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Dynamical quantum phase transitions in the axial next-nearest-neighbor Ising chain

J. N. Kriel,! C. Karrasch,>? and S. Kehrein®
Vnstitute of Theoretical Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
2Department of Physics, University of California, Berkeley, California 95720, USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
*Institut fiir Theoretische Physik, Georg-August-Universitiit Gottingen, D-37077 Gottingen, Germany
(Received 15 July 2014; revised manuscript received 25 August 2014; published 3 September 2014)

We investigate sudden quenches across the critical point in the transverse field Ising chain with a perturbing
nonintegrable next-nearest-neighbor interaction. Expressions for the return (Loschmidt) amplitude and associated
rate function are derived to linear order in the next-nearest-neighbor coupling. In the thermodynamic limit these
quantities exhibit nonanalytic behavior at a set of critical times, a phenomenon referred to as a dynamical quantum
phase transition. We quantify the effect of the integrability breaking perturbation on the location and shape of
these nonanalyticities. Our results agree with those of earlier numerical studies and offer further support for
the assertion that the dynamical quantum phase transitions exhibited by this model are a generic feature of its
postquench dynamics and are robust with respect to the inclusion of nonintegrable perturbations.
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I. INTRODUCTION

Advances in the experimental manipulation of systems,
such as cold atomic gases [1,2], has allowed for the realization
of unitary time evolution in closed quantum systems [3].
This has triggered much theoretical interest in nonequilibrium
quantum dynamics, particularly in relation to the existence
and characterization of long-time stationary states. A typical
scenario in this context is that of a quantum quench in which
a system is driven out of equilibrium by tuning a control
parameter, typically an external field strength. In this paper
our interest lies with the finite-time dynamics following a
sudden quench and the emergence of nonanalytic behavior
in certain quantities in the thermodynamic limit. To set the
scene, consider the return (Loschmidt) amplitude,

G(1) = (Wole ™| W), ey

with |Wy) as the initial state and H as the Hamiltonian driving
the postquench dynamics. Heyl et al. [4] noted the formal
similarity between G(t) and the canonical partition function
Z(B) = tr(e ). As is well known from the Lee-Yang treat-
ment of equilibrium phase transitions the nonanalytic behavior
of the free-energy density can be understood by analyzing the
Fisher zeros of Z(B) in the complex temperature plane [5]. In
this spirit Heyl ef al. investigated the analytic behavior of the
boundary partition function Z(z) = (Wole *# | W) withz € C
for quenches in the transverse field Ising chain. It was found
that in the thermodynamic limit and for quenches between
the paramagnetic (PM) and the ferromagnetic (FM) phases,
the zeros of Z(z) coalesce into lines which intersect the time
axis. This results in nonanalytic behavior in the rate function
of the return probability /(1) = lim;_, —L'In|G(1))* at a
set of critical times #;. At these times the system is said to
exhibit a dynamical quantum phase transition. Furthermore,
these transitions were shown to impact on the behavior
of the experimentally relevant work distribution function,
whereas the critical times themselves introduce a new quench-
dependent time scale which enters in the dynamics of the order
parameter. Aspects of this phenomenon have since been the
focus of a number of studies [6—11]. In particular, Karrasch
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and Schuricht [12] investigated the robustness of these phase
transitions for quenches in two nonintegrable spin models us-
ing the time-dependent density-matrix renormalization group
(tDMRG) algorithm. It was found that the dynamical phase
transitions persist is the presence of nonintegrable interactions,
although the shape and location of the nonanalyticities get
modified in a nontrivial way.

In this paper we complement this study with analytic
calculations for quenches in the transverse field Ising chain
perturbed by a nonintegrable next-nearest-neighbor (NNN)
interaction. The Hamiltonian driving the dynamics is then
the axial transverse next-nearest-neighbor Ising (ANNNI)
model [13,14]. To reliably describe the dynamics at longer
times we implement the continuous unitary transformations
(CUTs) approach to calculate the rate function of the return
probability to linear order in the NNN coupling.

The paper is organized as follows. In Sec. I we summarize
some results from Refs. [4,15] for quenches in the transverse
field Ising chain. The CUTs diagonalization procedure is
outlined in Sec. III A and used in Secs. Il B and IIIC for
the perturbative calculation of the return probability and rate
function for quenches to the ANNNI model. These results
are benchmarked against tDMRG calculations in Sec. IV.
In Sec. V we analyze how the shape and location of the
nonanalyticities in the rate function are modified by the NNN
interaction. Section VI concludes the paper. Some technical
details of the calculations appear in the Appendices.

