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The Gutzwiller projector technique has long been known as a method to include correlations in electronic
structure calculations. We describe a model implementation for a Gutzwiller + LDA calculation in a localized-
orbital restricted basis framework, emphasizing the protocol step by step and illustrating our specific procedure
for this and future applications. We demonstrate the method with a classic problem, the ferromagnetism of
bulk bcc Fe, whose nature is attracting fresh interest. In the conventional Stoner-Wohlfarth model, and in
spin-polarized LDA calculations, the ferromagnetic ordering of iron sets in so that the electrons can reduce their
mutual Coulomb repulsion, at the cost of some increase of electron kinetic energy. This balance may, however, be
altered by correlations, which are strong for localized d orbitals. The present localized basis Gutzwiller + LDA
calculation demonstrates how the ferromagnetic ordering of Fe may, in fact, entrain a decrease of kinetic energy
at the cost of some increase of potential energy. This happens because, as foreshadowed long ago by Goodenough
and others and more recently supported by LDA-DMFT calculations, correlations cause eg and t2g d orbitals to
behave differently, with the weakly propagating eg states fully spin polarized and almost localized, and only t2g

states forming a broad partly filled itinerant band. Owing to an intra-atomic Hund’s rule exchange that aligns eg

and t2g spins, the propagation of itinerant t2g holes is favored when different atomic spins are ferromagnetically
aligned. This suggests a strong analogy with double exchange in iron ferromagnetism.
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I. INTRODUCTION

The conduction d electron Wannier orbitals in transition-
metal compounds are generally fairly localized in space so
that electronic correlations, i.e., all effects that deviate from
the independent-particle picture, are sometimes strong enough
to give rise to metal-insulator transitions in certain tempera-
ture and pressure conditions. The correlation-driven metal-
insulator transition, known as Mott transition [1,2], is often
accompanied by rather spectacular phenomena that appear in
its proximity, high-temperature superconductivity in cuprates,
and colossal magnetoresistance in manganites being popular
examples. This makes 3d metal elements and compounds a
natural laboratory for many-body physics, which, despite a
rich history and many studies, may still hold surprises.

First-principles electronic structure calculations that build
upon independent-particle descriptions, such as Hartree-Fock
(HF) or density functional theory (DFT) within local density
approximation (LDA), while constituting the bread-and-butter
basis for most quantitative solid-state physics and generally
quite successful for elemental transition metals, may be
exposed to failure in the description of the properties of
compounds involving transition metals and stronger corre-
lations. These systems are usually treated by model-based
techniques such as quantum Monte Carlo [3], density-matrix
renormalization group [4], and dynamical mean-field the-
ory [5]. Clearly, for the purpose of the overall understanding
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of real materials, it is of key importance to sew the two worlds
together, bringing in particular the many-body expertise gained
on lattice models over to realistic, off-lattice, first-principles
calculations of solids. In the context of lattice models, a simple
approach to strong correlations was proposed long ago by
Gutzwiller [6,7]. This method, projecting out of a trial Slater
determinant an adjustable proportion of energetically costly
configurations and evaluating average values by approximate
formulas, is strictly variational in the limit of infinite lattice
coordination [8]—the same limit where dynamical mean-field
theory (DMFT) is exact—providing much more accurate
results than HF. That success invites the use of the Gutzwiller
method even when the lattice space dimension, and thus the
site coordination, is finite, as people do with DMFT. Unlike
DMFT, Gutzwiller approximation (GA) electronic structure
calculations have the great advantage of coupling extreme
LDA-level simplicity with qualitatively, often quantitatively,
increased accuracy in the description of correlations. For
example, GA has been able to describe conducting materials
that are insulators “in disguise” [9], i.e., whose properties
depend on correlations that are already present in their Mott
insulating phase, and that continue to play an important
role even in the nearby metallic phases. Another famous
result of the GA is the Brinkman-Rice description of the
Mott transition in vanadium sesquioxide, originally derived
by the GA solution to the Hubbard model [10]. Because
of its simplicity, a great deal of effort has been devoted in
recent years to extend GA from simple lattice models to more
realistic off-lattice cases [11–20], although there is still a
need for a detailed description of the respective protocols.
In this paper we begin by presenting in full detail our own
implementation of electronic structure calculation exploiting
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the Gutzwiller variational wave function together with the
LDA density functional. The Levy-Lieb constrained-search
formulation of DFT provides a solid theoretical framework for
the introduction of Gutzwiller variational parameters in the
density functional, while a localized atomic basis set makes the
definition of the Gutzwiller-projected states straightforward.
For that scope we choose the SIESTA electronic structure code
with a minimal basis, an approximation which does not aim
at state-of-the-art accuracy, but which we find suitable for
our application. The application which we focus upon is an
analysis of the effect of magnetic moment fluctuations in an
elemental transition metal, namely the fundamental energy
balance behind ferromagnetic long-range order of bcc Fe.
While ferromagnetism of Fe is, in fact, one of the most
studied problems in electronic structure, with a vast and rich
literature [21–27] including very accurate DFT studies as
well as previous LDA + Gutzwiller work [12], not all basic
questions about the electronic origin of magnetic order have
been answered. In the itinerant model, also realized by spin-
polarized LDA calculations, the ferromagnetic ordering of iron
sets in due to direct intersite exchange. Through magnetic
order the electrons can reduce their mutual Coulomb repulsion,
naturally at the extra cost of some increase of electron
kinetic energy. Reasoning based on an alternative localized
viewpoint [28,29] as well as on more recent local density
approximation plus dynamical mean-field theory (LDA +
DMFT) studies [30,31], however, suggest that orbital-selective
correlations might be at play in the ferromagnetic ordering of
Fe. If the poorly dispersive eg-type electrons of metallic Fe
became more localized due to interactions and conduction
phenomena were restricted within the t2g manifold (besides,
of course, the s electrons) [28,32,33], then ferromagnetic
alignment might impinge much more on intersite propagation
than in the itinerant picture. In a possible extreme example the
localized eg electrons would form spin-1 moments coupled
ferromagnetically via an intra-atomic Hund’s exchange to the
electrons in the nearly full itinerant t2g bands, so that in order to
preserve coherent t2g hole motion, the local eg moments must
order ferromagnetically. As in the manganites, ferromagnetism
would in that example be driven by a kinetic energy gain rather
than a potential energy one. A kinetic energy gain mechanism
for ferromagnetism was also proposed by Hirsch [34].

Exploration of this possibility has not been fully pursued
so far, and it is what we attempt here. Even though our local
density approximation plus Gutzwiller method (LDA + G)
approach can only naively address, through a Brinkman-Rice
description, dynamical phenomena such as orbital-selective
Mott transitions—especially so in a delicate case where the
two sets of orbitals, eg and t2g , hybridize with each other in
the Brillouin zone—and despite our deliberate restriction to a
minimal basis dictated by the desire to work with agility and to
concentrate on evaluating energy balances in a leaner subspace,
we find that the detailed analysis of the separate kinetic
and potential energy balance in our approximate Gutzwiller
implementation actually supports double exchange as the
driving mechanism of ferromagnetism in iron, as opposed to
the conventional balance expected in the itinerant picture.

