic fields, gives a macroscopic description
of the material response. In this section we construct the
multipole expansion for the static case of Sec. III. We confirm
that within our approach we recover the earlier results for the
ground-state polarization and magnetization [4,8], the electric
susceptibility [22,23], the magnetoelectric response [10], and
the magnetic susceptibility [12].

We start by using the Dirac δ expansion (27) in the
expressions (80) and (81) to find

pi
R(x) = μi

Rδ(x − R) − q
ij

R
∂

∂xj
δ(x − R) + · · · , (97)

mi
R(x) = vi

Rδ(x − R) + · · · , (98)

where the dipole, quadrupole, and the local circulation mag-
netic dipole moment are given by (30), (31), and (32) with
the charge and current density operators replaced by ρR(x)
and j R(x). For the itinerant magnetization (94) we first do
the integral

∫
d3yαik(x, y; R1)sk( y,z; R2) and then keeping

the lowest term in the expansions around u(R2 − R1) and
u′(z − R2) we get

m̃R(x) = δ(x − R)ṽR + · · · , (99)

with the itinerant magnetic dipole moment given by

ṽR = 1

4c

∑
R′

(R′ − R) ×
∫

d3z(z − R)

× [�R′ R(z) − �RR′(z)]. (100)

The expansions (97), (98), and (99) need to be comple-
mented with an appropriate coarse-graining procedure. We do
this in the standard way [31] by defining macroscopic fields
gmac(x) in terms of the corresponding microscopic fields g(x)
by spatial averaging,

gmac(x) =
∫

w(x − x′)g(x′)d3x ′,

where we take w(x) = w(|x|) to be a smooth function, peaked
at |x| = 0, normalized according to

∫
w(x)d3x = 1, and

nonvanishing only for |x| � , where the range  satisfies

a 
  
 λ, (101)

with a on the order of a lattice constant and λ indicates the
range of variation of the fields one wants to describe at the
macroscopic level; in optical problems, for example, it could
be taken to be the wavelength of light. The detailed form of
the function w(x) is unimportant. From Eqs. (95) and (96) we
then have

ρmac(x) = −∇ · P(x),

jmac(x) = c∇ × M(x),

where using (97), (98), and (99) we have for the macroscopic
polarization and magnetization fields

P(x) = P(x) − ∇ · Q(x) + · · · , (102)

M(x) = M(x) + · · · , (103)

with

P(x) =
∑

R

w(x − R)μR,

Qij (x) =
∑

R

w(x − R)qij

R ,

M(x) =
∑

R

w(x − R)(vR + ṽR).

The terms surviving in (102) and (103) result from the
terms kept in the use of the expansion (27); in general more
could be included. Expansions such as (102) and (103) are
common in the discussion of the electrodynamics of fluids,
where the macroscopic fields are traditionally defined via
ensemble averages [1]. In the case we consider here, with
uniform electric and magnetic fields, the multipole moments
are independent of lattice site μR = μ, etc., and taking the sum
over all lattice sites of w(x − R) to be essentially independent
of x by virtue of (101), P(x) = P , etc., we have

P = nμ, (104)

M = n(v + v̄), (105)

where n is the number density of lattice sites.
We now explicitly evaluate the moments in (104) and (105)

to find the ground state contributions, the electric and magnetic
susceptibilities, and the magnetoelectric tensor, defined as
coefficients in the expansion

P i = P i
(0) + χ

ij

E Ej + α̃ijBj ,

Mi = Mi
(0) + χ

ij

B Bj + α̃j iEj .

For the ground state contribution to polarization and magneti-
zation we find

P (0) = e
∑

v

∫
BZ

d3k

(2π )3
ζ vv(k), (106)

M(0) = e
∑

v

∫
BZ

d3k

(2π )3
Jvv(k), (107)
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in agreement with King-Smith et al. [4] and Thonhauser et al.
[8] and where we have introduced a shorthand

Jn1n2 (k) = 1

2mc

[
Ln1n2 (k) + Xn1n2 (k)

]
. (108)

Identifying the term in the expression for the polarization pro-
portional to the electric field we find the electric susceptibility

χ
ij

E =
∑
n1n2

∫
BZ

d3k

(2π )3

e2fn2n1

En1n2 (k)
ζ i
n2n1

(k)ζ j
n1n2

(k), (109)

in agreement with Sipe et al. [22,23]. The magnetoelectric
tensor we calculate both as a response of the electric dipole
moment to the magnetic field and the magnetic dipole with
respect to electric field; the result is

α̃ij =
∑
n1n2

∫
BZ

d3k

(2π )3

e2fn2n1

En1n2 (k)
ζ i
n2n1

(k)J j
n1n2

(k)