II. QUENCHES IN THE TRANSVERSE FIELD
ISING CHAIN

The one-dimensional transverse field Ising model is
L
Hy(g) = — Z (0701 +g07"), @)
i=1

with periodic boundary condition o/, = o and where g
denotes the transverse magnetic field strength. This model
exhibits a quantum phase transition at g = g, = 1 from a
ferromagnetic (g < 1) to a paramagnetic (g > 1) phase [16]. It
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FIG. 1. (Color online) The rate function /(A ,#) for quenches from the FM to the PM phase (left) and the PM to the FM phase (right). The
A = 0 curve corresponds to (6). Results for A > 0 were obtained using the tDMRG algorithm. See Sec. IV and Ref. [12] for details.

is exactly solvable through a combination of a Wigner-Jordan
and Bogoliubov transformation which produces a description
in terms of free fermions. The dynamics of this model
following a quench in g has been studied by a number of
authors [4,12,15,17,18], and we only summarize some basic
results here. In a quantum quench experiment the system is
prepared in the ground state of an initial Hamiltonian Hy(go)
and then allowed to evolve unitarily under the final Hamilto-
nian Hy(g;). Let {nz,nk} and {ykT,yk} denote the fermionic
species diagonalizing Hy(go) and Hy(g;), respectively. We
have [16,19]

Ho(go) = Y _ ex(go)nimi — 1/2] and
k

Ho(g1) = Y elgnlyi v — 1/2], 3)
k

where €;(g) = 2\/ (g — cos k)? + sin? k. The two species are

related by nx = Uryx + inyik where U, = cos(¢) and

Vi = sin(¢y) with ¢y = 0k(g1) — Ok(go) and tan[26(g)] =
sin k/(g — cos k). The quantities of interest here are the return

(Loschmidt) amplitude G(r) = ,,(0]e~"(&)|0), and the rate
function of the return probability,

I(t) = — Llingo % In|G@)*. 4)

Here |0),, is the n vacuum and the ground state of Hy(go). The
latter is related to the y vacuum through

0, = N~e™ o Mri¥iajo),, 5)
with N2 = [[;,(1 + A}) and Ay = Vi/ U = tan ¢y. It now
follows that [15]

G() =[] (Uf + VZe ")) and
k>0

™ dk :
I(t) = 2 f — In|UZ + Ve 28|, (©6)
0 21

For quenches across the phase transition this quantity exhibits
nonanalytic behavior in the form of cusps which appear
periodically at the critical times,

=r(n+1/2), n=0,12,..., 7

with " = /€-(g1) and cos k* = (1 + gog1)/(go + g1)-
These nonanalyticities are a result of G(¢) factorizing into
contributions from the various k modes together with the
existence of a particular mode k* which satisfies U2 = V2
and for which the argument of the logarithm in (6) vanishes
att = ¢;. This is illustrated in Fig. 1. It is clear that integrable
perturbations that still allow for a free-fermion description will
not fundamentally alter this picture. However, it is less obvious
that this phenomenon persists in the presence of nonintegrable
interactions.

A final important point remains to be addressed. Af-
ter applying the Wigner-Jordan transformation to the spin
Hamiltonian in (2) the fermionic Fock space is found to
factorize into sectors with even and odd particle numbers.
In the even (Neveu-Schwarz) sector it is natural to impose
antiperiodic boundary conditions on the fermions, and this
leads to a quantization of the momentum in half-integer
multiples of 27 /L. In the odd (Ramond) particle number
sector we enforce periodic boundary conditions leading to
momentum quantization in integer multiples of 27 /L. At
finite L and for all g, the system’s true ground state lies in
the even sector [19]. In the ferromagnetic phase this state
is a superposition of symmetry-broken polarized states. In
the thermodynamic limit the ground states of the odd and
even sectors become degenerate, and one recovers the two
polarized ferromagnetic ground states. We emphasize that the
expressions in (6) are applicable only to quenches starting from
the mixed ground state of the even sector. We focus on this
case in what follows. For quenches starting from the polarized
ground state both the locations of the nonanalyticities as well
as the effect of nonintegrable perturbations differ significantly
from that of the mixed case. See Ref. [12] for a numeric
comparison of these two situations and the Supplemental
Material of Ref. [4] for an analytic treatment of a special
case.