The plan of this article is as follows. In Sec. II we introduce
the formalism of LDA + G starting from the constrained-
search formulation of DFT, demonstrating how the Gutzwiller

wave function can be used to generalize the well-known local
density approximation plus Hubbard-U (LDA + U) [35,36]
approach by allowing the expectation value of the atomic
Hamiltonian to be computed on a multideterminant wave
function. In Sec. III we then show how the different terms
of the LDA + G density functional can be computed by means
of GA and how the total energy of a correlated electronic
system can be minimized by a three-step iterative procedure.
In Sec. IV we finally present and comment in Sec. V the
physical results for paramagnetic and ferromagnetic bcc Fe
and connect back to the basic questions about the origin of
ferromagnetic order.

II. CONSTRAINED-SEARCH FORMULATION OF A
GUTZWILLER DENSITY FUNCTIONAL THEORY

The fundamentally based way to introduce a Gutzwiller
density functional is through the formalism independently
proposed by Levy [37,38] and Lieb [39]. Starting from the
Rayleigh-Ritz definition for the ground-state energy EGS of a
system,

EGS = min
�

〈�|H |�〉, (1)

where the electron Hamiltonian H includes the kinetic
energy T , the electron-electron interaction Vee, and a local
external potential Vext, Levy and Lieb converted the variational
principle for the ground-state wave function into a variational
principle for the ground-state density through a constrained
minimization at fixed density n(r),

EGS[Vext(r)]=min
n(r)

{
min

�→n(r)
〈�|T + Vee|�〉+

∫
Vext(r)n(r)

}
.

(2)

The first term on the right-hand side of (2) is nothing
but the constrained-search definition of the Hohenberg-Kohn
functional [40], i.e.,

FHK[n(r)] = min
�→n(r)

〈�|T + Vee|�〉, (3)

which is independent of the external potential Vext. The wave
function � in the definition Eq. (3) should span the whole
many-body Hilbert space, generally too large to allow for a
straightforward numerical evaluation of FHK[n(r)]. Within the
Kohn-Sham scheme, the generality of Eq. (3) is abandoned in
favor of a more practical definition of the Hohenberg-Kohn
functional, which is split into kinetic, Hartree, and exchange-
correlation terms, namely,

FHK[n(r)] = Ts[n(r)] + EH[n(r)] + Exc[n(r)], (4)

where EH[n(r)] is the electrostatic energy of the electron den-
sity regarded as a classical charge distribution. A constrained
search is then retained only for the kinetic contribution,

Ts[n(r)] = min
�→n(r)

〈�|T |�〉, (5)

which, because T is a one-body operator, has a solution
within the class of Slater determinants, a relatively simple
task to accomplish through auxiliary noninteracting electron
Hamiltonians whose ground-state local density n(r) coincides
with that of the physical interacting model. The difficulties of
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the original many-body problem have thus been hidden in the
unknown exchange-correlation functional Exc[n(r)]. All DFT
approximation schemes correspond to different guesses of a
physically sensible functional form of Exc[n(r)] in terms of
the local density.

The main problem that arises from the density-dependent
parametrization Eq. (5) is that EH[n(r)] contains a spurious
self-interaction (SI) term—finite even when n(r) is the density
of a single electron—a term which should be identically
canceled in the exact Exc[n(r)]. Unfortunately, all semilocal
approximations to Exc[n(r)], such as LDA and generalized
gradient approximation (GGA), fail to fully subtract the
SI term from the density functional. The results thus by
construction contain a certain level of self-interaction error,
the filled Kohn-Sham one-electron levels being artificially
pushed up in energy relative to the empty ones. The spurious SI
one-electron energy is larger for spatially localized electronic
wave functions. For instance, a single electron with a simple
Gaussian wave function feels a SI that is inversely proportional
to the standard deviation of the Gaussian, only 70% of which
is subtracted by the LDA exchange functional. The improve-
ments attained by better functionals do not seem major [41].
All density-functional calculations are affected to some extent
by the SI error, more important when the real-space one-body
density matrix is more localized. That is especially the case
for most transition metals and transition-metal oxides. In
a density functional calculation with semilocal functionals,
the spurious SI term acts effectively as a penalty term
preventing electron localization, generally spoiling agreement
with experimental data for band gaps, magnetization, and other
physical observables such as lattice constant and bulk modulus.

A. Review of SIC and LDA + U approximations

A popular way to reduce the SI while still remaining in
the context of local or semilocal density functionals is to
include in the kinetic functional Eq. (5) part of the electron-
electron interaction, specifically the projection Hat of Vee on
an atomiclike orbital (see below). The common choice is
to consider only orbitals that are partially occupied within
standard LDA, hence which suffer more from the SI. The
noninteracting kinetic functional Ts[n(r)] is thus turned into a
modified kinetic functional Ti[n(r)],

Ts[n(r)] → Ti[n(r)] = min
�0→n(r)

〈�0|T + Hat|�0〉, (6)

and the Hohenberg and Kohn functional changes into

FHK[n(r)] = Ti[n(r)] + EH[n(r)] + Exc[n(r)] − Edc[n(r)],

(7)

where Edc[n(r)] is a double-counting energy which must
cancel the contribution of Hat already included within LDA.

In Eq. (6) the constrained search is still restricted to the
space of Slater determinants �0, so that the modified kinetic
functional can be dealt with within an independent-particle
picture and therefore included in the Kohn-Sham scheme.
Essentially, the interaction Hat is treated by HF, which—while
still unable to capture the Mott localization phenomenon—is
devoid of SI, a correlation effect. Further below we discuss
how to improve the functional Ti so as to make Mott

physics accessible. Here in addition we briefly discuss how
to define properly Hat. Typically, Hat = ∑

R H
(R)
at , with H

(R)
at

accounting for the leading-order multipolar expansion of the
Coulomb interaction projected onto a selected set of atomiclike
orbitals |φ(l)

R,m〉 with angular momentum l at atomic site R in
the lattice,

H
(R)
at = F0

2
NR(NR − 1) + 1

2

2l∑
L>0

FL

(
Cl0

l0 L0

)2

×
L∑

M=−L

(−1)MClm
lm′ LMC

lm1

lm′
1 L−M

× c
†
R,mσ c

†
R,m1σ1

cR,m′
1σ1

cR,m′σ , (8)

where NR is the total electron number operator at site R
projected onto the selected set of atomic orbitals, L = 2n with
n = 1, . . . ,l, Clm

lm′ LM are the Clebsch-Gordan coefficients, and
the parameters FL are known as Slater integrals. The first term
on the right-hand side of Eq. (8), which we denote hereafter
as H

(R)
Hub, is a pure charge repulsion term, its coupling constant

F0 generally called the “Hubbard U”. The remaining terms
instead enforce Hund’s first and second rules; hence, they may
be referred to as the Hund’s rule exchange (HHund).