− e2

2c�
Re

∑
nv

∫
BZ

d3k

(2π )3
ζ i
vn(k)Dj

nv(k), (110)

and agrees with that of Malashevich et al. [10] for the simple
case of nondegenerate bands that we consider in this paper
and in the limit where screening effects are neglected. The
magnetic susceptibility tensor we write as a sum of four terms,

χ
ij

B = χij
a + χ

ij

b + χij
c + χ

ij

d . (111)

The first two terms are given by

χij
a =

∑
n1n2

∫
BZ

d3k

(2π )3

e2fn2n1

En1n2 (k)
J i

n2n1
(k)J j

n1n2
(k), (112)

χ
ij

b = − e2

4mc2

∑
nv

∫
BZ

d3k

(2π )3

[
δijζ vn(k) · ζ nv(k)

− 1

2

(
ζ j
vn(k)ζ i

nv(k) + ζ j
nv(k)ζ i

vn(k)
)
]
, (113)

and in the limit of isolated atoms they reduce, respectively, to
the usual paramagnetic and diamagnetic atomic susceptibili-
ties. The remaining two terms involve itinerant currents, in that
they would disappear were the Wannier functions at different
sites to have no common support. They are given by

χij
c = − e2

c�
Re

∑
nv

∫
BZ

d3k

(2π )3

{
J i

vn(k)Dj
nv(k)

+ 1

8c�
Evn(k)Di

vn(k)Dj
nv(k)

}
, (114)

χ
ij

d = e2

8�2c2

∑
nv

εimlεjus

∫
BZ

d3k

(2π )3

∂2Evk

∂kl∂ks

× [
ζm
vn(k)ζ u

nv(k) + ζ u
vn(k)ζm

nv(k)
]
, (115)

where the curly bracket indicates a symmetrization in i, j

indices,

{AiBj } = {AjBi} = 1
2 (AiBj + AjBi). (116)

Equation (111) is in agreement with the earlier result found for
crystals assumed to have a cubic symmetry and derived using
energy considerations [12].

The gauge transformation of Eqs. (106)–(110) was dis-
cussed in earlier works [4,8,10]. We now show that the form
(111) of the magnetic susceptibility for a crystal of arbitrary
symmetry is explicitly gauge invariant; to this end we introduce
“gauge-covariant” matrix elements J n1n2 (k) and Dn1n2 (k),

J n1n2 (k) = 1 − δn1n2

4c�
ζ n1n2 (k) × ∂

(
En1 k + En2 k

)
∂k

+ 1

4mc

∑
s �=n2

ζ sn2 (k) × pn1s(k)

+ 1

4mc

∑
s �=n1

ζ n1s(k) × psn2 (k), (117)

Dn1n2 (k) = i
∑

s �=n1,n2

ζ n1s(k) × ζ sn2 (k), (118)

that differ from Jn1n2 (k), Dn1n2 (k) [(108) and (63)] by the
absence of diagonal Berry connections [see (A1) and (A2)].
The susceptibility tensor (111) we now write as

χ
ij

B = χ̃ ij
a + χ̃

ij

b + χ̃ ij
c + χ̃

ij

d + χ̃ ij
e , (119)

where the first four terms

χ̃ ij
a =

∑
n1n2

∫
BZ

d3k

(2π )3

e2fn2n1

En1n2 (k)
J i

n2n1
(k)J j

n1n2
(k), (120)

χ̃
ij

b = − e2

4mc2

∑
nv

n �= v

∫
d3k

(2π )3

[
δijζ vn(k) · ζ nv(k)

− 1

2

(
ζ j
vn(k)ζ i

nv(k) + ζ j
nv(k)ζ i

vn(k)
)
]
, (121)

χ̃ ij
c = − e2

c�
Re

∑
nv

∫
BZ

d3k

(2π )3

{
J i

vn(k)Dj
nv(k)

+ 1

8c�
Evn(k)Di

vn(k)Dj
nv(k)

}
, (122)

χ̃
ij

d = e2

8�2c2

∑
nv

n �= v

εimlεjus

∫
BZ

d3k

(2π )3

∂2Evk

∂kl∂ks

× [
ζm
vn(k)ζ u

nv(k) + ζ u
vn(k)ζm

nv(k)
]
, (123)

differ from (112)–(115) in that the diagonal Berry connections
are now excluded; the excluded terms we collect and using
appropriate sum rules outlined in the Appendix rewrite as

χ̃ ij
e = − e2

2c�

∑
v

∫
BZ

d3k

(2π )3

{
J i

vv(k)Dj
vv(k)

}
. (124)

V. DISCUSSION AND FUTURE OUTLOOK

We have presented a microscopic description of the linear
response of a crystal to electromagnetic fields that is based
entirely on electrodynamic considerations. Our starting point
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was a gauge-invariant Green function [25] with a Peierls phase
defined only in terms of the coordinates of the Green function.
In the neighborhood of each lattice site the phase was rewritten
as the Power-Zienau-Wooley (PZW) phase modified by a flux
of the magnetic field, with the lattice site being the special
point of the transformation. An expansion of applied fields
around the lattice sites within the Green function followed in
a natural way, and microscopic charge and current densities
could be extracted for the response of the system exposed to
time and spatially varying electromagnetic fields.