III. QUENCHES IN THE ANNNI MODEL

We now turn to quenches which involve tuning g across
the phase transition while simultaneously switching on a
nonintegrable next-nearest-neighbor interaction. The initial
Hamiltonian remains Hy(go), whereas the time evolution is
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now generated by the ANNNI Hamiltonian [13,14],

L
H(g1,A) = — Z (00is) + 810" + Adfaf,)
i=1

= Ho(g1) + Hi(A). ®)

The behavior of the rate function /(A ,¢) following quenches
in this model has previously been studied using the tDMRG
algorithm in Ref. [12]. Results appear in Fig. 1 for two
quenches and various values of A. The shape and locations
of the cusps appear to depend on the NNN coupling in
a regular way, even at long times and for a range of
coupling strengths. Even strong coupling should therefore not
fundamentally alter the nature of these nonanalytic structures,
provided, of course, that the system is not driven into a
different phase. This suggests that the qualitative effect of the
NNN interaction can be captured well within a perturbative
framework.

Our goal in what follows is to calculate the linear order
correction to the rate function /(A,#) due to this perturbing
interaction. For this purpose standard time-dependent pertur-
bation theory is not sufficient as it produces secular terms
which grow linearly in time, leading to an eventual breakdown
in the perturbative approximation [20]. To overcome this
problem we make use of the CUTs approach [21,22]. This
technique has been applied successfully to a variety of
nonequilibrium problems [23-28]. When working perturba-
tively the CUTs approach also allows higher-order corrections
to be included in a systematic and straightforward manner.
The g; and A arguments of Hy; are suppressed in what
follows.

A. Diagonalization via CUTs

In the CUTs approach a sequence of infinitesimal unitary
transformations is used to bring the Hamiltonian into an
energy diagonal form. Following this, states and observables
may be evolved in time using this diagonalized Hamiltonian
without the risk of producing secular terms. The evolution
of the Hamiltonian under this sequence of transformations
is parametrized by a flow parameter ¢ and governed by the
equation,

dH ()
—— =[I'0),H(D)], ©))
dt

where I'(¢) is an anti-Hermitian generator. The postquench
Hamiltonian H = Hy + H; provides the initial condition at
£ =0, ie., HQO)= H. At finite £ this Hamiltonian is uni-
tarily transformed into H(£) = U(£)H(0)U(£), where U ()
satisfies dU(£)/d¢ = T'(€)U(€) and U(0) = I. By choosing
the generator I'(£) appropriately we can ensure that the flow
converges to a fixed point H(oco), which is diagonal in the
eigenbasis of a chosen noninteracting Hamiltonian. For the
latter we take simply Hy and set I'(¢) = [Hy, H({)], which
is known to produce a fixed point for which [Hy, H(0c0)] =
0, i.e., which is “energy diagonal” with respect to the
unperturbed Hamiltonian Hj. Transforming to a description
in terms of the y fermions of (3) we have, as before, that

Hy = Zk ek(gl)[;/kT vr — 1/2], whereas the interaction term
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reads

Hi=A+Y B®yly+ Y [Chyy +Hel
k k

+ > D&Y, vl vy,
k

+ Y E®y, vy v, +Hel
k

+ Y F®y viv vl + Hel. (10)
k

Expressions for the various coefficients appear in Egs. (A8)—
(A14) of Appendix A. To linear order in A the flow described
by (9) preserves the form of the original Hamiltonian H =
Hy + H; with only the coefficients of the energy off-diagonal
terms in H; evolving as

{— 00

C(k,0) = exp[—(e)*01C(k) — 0, (11)

D(k,£) = exp[—Ep(k)*¢]D(k) o Sepm),0DK), (12)

Ek¢) = exp[—Epk)*(]EK)

22 e, a0.0EK) = 0, (13)
F(k¢) = exp[—Epk)*(]F(k)

22 e a0.0F(K) =0, (14)

where  Ep(k) = €, + €, — €k, — €k,, EE(K) = €, + €, +
€k, — €k,, and Ep(K) = €, + €, + €, + €,. This can be
verified by substituting H () into (9) and using, for example,

[[Ho.v{ v visvi)- Hol = —Ep®>y) viveve, (15

to check (12) and similarly for the other coefficients. These are
the only type of double commutators relevant at linear order
since the coefficients of H; are already of order O(A). Here
and in what follows we abbreviate €, = €;(g;) and assume
that g; # 1, which ensures that €, > 0. As £ — oo the energy
off-diagonal terms therefore decay exponentially, leaving only
terms which commute with Hy. The combined constraints
of momentum and energy conservation are responsible for
E(k,00) and F(k,00) vanishing. The former constraint is
imposed via the § functions in expressions (A12) to (A13) of
Appendix A. Up to an additive constant the final Hamiltonian
is

H(c0) = Y [ex + BOW v+ Y 85,000 DKV vl vio v
k k

(16)