The so-called “rotationally invariant LDA + U” method,
developed by Lichtenstein and co-workers [42] as a basis-
set independent formulation of the LDA + U method by
Anisimov, Zaanen, and Andersen [35] is based on the mean-
field treatment [Eq. (6)] of the atomic interaction Hamiltonian
in Eq. (8). It gives the possibility to improve the description
of electron-electron interactions in density functional calcula-
tions with no extra requirement of computational resources.
The difficulties in using the full expression Eq. (8) as interac-
tion Hamiltonian are twofold. First, one needs a sound recipe
for estimating the parameters of the interaction Hamiltonian,
which in the case of l = 2 are the three Slater integrals F0, F2,
and F4. For this purpose, it is common to assume atomic values
for the ratio F4/F2, an assumption which reduces to two the
parameters to choose for the Hamiltonian (8), which are F0

(the Hubbard U ) and J = (F2 + F4)/14 [43]. The latter can
be estimated from DFT [43,44] or can be given atomic values,
extracted from tabulated spectroscopic data [45] or quantum
chemistry calculations [46]. A second issue associated with
the full atomic interaction Hamiltonian (8) is the difficulty
of finding a proper expression for electron double counting.
The latter should, by definition, be equivalent to the LDA
approximation to the atomic interaction energy, Eq. (8).
However, that energy depends, in principle, on the specific
point symmetry of the system, and one cannot find a general
expression valid for every case.

The simplified LDA + U scheme used for the first time
by Dudarev [47] includes only the F0 term in the atomic
Hamiltonian. In this simplified approach, mainly two expres-
sions for the double-counting term are available: the “fully
localized limit” [48] and “around-mean-field limit” [49]. The
first is more suitable for systems with strongly localized
electrons, while the second is the best for systems with stronger
intersite hybridization of d electrons. The two schemes can be
combined together with weight factors [43] to yield optimal
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results. Cococcioni and de Gironcoli [50] also provided, for
this simplified LDA + U, an ab initio procedure to compute
the parameter F0 from linear response theory. When used in
conjunction with the fully localized recipe for double counting,
the Cococcioni LDA + U correction takes the following form:

〈�0|Hat|�0〉 − Edc[n(r)] = U

2
Tr[n̂(0)(1 − n̂(0))]. (9)

The above term, in which U is computed as the curvature of
total energy as a function of a change in number of (typically d)
electrons, can be also interpreted as a penalty meant to restore
the piecewise linearity of the LDA or PBE total energy vs N

curve. The restoration of piecewise linearity is connected to the
well-known SI problem inherent to most approximate density
functionals. In spite of its simplicity, the correction (9) alone
is able to improve the performance of conventional semilocal
functionals, such as PBE, for both extended systems and small
molecules [51,52]. However, there are numerous situations in
which this formulation will not be adequate. It is, for instance,
well known that only the spherically averaged strength of
the exchange-correlation hole is correctly accounted for by
the LDA functional, but not its angular dependence. For this
reason one cannot expect that the nonpolar correction of
Eq. (9) will be apt to describe systems that display strongly
orbital-dependent correlations, as was shown to be the case of
body-centered cubic iron [30,31]. Indeed, recent studies on
iron pnictides and chalcogenides [53–55] suggest that the
orbital selectivity displayed by these iron compounds crucially
depends on atomic Hund’s rules.

In order to be able to describe correctly Hund’s rules in iron,
we therefore decided to supplement the nonpolar, “Hubbard”
term in Eq. (8) with a simplified expression for the F2 and F4

terms, written in terms of many-body observables, in such a
way that we can assign them more easily a sensible double-
counting correction. Specifically, we assume the simplified
expression

Hat = HHub + HHund, (10)

with the nonpolar term

HHub = U

2
N (N − 1) (11)

and the exchange interaction

HHund = −J

{
S · S − 3

4
N + N (N − 1)

4
+

∑
m

nm↑nm↓

}
,

(12)

for which we choose a double-counting energy,

Edc
Hub[n(r)] + Edc

Hund[n(r)]

= U

2
N (N − 1)

−J

[
N↑(N↑ − 1)

2
+ N↓(N↓ − 1)

2
+ N↑N↓

2l + 1

]
. (13)

We observe that the first term on the right-hand side of
Eq. (12) implements the first Hund’s rule, while the last term
implements the second rule.

B. Extending LDA + U to LDA + Gutzwiller

The key difference between LDA + G and LDA + U
resides in the definition of the modified kinetic functional Ti.
Within LDA + G, the definition Eq. (6) changes to

Ti[n(r)] → TG[n(r)] = min
�G→n(r)

〈�G|T + Hat|�G〉, (14)

where the wave function |�G〉 is defined as

|�〉 = P|�0〉 =
∏

R

PR|�0〉. (15)

In the above equation, |�0〉 is still a Slater determinant, and
the elements of novelty are the operators PR, which are linear
transformations acting on the configurational space of a chosen
set of local orbitals at lattice site R. As in LDA + U, this set of
orbitals φm,R retains well-defined atomic angular momentum
l, m being its projection on a given quantization axis. The
operator PR can be generally written as

PR =
∑
��′

���′,R |�,R 〉〈�′,R|, (16)

where |�,R 〉 denote many-body configurations of electrons
occupying the orbitals φm,R. Differently from LDA + U, the
expectation value of the kinetic plus atomic interaction opera-
tors will not depend solely on the Slater determinant |�0 〉, but
also on the variational parameters ���′,R that define PR.

Computing exact expectation values on the Gutzwiller wave
function for lattices of finite coordination is a task that can
be accomplished only numerically, e.g., through variational
quantum Monte Carlo [56,57]. For infinite-coordination lat-
tices, an exact expression can be instead computed analytically.
There is, in fact, a close connection between the Gutzwiller
variational approach in the limit of infinite lattice coordination
and dynamical mean-field theory [5]. In that limit, the single-
particle self-energy matrix �(ε,k) = �(ε) becomes purely
local, hence momentum independent. DMFT makes it possible
to evaluate exactly �(ε) by solving an auxiliary Anderson
impurity model constructed in such a way as to have the
same self-energy as the system of interest. The Gutzwiller
variational approach is instead a consistent approximation to
the exact solution, which assumes a Fermi-liquid expression
�(ε) � �(0) + (1 − Z−1)ε, where Z is commonly referred
to as the quasiparticle weight. Because of this assumption,
the Gutzwiller wave function can describe only states whose
elementary excitations are quasiparticles, such as Landau-
Fermi liquids and insulators that can be represented through a
Slater determinant. However, the additional freedom brought
by the parameter Z, whose value is strictly Z = 1 within
HF and LDA + U, opens the possibility to access strongly
correlated metals, Z 	 1, and thus the approach to a Mott
transition, where Z → 0. Although DMFT is exact only in
the limit of infinite coordination, it is currently used as an ap-
proximation in realistic finite-coordination lattices, under the
hypothesis that (strong) correlation effects beyond HF are well
represented by �(ε,k) � �HF(k) + �(ε), where �HF(k) is
the HF self-energy, eventually including frequency-dependent
random-phase-like contributions [58], and the correction �(ε)
is momentum independent and can be obtained by DMFT.
Under the same assumptions, one can keep using the formal
results of the Gutzwiller variational approach, which are
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strictly valid only in infinite-coordination lattices, also in
finite-coordination ones, an approximation referred to as the
Gutzwiller Approximation (GA). In other words, the GA
should be better regarded as an approximation to DMFT, when
either of them are used in finite-coordination lattices, rather
than an approximation to the exact evaluation of expectation
values on the Gutzwiller wave function, Eq. (15). This
viewpoint, which we underwrite, is our motivation for adopting
the GA in combination with LDA + U as an alternative to
LDA + DMFT, at the cost of less rigor, but, as we shall show,
with gain in simplicity and flexibility.