Restricting ourselves then to static and uniform electric
and magnetic fields, we introduced microscopic polarization
and magnetization fields associated with each site, taking
into account the itinerant current “between” lattice sites that
gives an additional contribution to the magnetization. Macro-
scopic polarization and magnetization fields were introduced
as spatial averages of the microscopic fields. The results that
followed for the macroscopic polarization and magnetization,
both before any field is applied as well as in linear response,
are all in agreement with accepted expressions. Expressions
for the ground state polarization and magnetization, and the
diagonal and mixed susceptibilities, have all been derived
within a single framework and based on purely electrodynamic
considerations.

The description of the response of solids to time-varying
and spatially varying electromagnetic fields—where for trans-
verse fields the former necessarily implies the latter through
the Maxwell equations—is an outstanding problem in the
optical response of materials. A formal expansion of the
minimal-coupling Hamiltonian in terms of the wave vector of
the applied fields is an obvious strategy and always a possible
approach, but it offers little physical insight, and since the
calculations are made for a particular choice of the scalar
and vector potentials they are generally not manifestly gauge
invariant. In contrast, only the electromagnetic fields appear
in a PZW approach. But even in the usual PZW treatment of
molecular fluids, nonunique polarization and magnetization
fields arise once spatially varying applied fields are introduced,
and moments beyond the first of the molecular charge and
current densities appear in the description. Nonetheless, a
unambiguous account results for both the charge and current
densities in the bulk of the material, and the physics of
interfaces involving such calculations as the intensity of
reflected light [19,32].

In the extended PZW approach of a solid we initiate here the
situation is even more complicated, but the nonuniqueness of
the higher order moments of the Wannier functions does mirror
that of the nonuniqueness of the higher order moments in
molecular fluids. Whether the generalization of the formalism
to treat optical response could provide an unambiguous
account of both the charge and current densities in the bulk,
and the optical properties of interfaces, is an open question
and beyond the scope of this paper. But the success of such an
extended PZW approach in describing all the linear response
properties in the limit of static and uniform fields is promising,
and its demonstration here provides an introduction to a
strategy for addressing the outstanding problem of the optical
response of solids to time-dependent and spatially varying
electric and magnetic fields.
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APPENDIX

In this Appendix we prove the equivalence of Eqs. (111)
and (119). We first establish relations between the vectors
Jn1n2 (k), Dn1n2 (k) [(108) and (63)], and the gauge-covariant
vectors J n1n2 (k), Dn1n2 (k) [(117) and (118)],

Jn1n2 (k) = J n1n2 (k) + δn1n2

2c�
ζ n1n1 (k) × ∂En1 k

∂k

+ (ζ n1n1 (k) + ζ n2n2 (k)) × pn1n2 (k)

4mc
, (A1)

Dn1n2 (k) = Dn1n2 (k) + iζ n1n1 (k) × ζ n1n2 (k)

− iζ n2n2 (k) × ζ n1n2 (k). (A2)

Next we use (A1) and (A2) to decompose (112)–(115),

χij
p = χ̃ ij

p + gij
p , p = a,b,c,d,

where χ̃
ij
p are the explicitly gauge-invariant contributions

given by (120)–(123), and g
ij
p are the remaining contributions

involving the diagonal Berry connections. The sum of g
ij
a and

g
ij
c after some manipulations can be written as

g
ij
a+c = Re

∑
nv

∫
BZ

d3k

(2π )3

{
Gi

vn(k)[ζ vv(k) × ζ nv(k)]j
}

− e2

m�c2

∑
v

∫
BZ

d3k

(2π )3

{
Di

vv(k)Xj
vv(k)

}
, (A3)

where we define

Gvn(k) = ie2

�c2

1

m

(
Lvn(k) − i

2
∇ × pvn(k)

)

+ ie2

�2c2
ζ vn(k) × ∂Evk

∂k

+ e2

2�2c2
Evn(k)ζ vv(k) × ζ vn(k), (A4)

and the remaining two terms are

g
ij

b = − e2

4mc2

∑
v

∫
BZ

d3k

(2π )3

[−ζ i
vv(k)ζ j

vv(k)

+ δijζ vv(k) · ζ vv(k)
]
,

g
ij

d = e2 εimlεjus

4�2c2

∑
v

∫
BZ

d3k

(2π )3

∂2Evk

∂kl∂ks
ζm
vv(k)ζ u

vv(k).