~ ng)//j)/k +> Dixvivevive = Ho+ Hy. (17)
k ok’

with
& =€, + B(k) and Dk,k'ZD(k,k/,k/,k) — D(k,k’,k,k/).
(18)
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The expression above is exact for odd L, whereas for even L
there are O(L) additional terms of the form y,j y;_k V_ i Vin
which also enter in H;. However, since D(k) = O(L™") these
terms do not contribute extensively to H(oco) and may be
neglected in the thermodynamic limit. The transformation
relating H(co) to H = H(0) is given by the {-ordered
exponential,

U(co) =T, {exp [/Oode r(e)“. (19)
0

All the energy off-diagonal terms in H(¢) are at least linear
in A, and so I'(¢) = [Hy,H({)] = O(A). It is therefore
permissible to neglect the ordering prescription above when
working to linear order and approximate the transformation by

U (00) = exp [/-oo dl F(Z):| =explJ], (20)
0
where

- ' r _ n
7 =Y [Chwly, —Hel+ Y D&Y vl v,
k k

+ > [E®y) vivin, —He]
k

+ Y [Faoy! viviv —Hel, @D
k

with X(k) = X(k)/Ex(k) for X = C,D,E,F. Expressions
for the unbarred coefficients appear in Eqgs. (A8)—(A14) of
Appendix A. In the primed summation those terms for which
Ep(K) = 0 are excluded.

B. Transition amplitude

Combining (20) with the identity H = U t(00)H (00)U (00)
allows the transition amplitude to be approximated as

G(t) = ,(0le”"""10),
= (01U (00)e ") (00)|0),, (22)

~ (Ole™ e et |0y, (23)

From here there are several possible routes which lead to
expressions for /(¢) which are equivalent up to linear order
in A. We will proceed in the spirit of the CUTs approach
and avoid the truncation of exponential power series based
on perturbative approximations as this may well reintroduce
secular terms. As a first step we rewrite the e =/ factor in (23)
as

gfitlfll — 1_[[1 + (e*itDk,k’ _ l)ylj,yk/ykT)/k], (24)
k,k'

and then approximate G(¢) by

Gy~ [ i1+ P = D{ylve) v vl
k,k'
x (0le™ e"e? |0),, (25)
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where
2(0]0e”it|0),
2(Ole~itf|0), -
The details of this approximation are given in Appendix B.
Using the form of the 1 vacuum in (5) we find that
(vl = AJQc with Q= (A} +¢™%)7".  @7)

What remains is to calculate the matrix element on the
right of (25). To leading order in A in the arguments of the
exponentials it holds that

(0) = (26)

;7<0|€_J€_itﬁoej|0>n — n(O|eeﬂ'11-'lo]e+izH0_Je_it1_"IO |0>n’ (28)

where the Baker-Campbell-Hausdorff formula has been used
to combine the two exponentials involving J according to

A D A D 2 .
e erB = pAATAB+O(AY) We now introduce

T = exp [—i Z Akez”gky,jytk}

k>0

X exp [i > Qe ykyk] G
k>0

with Qy as in (27) and set A = e~ JetitHo — J Apply-

ing (5) to the right of (28) produces, after some straightforward

manipulations,

_ith —1 —2it€
Oleej0), =, (01T 4T (0),, T (U7 + VZe %),
k>0
(30
The transformation 7 acts on the )/k(T)
to

operators in A according
5 =T\, T = 2ité ., - —2it& T
Vi = vl = Qre™"yp —iAge v (G

Pl =TI T =y +in 0¥y . (32)

Through normal ordering 7' A7 can be brought into the
form 7' AT = Ag + A + Ac where Ak, are operators
satisfying Ag|0), =0 and ,(0]A, =0 and with Ac =
, (0|71 AT|0),. All three these terms are of order O(A),
and so according to the Zassenhaus formula we may write

eT"AT — eAL eAc eAReO(AZ). (33)
Substituting this back into (30) then produces

,,(OIeAe”"H°|O),7 ~ ey<0|T—IAT\0>y l—[ (Ukz + Vk2e72it€k)’
k>0
(34)

which is again correct up to linear order in A in the
exponentials’ arguments. The remaining vacuum expectation
value can be calculated by applying Wick’s theorem on

the level of the transformed operators )7](”) =T “yk(T)T . The
nonzero contractions are
0177 10), = Qre™™™, (017,710}, = A7 Qx. (35)
SO 71,100, = i Ay Ore¥™®, (01737410}, = i Ay Ox.
(36)
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Combining the above with (21) and using A_; =
—Ay, O_r = Ok, and €_; = & together with the expressions
for the various coefficients in (A8)—-(A14) leads to