Expectation values in the Gutzwiller approximation

In order to determine the functional TG[n(r)], one should
be able to compute expectation values of both many-body
on-site operators, such as those contained in Hat, and off-site
single-particle operators, which are present in the definition of
the kinetic operator T̂ . In all that follows, we use the formalism
presented in Ref. [59].

First of all, the Slater determinant |�0〉 defines the uncor-
related one-body local density matrix n̂

(0)
R [the same matrix

that enters the LDA + U energy correction term Eq. (9)], with
elements

n
(0)
Rmσ,Rm′σ ′ = 〈�0|c†R,mσ cR,m′σ ′ |�0〉, (17)

where c
†
R,mσ creates a spin-σ electron in orbital φm,R. The

density matrix n̂
(0)
R is diagonalized by a unitary transformation

that turns the original basis of operators c
†
R,mσ into the natural

basis of operators c
†
R,γ σ , assuming invariance with respect to

spin rotations around the z axis. In the natural basis, the one-
body density matrix is therefore diagonal, with eigenvalues
n

(0)
R,γ σ . In the natural-orbital Fock basis, with states

|{nR,γ σ }〉 ≡
∏
γ σ

(c†R,γ σ )nR,γ σ |0〉,

it follows that the probability matrix with elements

P
(R)
0,{nR,γ σ }{mR,γ σ } ≡ 〈�0| |{mR,γ σ }〉〈{nR,γ σ }| |�0〉

= P
(R)
0,{nR,γ σ } δ{nR,γ σ }{mR,γ σ }

=
∏
γ σ

(
n

(0)
R,γ σ

)nR,γ σ
(
1 − n

(0)
R,γ σ

)1−nR,γ σ (18)

is diagonal, too. It is actually convenient [59] to rewrite the
operator Eq. (16) in a mixed-basis representation as

PR =
∑

�{nR,γ σ }

(
��{nR,γ σ },R

P
(R)
0,{nR,γ σ }

)
|�,R 〉〈 {nR,γ σ }|, (19)

where |�,R〉 is a state, e.g., a Fock state, in the original basis,
whereas |{nR,γ σ }〉 is a Fock state in the natural basis. This
mixed representation simplifies considerably the calculations.
In order to use the GA, we need to impose the two following
constraints on the matrix �̂R with elements ��{nR,γ σ },R [59],

Tr{�̂†
R�̂R} = 1, (20)

Tr{�̂†
R�̂R ĉ

†
R,γ σ ĉR,γ ′σ ′ } = n

(0)
R,γ σ δγ γ ′ δσσ ′, (21)

where ĉ
†
R,γ σ is the matrix representation of the Fermi operator

in its Fock basis. If these constraints are fulfilled, then within
the GA, which we recall is exact for infinite-coordination
lattices, we have

〈�G|ÔR|�G〉 = Tr{�̂†
RÔR�̂R}, (22)

where ÔR is the matrix representation of any local operator.
The intersite density matrix can be computed from

〈�G|c†R,mσ cR,m′σ |�G〉
=

∑
γ γ ′

R
†
γm;σ,R Rm′γ ′;σ,R′ 〈�0|c†R,γ σ ′cR′,γ ′σ ′ |�0〉, (23)

where

R
†
γm,σ,R = Tr{�̂†

R ĉ
†
R,mσ �̂R ĉR,γ σ }√

n
(0)
R,γ σ

(
1 − n

(0)
R,γ σ

) (24)

can be regarded as a wave-function renormalization matrix.
Here ĉ

†
R,mσ is the matrix representation of the original

operators in the basis of states |�,R〉. When this is the
Fock basis constructed by the same original operators, their
matrix representation is actually independent of the basis of
single-particle wave functions which they refer to; hence, it
is the same as for the ĉ

†
R,γ σ operators of the natural basis.

In reality, in most cases that are relevant for real materials
the natural basis that diagonalizes the local density matrix is
determined fully by the lattice symmetry; hence, it is possible
and convenient to write the Hamiltonian directly in that basis.
In the above formulas, this corresponds to identifying the set
of labels {m} with {γ }. Since the natural basis is such both for
the uncorrelated on-site density matrix,

n
(0)
Rmσ,m′σ ′ = 〈�0|c†R,mσ cR,m′σ ′ |�0〉

= Tr{�̂†
R �̂R ĉ

†
R,mσ ĉR,m′σ }

= δmm′ n
(0)
R,mσ , (25)

and for the correlated one,

nRmσ,m′σ ′ = 〈�G|c†R,mσ cR,m′σ ′ |�G〉
= Tr{�̂†

R ĉ
†
R,mσ ĉR,m′σ �̂R}

= δmm′ nR,mσ , (26)

generally with different eigenvalues, it is not difficult to
realize that the wave-function renormalization matrix Eq. (24)
becomes diagonal; i.e.,

R
†
m′m,σ,R = Tr{�̂†

R ĉ
†
R,mσ �̂R ĉR,m′σ }√

n
(0)
R,m′σ

(
1 − n

(0)
R,m′σ

) = δmm′ R
†
mσ,R. (27)

The Eqs. (22)–(27) are the basic formulas that make it
possible to evaluate the average value of the Hamiltonian as
a functional of the Slater determinant and of the matrices
�̂R, hence to solve the variational problem. The symmetries
of every specific system under study can be imposed on the
matrices �̂R so as to decrease, in some cases quite drastically,
the total number of Gutzwiller parameters (see Appendixes A
and B for details).
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III. THE GUTZWILLER FUNCTIONAL IN PRACTICE

In this section we show how to perform a LDA + G
calculation on a realistic system, namely bcc Fe, which, as
mentioned in the Introduction, although a basic and supposedly
simple system, still exhibits controversial aspects.

We first have to select the correlated orbitals to be treated
by the Gutzwiller operator. In the present case the choice
is simple: the 3d orbitals of Fe. This case is one of those
mentioned earlier in which the natural basis is determined
by symmetry and corresponds to the cubic crystal field split
d orbitals, namely, the eg doublet and the t2g triplet. In this
representation the formulas Eqs. (25)–(27) hold, which is
a great simplification. Furthermore, since bcc is a Bravais
lattice, the positions R of Fe atoms also label unit cells;
hence, by translational symmetry we can safely assume that the
variational matrix parameters �̂R = �̂ are independent of R.
So are, therefore, the eigenvalues of the local density matrices,
n

(0)
R,mσ = n(0)

mσ and nR,mσ = nmσ , as well as the wave-function
renormalization Rmσ,R = Rmσ . To lighten notations, in what
follows the orbital labels m refer both to the correlated set
and to the uncorrelated ones, unaffected by the action of the
Gutzwiller operator. In the last paragraph of this section we
come back to this point.