We now simplify expression (A3) by noting that, although
formally involving sums over all bands, in fact it really depends
on the properties of the valence band manifold. To show that
this is the case, we rewrite the first line of (A3) using sum
rules for the three contributions coming from each line in
the definition (A4). For the contributions from lines two and
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three of (A4) we use, respectively, the expression for the Berry
curvature tensor

∂lζ
m
vv(k)−∂mζ l

vv(k) = i
∑

n

ζ l
vn(k)ζm

nv(k)−i
∑

n

ζ l
nv(k)ζm

vn(k),

(A5)

and the effective mass tensor sum rule

m
∂2Evk

∂km∂kl
= �

2δlm + i�
∑

n

ζm
vn(k)pl

nv(k)

− i�
∑

n

pl
vn(k)ζm

nv(k). (A6)

We write the contribution from the first line of (A4) in real
space in terms of the Wannier function moments of the position
and orbital angular momentum operators,

ZR(z) = z − R,

L R(z) = (z − R) × p(z).

When the first line of (A4) is inserted in (A3) we find

Re
∑
nv

i

∫
BZ

d3k

(2π )3

[
Lvn(k)− i

2
∇× pvn(k)

]i

[ζ vv(k) × ζ nv(k)]j = Re
i

Vc

∑
R′ R′′

∑
nv

〈vR|L̂i
R|nR′〉(〈vR′′|ẐR|vR〉

× 〈nR′|ẐR′′ |vR′′〉)j . (A7)

Recalling now that Wannier functions are complete, and summing over n and R′ we find

Re
∑
nv

i

∫
BZ

d3k

(2π )3

[
Lvn(k)− i

2
∇ × pvn(k)

]i

[ζ vv(k) × ζ nv(k)]j= i

2Vc

∑
vR′′

εjlm
[〈vR′′|Ẑl

R′′ |vR〉〈vR|Ẑm
RL̂i

R′′ |vR′′〉−R↔R′′]

−2mc2
�

e2
g

ij

b − 1

2

∑
v

∫
BZ

d3k

(2π )3

[
Li

vv(k)Dj
vv(k) + εjlmεirs ∂ζ l

vv(k)

∂kr
Lms

vv (k)

]
, (A8)

where we introduced the orbital angular momentum tensor

Lms
vv (k) = 1

2

∑
n

[
ζm
nv(k)ps

vn(k) + ζm
vn(k)ps

nv(k)
]
, (A9)

which can be expressed in terms of the orbital angular momentum vector (61) through

Lms
vv (k) = 1

2
εimsLi

vv(k) + m

2�
ζ s
vv(k)

∂Evk

∂km
+ m

2�
ζm
vv(k)

∂Evk

∂ks
. (A10)

The terms in the first line on the right-hand side of (A8) cancel out, which can be seen either by explicitly evaluating the Wannier
function moments as k-space integrals over Berry connections and momentum matrix elements, or more simply by expanding
the periodic part of the wave function uvk(x) = ∑

G uvk(G)eix·G , and formally writing

1

Vc

∑
R′′

εjlm〈vR′′|Ẑl
R′′ |vR〉〈vR|Ẑm

RL̂i
R′′ |vR′′〉 = i�

∫
BZ

d3k

(2π )3

∑
GG′

[
∂u∗

vk(G)

∂k
× ∂u∗

vk(G′)
∂k

]j[
uvk(G)(k + G′) × ∂uvk(G′)

∂k

]i

= 1

Vc

∑
R′′

εjlm〈vR|Ẑl
R|vR′′〉〈vR′′|Ẑm

R′′L̂
i
R|vR〉.

Finally we establish a relation∫
BZ

d3k

(2π )3

{
εjlmεirs ∂ζ l

vv(k)

∂kr
Lms

vv (k) + Li
vv(k)Dj

vv(k)

}
=

∫
BZ

d3k

(2π )3

{
mcJ i

vv(k)Dj
vv(k) − Di

vv(k)Xj
vv(k)

+ m

�
εimlεjusζm

vv(k)ζ u
vv(k)

∂2Evk

∂kl∂ks

}
, (A11)

by using (A10) in the first line. Using now (A11) together with (A8) we arrive at the third “sum rule”

Re
∑
nv

i

∫
BZ

d3k

(2π )3

{
[ζ vv(k) × ζ nv(k)]jT i

vn(k)
} = 1

2

∑
v

∫
BZ

d3k

(2π )3

{
Di

vv(k)Xj
vv(k)

} + mc2
�

e2

[
χ̃ ij

e − 2g
ij

b − 2g
ij

d

]
, (A12)

with T vn(k) = Lvn(k) − i
2∇ × pvn(k). Using now (A5), (A6), and (A12) in (A3) we arrive at

g
ij
a+c = χ̃ ij

e − g
ij

b − g
ij

d . (A13)

Adding now all the contributions to susceptibility, we get (119).
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