A ’
OITVATI0), = 73 QuQuAiAMip,  (37)

kK
where
4(2ite — 1)(621'@ - A,%)K1(k7k’)
My = Z
Gk’Ak
N (e2i1@+&) — 1)[cos(k + k') — 2K (k.K)]
€ + €
e2itew — o2&\ [cos(k + k') + 2K, (k k'
4 Jloostk + 1)+ 20206401 5,
€ — €
and

Ki(k,k') = sin[k + k' + 26,(g1) + 26, (g1)] sin*[(k — k)/2],
(39)

Ko(k,k') = coslk + k' + 26,(g1) + 26 (g1)] sin[(k — k)/2].
(40
The primed summation in (37) excludes terms for which k =

+k’. Combining (25), (34), and (37) yields the final form of
the return amplitude as

G~ [ i1+ (7P = Dyl v (v v
k,k'

x l—[ (Uk2 + VkZe—Zitgk)
k>0

A /
X exp |:Z > 0 Qk’AkAk’Mk,k/:| . (4D

k.k'

C. Rate function

Starting from expression (41) we now proceed to calculate
the corresponding rate function,

1 2
I(A,t) = — lim —ln|G(t)|2 = — lim —Re[ln G(?)].
L—oo L L—oo L
“2)

First consider the double product in G(f) as it appears
in (41). The fact that Dy ,» = O(L~") allows the corresponding
contribution to /(z) to be written as

) 2it . ,
théo Re [T ; Dy x (V}Jka’)(VkTVk>:| . (43)

Upon setting (y,jyk) = A%Qk andusing A_y = — Ay, Q4 =
Oy, and €_;, = & this expression becomes

. —16itA
lim Re|: B ZKz(k,k’)AiAi,Qka}. (44)

L—oo
k.k'
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Finally, combining the above with (41) yields

_ ™ dk 2 2 —2itg
(A = =2 In U + Ve |
0 27'[

T dkdk'
—2ARe =5 Qk Qe A A [My
_r 2m)

+8l'lAkAk/K2(k,k,)]i| + O(Az), (45)

where the modified single-particle energies are

& = € + SA/ — Ko(k k). (46)
_g 27

It will be useful to identify the linear order term in the
expansion [(A,t) = 1(0,1) + AID(t) + O(A?). To do so we
expand the first term in (45) to linear order in A (which enters
through &;) and replace €, — ¢ in the second term. This leads
to

T dk dk’'
() = —2R / dkdlc
® . @ny

+8it Ay Aw Ko (k k)] — 8it A2 QKo (k.K)}, (47)

{0k Or A A My

with all occurrences of €, replaced by €. For small A and short
times the difference between I(¢) in (45) and the truncated
form I(A,t) =1(0,1) + AID() is negligible. However, the
truncation introduces secular terms, and so (45) remains more
appropriate for the description of the dynamics at long times
for which ¢t ~ A~!. See Ref. [20] for a detailed discussion of
this point. We also note that, apart from these secular terms,
there are additional linear-f terms appearing in (47) which
were already present in (45). These terms are the result of
expressing the logarithm of the first double product in (41) as
a sum in (43). Here we made use of the scaling behavior of
Diw = O(L™") to truncate the power series of exp[—it Dy ']
in the thermodynamic limit. These terms are therefore the
result of an expansion in 1/L rather than A, and so their
presence in (45) does not necessarily signal a breakdown of
the result when r ~ A~L,

We remark that at this stage it is not obvious how the
perturbed critical times can be extracted from the results in (45)
or (47). Certainly, no simple analytic solution is apparent. In
fact, as shown in the next section, the truncation of I(A,r)
at linear order introduces discontinuities (in time) which are
not present in the exact result. Furthermore, the locations of
these discontinuities do not coincide with the perturbed critical
times. Despite these apparent difficulties, it is still possible to
extract both the shifts in the critical times and the change in
the shapes of the cusps in [(A,¢) from the perturbative results.
The procedure for doing so is detailed in Sec. V.