We define the Gutzwiller density functional as

F[n(r)] = min
�G→n(r)

E[�G,n(r)], (28)

where the quantity E[�G,n(r)] undergoing constrained mini-
mization is

E[�G,n(r)] = 〈�G|T + Hat|�G〉
+

∫
Vext(r)n(r)d r + ẼH[n(r)]

+ Ẽxc[n(r)] − Edc[n(r)]. (29)

For our purposes, it is convenient to rewrite Eq. (28) as a
minimization constrained with respect to the “uncorrelated”
density n(0)(r),

F[n(0)(r)] = min
P,�0→n(0)(r)

E[�0,P,n(0)(r)], (30)

where E[�0,P,n(0)(r)] = E[�G(�0,P),n(�0,P)]. The depen-
dence of the “correlated” density n(r) upon the “uncorrelated”
density n(0)(r) can be made explicit once one writes them in
terms of the one-body correlated density matrix of the periodic
system

Dmm′,σ,R = 〈�G|c†R,mσ c0,m′σ |�G〉 (31)

and of the “uncorrelated” density-matrix

D
(0)
mm′,σ,R = 〈�0|c†R,mσ c0,m′σ |�0〉, (32)

namely,

n(0)(r) =
∑

σ

n(0)
σ (r)

=
∑

m,m′,σ,R

D
(0)
mm′,σ,R φ∗

m,R(r) φm′,0(r), (33)

n(r) =
∑

σ

nσ (r)

=
∑

m,m′,σ,R

Dmm′,σ,R φ∗
m,R(r) φm′,0(r). (34)

Indeed, Dmm′,σ,R can be obtained by D
(0)
mm′,σ,R using the recipe

of the GA,

Dmm′,σ,R =
{

R
†
mσ D

(0)
mm′,σ,R Rm′σ , R �= 0,

Tr
{
�̂† n̂mm′,σ �̂

} = δmm′nmσ , R = 0,
(35)

where n̂mm′,σ is the matrix representation on the local Fock
space at site R of c

†
R,mσ cR,m′σ , which is independent of R for

a periodic system, and where nmσ is equal to nR=0,mσ defined
in Eq. (26).

In order to write E[�0,P,n(0)(r)] explicitly in terms of
the new variables, we start from the first and second terms of
Eq. (29). We can now treat the kinetic and the external potential
terms on the same footing through

〈�G|T |�G〉 +
∫

n(r)Vext(r)d r

=
∑

m,m′,σ,R

(
Tmm′,R + V

(ext)
mm′,R

)
Dmm′,σ,R, (36)

where values of Tmm′,R and V
(ext)
mm′,R are the spin-independent

matrix elements of the kinetic and external potential operators
computed between our basis orbitals at sites R and 0, i.e.,

V
(ext)
mm′,R =

∫
φ∗

m,R(r)Vext(r)φm′,0(r)d r, (37)

Tmm′,R = − �
2

2m

∫
φ∗

m,R(r)[∇2φm′,0(r)]d r, (38)

and compute the value of the atomic interaction energy
〈�G|Hat|�G〉 using the GA recipe,

Eat[�0,P] = 〈�G|Hat|�G〉 = Tr{�̂†Ĥat�̂}. (39)

In order to simplify the density self-consistent LDA + G
minimization we decided to use the Hartree ẼH[n(r)] and
exchange-correlation Ẽxc[n(r)] functionals as the LDA func-
tionals linearized around the uncorrelated density n(0)(r). We
checked a posteriori the accuracy of such a linearization. The
modified Hartree functional then reads

ẼH[n(0)(r),n(r)] � e2

2

∫
d rd r ′ n(0)(r)n(0)(r ′)

|r − r ′|
+

∫
d r δn(r) vH[n(0)(r)], (40)

where δn(r) = ∑
σ δnσ (r) = ∑

σ nσ (r) − n(0)
σ (r) and

vH[n(0)(r)] is the conventional Hartree potential, whereas the
exchange-correlation functional is

Ẽxc[n(0)(r),n(r)] =
∑

σ

∫
d r n(0)

σ (r) εxc,σ [n(0)(r)]

+
∫

d r vxc,σ [n(0)(r)] δnσ (r), (41)
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vxc[n(0)(r)] being the LDA exchange-correlation potential.
Note that the choice of ẼH involves neglecting a term,

�EH[n(0)(r),n(r)] = ẼH[n(0)(r),n(r)] − EH[n(r)]

= e2

2

∫
d rd r ′ δn(r)δn(r ′)

|r − r ′| , (42)

which can be interpreted as the energy of correlation-induced
charge fluctuations. This term, together with the correspond-
ing one neglected for the exchange-correlation functional,
�Exc[n(0)(r),n(r)], can be computed at the end of the LDA +
G calculation in order to provide an estimate of the error due
to approximations (40) and (41) (see Table VI). It is worth
mentioning that the linearization (41) of exchange-correlation
energy around the “uncorrelated” density does not spoil the
sum rule for the LDA exchange-correlation hole. As for
the double-counting term, similarly to what is done within
LDA + U, it is chosen as a function of the local “uncorrelated”
density-matrix n(0) only, Edc[n(r)] = Edc[n(0)].

A. Three-step minimization of the LDA + Gutzwiller functional

The two densities n(r) and n(0)(r) must be such that
Gutzwiller constraints are fulfilled. In our case where original
and natural bases coincide, the constraints on the density
matrix can be written as

D
(0)
mm′,σ,R=0 = n(0)

mσ δmm′ , (43)

Tr{�̂†�̂ n̂mm′,σ } = n(0)
mσ δmm′ , (44)

where we regard n(0)
mσ as an additional independent variational

parameter of the density functional. These constraints can be
enforced with Lagrange multipliers, together with the first
Gutzwiller constraint

Tr{�̂†�̂} = 1. (45)

Summing up all contributions and adding the electrostatic
ion-ion interaction Eion, we find that the overall functional we
need to minimize has the form

F
[
n(r),n(0)(r),n(0)

mσ

] = max
λλ′λ0

[
K[n(r)] + Eat[n(r)] − Edc

[
n(0)

mσ

] + E
(0)
H [n(0)(r)] + E(0)

xc [n(0)(r)] − λ0(Tr{�̂†�̂} − 1)

−
∑
mm′σ

λ′
mm′,σ

(
D

(0)
mm′,σ,R=0 − n(0)

mσ δmm′
) − λmm′,σ

(
Tr{�̂†�̂ n̂mm′,σ } − n(0)

mσ δmm′
)] + Eion, (46)

where the functional K[n(r)] contains all terms which depend
on n(r) linearly through the renormalized density matrix D,
namely,

K(D) =
∑

mm′,σ,R

[
Tmm′,R + V

(H)
mm′,R + V

(xc)
mm′,σ,R + V

(ext)
mm′,R

]
× Dmm′,σ,R

≡
∑

mm′,σ,R

Kmm′,σ,R Dmm′,σ,R, (47)

where V
(H)
mm′,R and V

(xc)
mm′,σ,R are the matrix elements of vH and

vxc between basis orbitals, respectively. For every fixed value
of n(0)

mσ , we can optimize F with respect to the two densities
n(0)(r) and n(r). In practice, by inspection of Eqs. (33)–(35)
one can see that this is equivalent to a minimization with
respect to the Slater determinant |�0〉 and the Gutzwiller
parameters contained in the operator �̂. This minimization
can be carried out in two separate steps.