IV. COMPARISON TO NUMERIC RESULTS

To benchmark the perturbative calculation we have per-
formed comparisons with results obtained using the tDMRG
algorithm. These numeric calculations are carried out directly
in the thermodynamic limit; see Ref. [12] for details and further
applications to this and related spin models. At weak coupling
we expect the NNN interaction to perturb the rate function
I(A,t) only slightly. Instead of considering I(A,r) itself, it
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FIG. 2. (Color online) Results for the quench from gy = 0to g; = 4 and nonzero A. Left: tDMRG results for L(A,¢) = [I(A,t) — [(0,1)]/ A.
Right: A comparison of I!(¢) in (47) to the tDMRG estimate for A = 0.001. Vertical dashed lines indicate the unperturbed critical times Ly

is therefore more sensible to investigate L(A,t) = [I(A,t) —
1(0,1)]/A. For times and couplings within the perturbative
regime we expect L(A,t) to be well approximated by /V()
in (47). For a first comparison we consider a quench from the
FM to the PM phase with go = 0 and g; = 4. The tDMRG
results for several values of A are shown in Fig. 2. The rate
function itself appears in Fig. 1 and is clearly continuous
at the critical times. The same holds for L(A,f), but it is
found to vary very rapidly close to the critical times for
small A. On the horizontal scale of Fig. 2 this appears
as apparent discontinuities. We see that up to the seventh
critical time the curves for A =0.01 and A =0.001 are
almost indistinguishable. At these times and for A 5 0.01
the linear order contribution to /(A,t) therefore dominates,
and we expect /V(t) and L(A,t) to be approximately equal.
This is indeed the case as can be seen in Fig. 2. We also
note that, unlike L(A 1), IV(¢) exhibits true discontinuities at
the unperturbed critical times ¢. This can be attributed to the
divergence of the Qy~|a=o factors in (47) which occuratt =t
when k = k* with cos k* = (1 + gog1)/(go + g1)-

Figure 3 shows the same comparison for a quench from
the PM to the FM phase with go = 1.3 and g; = 0.2. We

[/(A,D-1(0,0]/A

LA

tt

FIG. 3. (Color online) Results for the quench from gy = 1.3 to
g1 = 0.2 and nonzero A. The prediction of I'(¢) in (47) is compared to
the tDMRG estimate L(A,t) = [I[(A,t) — [(0,1)]/A. Vertical dashed
lines indicate the unperturbed critical times 7.

again observe excellent agreement between the predictions of
IMD(¢) in (47) and the tDMRG results for small A. In this case
A = 0.05 represents a strong NNN coupling which produces
a large shift in the critical times. This results in the appearance
of two sets of cusps in L(A,?) corresponding to cusps at the
perturbed and unperturbed critical times present in /(A ,¢) and
1(0,t), respectively. This is a nonperturbative feature which
cannot be reproduced at any finite order of perturbation theory.
At first sight this might appear to prohibit the calculation
the shifted critical times from the truncated form of the rate
function I(A,1) ~ [(0,1) + AI'V(t) as the latter only exhibits
nonanalyticities at the unperturbed critical times. In the next
section we show that this is not the case, and that it is indeed
possible to extract the linear order shifts in the critical times
from our perturbative results.

V. ANALYSIS OF NONANALYTICITIES

The cusps appearing in the return probability rate function
are signatures of dynamical phase transitions in the postquench
dynamics. Here we analyze how the location and shape of
these nonanalyticities are affected by the perturbing NNN
interaction. To this end it is useful to first return to the
integrable case with A =0, i.e., the transverse field Ising
model and consider two limiting examples which provide
insight into the nature of these structures [4,12]. Consider
a quench from gy = oo to g; = 0. The rate function for L
divisible by 4 is then [(t,L) = —2 In[cos’(¢) + sin’(¢)]/L. As
L — oothe value of [(#, L) is determined by the largest term in
the argument of the logarithm. In fact, in the thermodynamic
limit I(f) = min{ fi(¢), ()} with fi(t) = —In[cos?(¢)] and
fo(t) = — In[sin?(z)]. This illustrates that the critical times
1y = m/2(n + 1/2) are not nonanalytic points of fi(¢) or f2(¢)
individually but rather those times at which the two functions
intersect and /(¢) switches between them. A similar picture
emerges for the reverse FM to PM quench with go = 0 and
g1 = oo, except here fi(¢) and f>(¢) have the additional
interpretation of being the rate functions for transitions
between different magnetization sectors [4]. The tDMRG
results shown in Fig. 1 suggest that this picture captures the
generic nature of these nonanalyticities for quenches across
the critical point with finite go ; and A as well.

125106-6



DYNAMICAL QUANTUM PHASE TRANSITIONS IN THE ...

PHYSICAL REVIEW B 90, 125106 (2014)

TABLE I. The linear order shifts in the critical times due to the NNN interaction. The left (right) table shows results for the quench go = 0

to g1 =4 (go = 1.3 to g = 0.2). The numerical tDMRG estimate (¢, , —

ty)/ A is shown for comparison.

DMRG DMRG
n i A = 0.001 A = 0.005 n i A =0.001 A =0.005
0 0.01264 0.01256 0.01265 0 ~1.870 —1.866 —1.853
1 0.009865 0.009906 0.009946 1 —5.513 —5.497 —5.434
2 —0.01862 —0.01855 —0.01824 2 ~10.30 ~10.25 ~10.05
3 —0.05783 —0.05771 —0.05666 3 —14.90 —14.86 —14.69
4 —0.08834 —0.08797 —0.08644 4 ~19.75 —19.66 ~19.36

We now consider a generic quench across the phase
transition from go to g; with A £ 0. Due to the NNN
interaction the critical times will be shifted from ¢ in (7)
to 7, . Based on the discussion above we assume that in a
neighborhood of each ¢ A there exist functions f1 g(A,t),
depending analytically on ¢ and A, which form the left and
right sides of the cusp. To be precise, [(A,1) = fr(A,t)fort <
tyaand (A1) = fr(A,t)fort > t; 5. The particular critical
time then satisfies fL(A,tn A) = fR(A tn A)- To linear order

in the coupling A we write fr p(A,t) = f(o) () + AfL(ge(t)

and 1y, =1; + AT*, where f(o)(t*) = f(o)(t*). From this we
can solve for 7, which determines the leading-order shift in
the critical time, to find

f(l)(t*)
f(())

This expression can be evaluated using the analytic results for
10D (¢) by setting

. f(l)(t*)
b = =0,
@) —

(48)

Moy 12 (1) F0) sy 13 7(0)
P = limtVw, - fiPa = im0, @9)
My 13 (1) FO) ok 130 7(O)
Ir (tn)—lh\n[}l 0, fr (ti)—th\rgl ®). (50)

Table I shows the results of this calculation together with the
tDMRG estimate (7, , —,)/A, and we again observe good
agreement within the perturbative regime for both types of
quenches.

As noted in Ref. [12] the NNN interaction appears to shift
the critical times away from their periodic values at A = 0.
Here we see that this is already a linear order effect. We have
calculated 7} up to n = 50 for the two quenches considered
in Table I. For n > 2 we found that the shifts are negative
and depend roughly linearly on n. The critical times for n > 2
therefore shift to earlier (later) times for positive (negative)
NNN coupling. It would also be interesting to determine
how these shifts behave in the long-time limit. Attempts
to extract this behavior by evaluating (48) numerically for
increasingly large n has proven to be problematic due to the
highly oscillatory nature of the integrals involved. Without
a means of evaluating (48) analytically we therefore cannot
make definite statements in this regard.

To quantify the change in the shape of the cusp, we analyze
the discontinuity in the first derivative of /(¢). Let si(A Iy A) =
hmg_)O[l(A, AT €)— l’(A,t:,A —€)] denote the jump in

[(A 1) at the critical time I, o- To leading order we find

0
2aH]]- 5D

SI(AL1E ) — 810,67) = A[ £ @) —

+Hi [ e -

Estimates for this quantity can also be extracted from the
tDMRG data. We again find that these numeric estimates match
the predictions of (51) very well with a level of agreement
similar to that seen in Table 1.

VI. CONCLUSIONS

We have investigated the effect of the nonintegrable NNN
interaction on dynamical quantum phase transitions in the
postquench dynamics of the ANNNI model. This was per-
formed within a perturbative analytic framework based on the
continuous unitary transformation approach to time evolution.
These phase transitions manifest as cusps in the rate function of
the return amplitude at a set of critical times. We have presented
analytic results for the change in the shape and location
of these cusps due to the perturbing NNN interaction. Our
results support those of earlier numerical studies [12] which
demonstrated that these nonanalytic features are robust with
respect to the inclusion of the NNN interaction and depend on
the coupling strength in a regular thought-complicated way. In
particular, we find that the shift in the critical times away from
periodicity is already a linear order effect in the NNN coupling.
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APPENDIX A

Here we summarize the derivation of expressions (3)
and (10) for Hy and H; and provide expressions for
the coefficients appearing in the latter. First we apply

the Wigner-Jordan transformation 0" =1 — 2cjc,~ and of =

125106-7



J.N. KRIEL, C. KARRASCH, AND S. KEHREIN

]_[j<i(2cjcj — 1)(cj +¢;)to H = Hy + H; in (8) to obtain
Hy = (ci —cDleii + ¢l ) +8 Y el = 1), (AD

Hy =AY (c; —c)(1 =2 cii)el,, + e, (A2)

L

where periodic (antiperiodic) boundary conditions are en-
forced in the odd (even) particle number sector. Fourier
transforming to ¢y = L™'/2 3" ¢;e™'% then produces

Hy =Y {2[g — cos(k)lefer + i sin(k)c! el + c_rer) — g}
k

(A3)