(1) First, carry out a SIESTA self-consistent calcula-
tion to find the Slater determinant �0 that optimizes
F[n(r),n(0)(r),n(0)

mσ ] with respect to n(0)(r), enforcing the
constraint (43) through an augmented Lagrangian method [60].
The Gutzwiller parameters, and therefore the hopping renor-
malization parameters Rmσ , are kept fixed throughout this
optimization. The atomic energy Eat[n(r)] does not change;
nor does the double-counting energy Edc[n(0)(r)], which is
a function of n(0)(r) only through n(0)

mσ . The self-consistent
single-particle Kohn-Sham equations allowing the minimiza-

tion with respect to |�0〉 are

∑
m′ R

Hmm′,σ,R ψm′σ,R = ε ψm,σ,0, (48)

where

Hmm′,σ,R = Kmm′,σ,R + V
(0)
mm′,σ,R − λ′

mm′,σ δR0,

and

V
(0)
mm′,σ,R =

∫
d r φ∗

m,R(r){vH[n(0)(r)] + vxc[n(0)(r)]}

× φm′,0(r). (49)

(2) Next, optimizeF with respect to Gutzwiller parameters
by a Lanczos-improved Levenberg-Marquardt (LM) algorithm
(see Appendix C), enforcing the constraints (44) and (45).
During this optimization, only the termK[n(r)] and the atomic
energy Eat[n(r)] in Eq. (46) are modified. These two quantities,
together with the terms enforcing constraints for Gutzwiller
parameters, build a quartic functional F�̂ of the matrices �̂,
with explicit form

F�̂ =
∑

m,m′,σ

[
Kmm′,σ,R=0 Tr{�̂†n̂mm′,σ �̂}

+R†
mσ τmm′,σRm′σ + Tr{�̂†Ĥat�̂}

− λmm′,σ
(

Tr{�̂†�̂n̂mm′,σ } − n(0)
mσ δmm′

)
− λ0(Tr{�̂†�̂} − 1)

]
, (50)
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where τmm′,σ is

τmm′,σ =
∑

R �=0,mm′
Kmm′,σ,R D

(0)
mm′,σ,R. (51)

These two steps are repeated one after the other until self-
consistency is achieved over both densities n(r) and n(0)(r).
Once converged, we are left with a total energy functional
depending on the diagonal matrix elements n(0)

mσ , and that can
be optimized by steepest descent, so as to fulfill the stationary
equations

∂K[n(r)]

∂n
(0)
mσ

− ∂Edc[n(0)(r)]

∂n
(0)
mσ

+ λmm,σ + λ′
mm,σ = 0. (52)

The terms appearing in the above equations are the only ones
depending on the local uncorrelated density matrix n(0)

mσ . The
double-counting energy is a function of this density matrix
only, while the functional K, containing the renormalized
density matrix Dmm′,σ,R, depends on n(0)

mσ through the wave-
function renormalization parameters Rmσ .

B. Atomic basis-set angular momentum-dependent
renormalization for transition metals

Equations (31) and (32) describe a density matrix on a basis
of orthogonalized atomic orbitals. For a system described by
a single set of atomic d orbitals, the indices m and m′ are
allowed to run on every value of the magnetic quantum number,
m = {−2, −1,0,1,2}. For a cubic system, the basis which
diagonalizes the one-body density matrix DR,mm′ for R = 0 is
the basis of d orbitals which have real harmonics as their an-
gular part, so that m = {r2 − 3z2,x2 − y2,xy,xz,yz}, or in the
language of group representations, m = {e(1)

g ,e(2)
g ,t

(1)
2g ,t

(2)
2g ,t

(3)
2g }.

In general, simulating the electronic structure of a transition
metal with an atomic basis set, such as the SIESTA code does,
will require also s orbitals to be present in the set, as well as p

orbitals, all of them being hybridized due to the cubic crystal
field. We need therefore to reframe Eq. (35) by adding an
additional couple of indices l = 0,1 besides l = 2. Assuming
for simplicity that Gutzwiller renormalization affects only
d-type orbitals, we have that

Dlm l′m′,σ,R = Rl†
mσ D

(0)
lm l′m′,σ,R Rl′

m′σ , (53)

with

Rl
mσ =

{
Rmσ ; l = 2,

1; l = 1,0,
(54)

for the R �= 0 part, and

Dlm l′m′,σ,R=0 =
{

D
(0)
lm l′m′,σ,R=0; l �= 2, l′ �= 2,

δll′nmσ ; l = 2,
(55)

with nmσ = Tr{�̂† n̂mm′,σ �}, for the on-site R = 0 part. In
what follows the matrices D and n without angular momentum
indices refer to the density matrices of the subset of orbitals
with l = 2. For any value of l, we assume the indices m and
m′ to run on the cubic harmonics for that value of l, which
ensures the R = 0 one-body density matrix to be diagonal, or,
in other words, “natural”.

The SIESTA code provides also the possibility to use a double
set of d-type orbitals together with one set of s and one set
of p. The use of two sets of d orbitals (double-ζ basis set),
as opposed to a single set (single ζ ) is particularly indicated
for GGA calculations, in which small changes in the density
profile of electrons lying close to the Fermi energy can affect
the calculation of the energy much more than in LDA. While
the first d-type basis set is more atomiclike and more suited
for an LDA + U or LDA + G calculation, the second d-type
set has a larger spread, since it is meant to describe better also
the tails of the density distribution. For LDA + G calculations
we therefore adopt a single-ζ basis set. The same basis set is
used for all SIESTA LDA calculations with which we compare
our results, both in tables and in graphs. Conversely, we use
a double-ζ basis set for all SIESTA GGA calculations whose
results we report in this paper.

Should one wish to push LDA + G calculations to a higher
level of accuracy—as would be required, e.g., for direct
numerical comparison with some of the extremely accurate
LDA calculations of ferromagnetic Fe present in the literature,
such as the one of Ref. [25]—one should, of course, use
a more extended basis set in the LDA + G calculation as
well. For our more limited scopes, however, the single-ζ
basis set, although imperfect, is more than suitable to explore
the method and the main physical features we are looking
for. The approximation is all the more reasonable given
the presently limited quantitative knowledge of the electron-
electron interaction parameters U and J that characterize the
treatment of correlations at any level of accuracy, as well as
the issue of a proper definition of the double-counting term.

IV. RESULTS

In this section we show our results obtained with the
previously explained implementation of LDA + G in the
SIESTA code. In all SIESTA results that follow, we used
the LDA functional parametrized from the data of Ceperley and
Alder [61], a 10 × 10 × 10 Monkhorst-Pack k-point grid [62],
a real-space mesh (for the representation of the density) cutoff
of 150 Ry and a Fermi-Dirac smearing of 20 meV.

A. Nonmagnetic iron

In order to assess the effect of Gutzwiller renormalization
parameters � on the eigenvalues of the single-particle Kohn-
Sham Hamiltonian at density self-consistency, we started by
calculating nonmagnetic Fe. Figure 1 shows the band structure
of nonmagnetic (spin unpolarized) iron for different values of
interaction parameters U and J in the atomic Hamiltonian

Hat = U

2
N (N − 1) − J S · S − κ L · L, (56)

where the parameter κ has been added in order to single out
the effect of Hund’s third rule. The value of κ ≈ 0.2 eV is
estimated from spectroscopic data of Corliss and Sugar [45].
A reasonable value of J = 1.2 eV can be obtained from
spectroscopic data, a value which is very similar to the
one expressed in terms of Slater atomic integrals F2 and
F4, calculated using the electronic structure program by
Cowan [63]. The band structures plotted in Fig. 1 are obtained
by performing only the first and second optimization steps as
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FIG. 1. (Color online) Band structure results for a SIESTA LDA +
G calculation of nonmagnetic bcc iron without optimization of the
natural density matrix n(0)

mσ . The atomic interaction Hamiltonian we
used is displayed in Eq. (56), and the values for its parameters are
listed in Table I. The black solid line corresponds to U = 0 and J = 0,
the green line to U = 5, J = 1.2, the blue line to U = 10, J = 1.2,
and the dashed line to U = 10 and J = 2.2. Values of U , J , and y-axis
energies are in eV. The labels indicating the high-symmetry points
for the k-point path are taken from Ref. [64] for the body-centered
cubic lattice.

described in Sec. III A, while the matrix n(0)
mσ is kept fixed to

its LDA value. In Sec. IV B we show that even when n(0)
mσ

is treated as a variational parameter, its change with respect
to the LDA value is very small in the case of nonmagnetic
iron. An immediate consequence of our fixing n(0)

mσ is that, as
far as band structure is concerned, we do not need to worry
about the explicit form of the double-counting energy Edc

for the Hamiltonian (56), which plays a role in determining
the electronic structure only through the optimization of the

TABLE I. Variance of d-electron number operator, total spin and
angular momentum for d orbitals, and band mass renormalization
factors for eg and t2g orbitals for a LDA + G calculation without
optimization of the natural density matrix for the atomic Hamiltonian
displayed in Eq. (56). The value of κ is 0.2 eV. The values of U we
used are listed in the first column, and those of J in the second. The
band structure results corresponding to the first and to the last three
rows of the table are plotted in Fig. 1. The last line of the table shows
how orbital selectivity is more sensitive to Hund’s exchange J than
to Hubbard U .

U (eV) J (eV) 〈(�N )2〉 |S| |L| Zeg
Zt2g

0 0 2.30 0.89 3.22 1 1
2.5 1.2 1.37 1.00 3.27 0.94 0.96
5 1.2 1.10 1.03 3.29 0.90 0.93
10 1.2 0.82 1.04 3.31 0.82 0.87
10 2.2 0.78 1.25 3.05 0.72 0.82

natural density matrix. In Table I we show the band mass
renormalization factors Zeg

and Zt2g
for different values of

Hubbard parameter U , whereas J is kept fixed along all
rows of the table but the last one, where it is increased to
2.2 eV. Predictably, we cannot fully recover the non-Fermi
liquid with eg orbital-selective state obtained by Anisimov
and co-workers [30] as a result of a DMFT, and, in fact, our
Gutzwiller calculation shows just a minor localization of both
eg and t2g orbitals, driven both by the Hubbard interaction U

and by Hund’s exchange J , the latter playing an important
role in the orbital selectivity of the mass enhancement, as can
be seen from the last row of Table I. It is at this stage not
possible to clarify how much the weaker orbital selectivity
resulting from our calculation could be due to the fact that our
calculation is performed at zero temperature, as opposed to the
finite-temperature approach by Anisimov and co-workers [30]
or rather to the limitations of the Gutzwiller method. Indeed,
because of the substantial hybridization between eg and s

1.70 1.90 2.10 2.30 2.50 2.70

GGA
LDA

LDA+G
LDA+U(FL)

LDA+U(AMF)
LDA(PW)
GGA(PW)

LDA(LAPW)

2 .18(exp)

Unpolarized, 2|S|
Polarized, m

2.65 2.70 2.75 2.80 2.85 2.90 2.95
alat(Å)

GGA
LDA

LDA+G
LDA+U(FL)

LDA+U(AMF)
LDA(PW)
GGA(PW)

LDA(LAPW)

2.87(exp)

Unpolarized

Polarized

FIG. 2. (Color online) (Left) Magnetic moment 2|S| (for unpolarized calculations, open green arrows) and magnetization m (for polarized
calculations, solid dark red arrows) within GGA, LDA, and LDA + G. The five thin pink arrows refer to previous calculations, the first four
by Cococcioni and De Gironcoli [50] with the plane-wave (PW) pseudopotential QUANTUM ESPRESSO code, the LDA + U calculations being
performed with the fully localized and the around-mean-field recipe for double counting, respectively. Our LDA results for the magnetic
moment are in accord with the LDA linearized-augmented-plane-wave (LAPW) result by Wang et al. [25], which is shown by the last pink
arrow. (Right) Lattice parameters listed for the same calculations. The LDA LAPW results by Wang report lattice parameters for unpolarized
(pale green) and polarized (pink) iron which are both smaller than those we find. The SIESTA overestimation of lattice constant with respect to
both LAPW and PW codes is most probably a result of the choice of the single-ζ basis set. The figures plotted in these graphs are listed also in
Table III.
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orbitals, ineffective close to the � point but appreciable in the
rest of the Brillouin zone and especially close to the H point,
a genuine localization of eg electrons could not be directly
unveiled by the GA, although indirect evidences can still be
found, as we discuss later.

B. Ferromagnetic versus nonmagnetic iron:
Correlation-induced enhancement of local magnetic moment

In order to address the magnetic properties of iron,
we carried out spin-polarized and spin-unpolarized LDA,
GGA, and LDA + G calculations, the latter now including
optimization with respect to the natural orbital density matrix.
In Tables II to VI we list the electronic structure data of bcc
iron with optimized n(0)

mσ . Reasonable values which we finally
adopted for U and J are 2.5 and 1.2 eV, respectively. Both are
close to, if only slightly larger than, those used by Anisimov
and co-workers [30]. We observe—see second column of
Table II—that the optimization of n(0)

mσ in the LDA + G
unpolarized case causes only small changes in the matrix
elements of the natural density matrix with respect to the LDA
result. This confirms and provides an a posteriori justification
of the results obtained in Sec. IV A and suggests that the natural
density matrix is mainly determined by electrostatic balance,
which is well captured by LDA and does not require a better
account of correlation effects. The Gutzwiller parameters do
provide the wave function with more flexibility, but do not
seem to give any important feedback on the natural density
matrix.

This feedback becomes instead important in the spin-
polarized case, where it contributes to an increase relative to
LDA of the total magnetization m and of the lattice parameter,
as can be seen by comparing the values in the second column
of Table III.