Hy = —A[H, )+ Hi»+ H 3l (A4)
where

Hyj =2 cosk)cler —i sin@k)(c! el +crer). (AS)
k

Hiy= 2 S 000 + ko — ks — k k> + ka)e) cf
12 = ZZ (ki + ko — k3 — ka) cos(ka + ka)cy, ¢, Chs Crys
K

(A6)
Hi o« — 225@ +ky + k3 — kq)
13 = I 8 1 2 3 4
x [gi(szkB)cl;C}:zC;;ch + HC] (A7)

In the odd (even) sector k is quantized in integer (half-integer)
multiples of 27 /L. Finally we introduce the Bogoliubov
fermions ykm by ¢k = upyr + ivkyik where u; = cos(6;) and
v = sin(f;) with tan(26;) = sin(k)/[g; — cos(k)]. Solutions
to the latter equation are chosen such that 6; € [0,7/2] for
k € [0,7] and 6; € [—m/2,0] when k € [—m,0). To handle the
lengthy algebra resulting from the Bogoliubov transformation
we used the SNEG package [29] for Mathematica to extract the
coefficients in (10). We find that

8A ) 4i A
B(k) = — ; K>(k,k) and C(k) = - ; K, (k,K),

(A8)

with K;, given in (40). In terms of the three auxiliary
functions,

D' = [uklukzuké Vg [sin(k; — kp) — 2 s1n(k§ + k)]
+ g, Vg, uiv_y; [cos(ky + ki) — cos(ky — k)]

+ g Uiy g U, CO8(ky + k)| + (ki < k), (A9)

E' = uiv_p, [v_i,uy; sin(k; — ky) + 2ug, vy sin(k; + k2)]
=+ 2uk2uk3 Vg, U [COS(kll + k) — cos(k; — ko)

+ Ui Uy Uy U sin(k; — kp), (A10)

F' = Ujy U, V_f, [Mkz sin(k, — k3) + V_g, cos(k; — k3)],
(Al11)
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the remaining coefficients read

- 2A

D(kl,kz,kl,kz) = 8k1+k2fki+kéT[D
+(uk > V- Vk = u—k)]7 (A12)

/ %A

E(ki, k2, k3,k1) = Sk, ks T[E
— (g = —v_ue = u-p)l. (Al3)

A,

F(kl7k2’k3’k4) = 8k1+kz+k3+k4T[F
+ = —vv > u)] (Ald)

APPENDIX B

Here we outline the approximations leading to the expres-
sion for Cj(t) in (25). We begin with the exact expression for
exp[—it H,] in (24), namely,

e—itH — 1_[[1 + (e—itDk_k/ _ l)y,f/yk’)//j)’k]'
k,k!

(BI)

Note that Dy = O(A/L) and so too (e~ i'Pev —1)=
O(A/L). Expanding the double product above produces an
expression which is schematically of the form

e =14y 0 /Lylnevint Y. 0wYL)
kK (k1 k) Ak, k5)
X VE VeV va v v vive + -+ (B2)

Upon inserting this expansion into the right of (23),

G(t) ~ (0le™ e e=itHog! |0y, (B3)

we are required to calculate, for products of number
operators O = IL y,i Vk,» matrix elements of the form
,(0le™ Qe |0y, Tt is convenient to divide both sides
of (B3) by ,(0le™/e"""¢7]0), in which case the relevant
quantities on the right are the ‘“normalized” matrix elements,

2 (0le™ Oe~itfoe|0),
. (O|e*16*”HOeJ 10}, )

Note that J = O(A) and that all the terms on the right
of (B2) which involve operators are already at least linear
in A. To linear order it is therefore sufficient to approximate
(0), by (0) = (0),_ as given in (26). At this point we
appeal to the factorized form of the |0), vacuum in (5) in

which pairs of creation operators (y,j ,yi «) appear together. It

is straightforward to show that this implies the factorization
property,

(0),

(B4)

<l_[ )//j, )/k,> = l_[( kr Vi) (B5)
whenever k; # =£k; for all i # j. This result is not directly
applicable to all the terms appearing in (B2) since the
summations do not prohibit momenta with the same magnitude
appearing in a single string of number operators. However,
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since each k summation runs over O(L) values, the number
of terms for which this factorization will fail is suppressed
by a factor of 1/L relative to the number of completely
factorizable terms. In the limit of large L it is therefore

PHYSICAL REVIEW B 90, 125106 (2014)

permissible to treat all the terms in (B2) as being completely
factorizable and this pr~0duces, after resummation and multipli-
cation by ,(0le~7e~"fo¢”|0), on both sides, the expression in
(25).
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