Within our Gutzwiller approach we can also compute the
local spin moment |S| of the d orbitals from the expectation
value of S2

S(S + 1) = Tr{�̂† Ŝ · Ŝ �̂}. (57)

Although fluctuating, in the ferromagnetic phase this moment
is partly aligned with the z axis, thus contributing to the global
magnetization order parameter m, which is instead computed
from the Gutzwiller-renormalized density n(r) as

m =
∫

d r[n↑(r) − n↓(r)]. (58)

TABLE II. Orbital densities n(0)
α and quasiparticle mass renormal-

ization m/m∗ = R2
αα for the different types of calculations performed,

with α = eg,t2g and eg ↑ ,t2g ↑ ,eg ↓ ,t2g ↓ for unpolarized (unp.) and
polarized (pol.) calculations, respectively. Optimization with respect
to the natural density matrix is included.

n(0)
α m/m∗

LDA unp. 0.597,0.685 1,1
LDA pol. 0.920,0.823,0.303,0.515 1,1,1,1
LDA + G unp. 0.599,0.673 0.925,0.953
LDA + G pol. 0.936,0.880,0.277,0.457 0.969,0.967,0.984,0.984

TABLE III. Results for optimized lattice parameter alat (in Å),
total magnetization m, magnetization md on d-type orbitals, and total
spin 2|S| (in Bohr magnetons) on d orbitals. The last row shows
the experimental values for lattice parameter and magnetization.
Optimization with respect to the natural density matrix is included.

alat (Å) m md 2|S|
GGA unp. 2.80
GGA pol. 2.87 2.33
LDA unp. 2.77 1.77
LDA pol. 2.83 2.066 2.14 2.61
LDA + G unp. 2.86 2.47
LDA + G pol. 2.87 2.44 2.58 3.04
Exp. [65] 2.87 2.22

It is worth noting here that the increase in spin-polarized
calculations of 2|S| from LDA to LDA + G is almost equal to
the simultaneous increase in magnetization m (see Table III
and Fig. 2), suggesting that the magnetization rise in LDA + G
is mainly due to the larger local magnetic moment stabilized
by correlations.

C. Energy balance in ferromagnetic vs nonmagnetic iron

Once spin polarization is allowed, the magnitude of the
d-orbital local moment |S| increases percentually less within
LDA + G, roughly 20%, than within LDA, around 50%.
In other words, the nonmagnetic, unpolarized LDA + G
calculation already endows the iron atom with a Hund’s rule
local moment of the right magnitude, ready to align with all
other atoms when given the possibility. The propensity towards
magnetic order in LDA + G has a clear signature in the balance
of the various contributions to the total energy. In Table IV
we list the total energies of the various density functional
calculations which we carried out, and in Table V (and in the
corresponding Fig. 3) we list the energy differences between
polarized and unpolarized calculations. In both tables the
total energy is divided up into kinetic, electron-ion interaction
plus electrostatic, and exchange-correlation contributions. In
Table VI we indicate the error of LDA + G arising from
the linearization (40) and (41) of the Hartree and exchange-
correlation energies, respectively. We observe that these errors

TABLE IV. Total energy (eV/atom) for bcc iron computed with
the different basis sets and functionals, divided in total energy,
kinetic energy, atomic interaction plus electrostatic energy Eat+el, and
exchange-correlation energy. The quantity on the fourth column is
equal to Eat+el = Eion + Eie + EH + Eat − Edc, where Eat is defined
in Eq. (39) [with atomic Hamiltonian (10)], Edc is defined in Eq. (13),
and Eie and Eion are the electrostatic interaction energies between ions
and electrons and between ions and ions.

Etot Ekin Eat+el Exc

GGA unp. −781.625 765.108 −1157.611 −389.121
GGA pol. −782.235 769.901 −1161.603 −390.533
LDA unp. −780.196 777.255 −1170.507 −386.943
LDA pol. −780.567 777.947 −1171.205 −387.308
LDA + G unp. −777.231 777.099 −1168.651 −385.682
LDA + G pol. −777.499 774.182 −1165.568 −386.117
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TABLE V. Energy differences (eV/atom) between the spin-
polarized and unpolarized ground states of bcc Fe, taken from
Table IV. By looking at the last two columns, one notices the
opposite signs of kinetic and Eat+el gains when switching between
the two ground states. The kinetic energy gain is connected with the
increase of Gutzwiller band mass renormalization factors Z from
spin-unpolarized to spin-polarized wave functions, as can be seen
from Table II.

δEtot δEkin δEat+el δExc

GGA − 0.61 4.79 − 3.992 − 1.412
LDA − 0.37 0.692 − 0.698 − 0.365
LDA + G − 0.27 − 2.92 3.083 − 0.44

are much smaller than the energy differences in Table V, which
are therefore reliable.

Focusing on the last two rows in Table V, we can
now explore the energy balance changes brought about by
ferromagnetic order. While in LDA the onset of ferromagnetic
long-range order is accompanied by a loss of kinetic energy
overwhelmed by a gain of potential energy (the sum of
electron-ion, Hartree, and exchange), the opposite actually
occurs in LDA + G. While this specific aspect was not
explored in previous calculations, elemental bcc iron emerges
upon addition of electron correlation effects as a correlated
material, where ferromagnetism appears as due, to a significant
level, to the ordering of pre-existing moments driven by kinetic
rather than potential energy gain. With the moderate and
controlled improvement represented by Gutzwiller projection
over LDA, the basic physical reason why the atomic magnetic
moments of iron order ferromagnetically has thus turned
completely around, from the direct intersite exchange upon
which the itinerant picture portrays, to one that is closer to
double exchange. The two eg electrons per atom are essentially
localized and lined up to spin 1. They couple via Hund’s
rule intra-atomic exchange to the remaining t2g electrons,
which, unlike the eg , form a broad itinerant band. Due to that
coupling, ferromagnetic interatomic alignment is required in
order to allow the t2g electrons (actually “holes”) to propagate

−3 −2 −1 0 1 2 3 4 5

LDA+G

LDA

GGA

Energy gain (eV)

Kinetic

Total

FIG. 3. (Color online) Total (green) and kinetic (red) energy gain
(in eV per atom) of the spin-polarized relative to the spin-unpolarized
phase of bcc iron. The values plotted are listed along the second and
third columns of Table V.

TABLE VI. Estimated errors (in eV) due to the approximate
expressions (40) and (41) for the Hartree and exchange-correlation en-
ergies respectively, listed for the spin-unpolarized and spin-polarized
ground-state calculations. All errors are negligible with respect to the
energy differences computed in Table V.

�EH �Exc

LDA + G unp. 0.0083 −0.0012
LDA + G pol. 0.0054 −0.0020

and thus reduce their kinetic energy [66,67], much as in
double-exchange ferromagnetism in, e.g., manganites [68].

More in detail, the gain in kinetic energy is signaled by
and consistent with the fact that the quasiparticle weights
Z increase when the magnetization is allowed to appear as
opposed to the nonmagnetic case, as can be seen in Table II.
Thus, t2g quasiparticles propagate better in the presence of
ferromagnetic order, precisely as expected in the double-
exchange mechanism. An even clearer theoretical evidence
could, we believe, be extracted if one were able to perform
a k-resolved evaluation of quasiparticle weights, presently
beyond our means. Double exchange is an intrinsically many-
body effect which cannot be reproduced within theories that
do not include band renormalization by electron-electron
interactions. For this reason it cannot be uncovered by standard
DFT calculations, whereas it would naturally occur as a
consequence of a selective eg electron localization, such as
that suggested by LDA + DMFT [30,31] and confirmed here
by LDA + G. The double-exchange process can only occur in
the presence of long-lived on-site magnetic moments, which
exist independently of their intersite ordering. Independent-
electron, single-Slater-determinant based theories such as HF
and LDA can only describe the birth of a magnetic moment
through the simultaneous appearance of a net collective spin
polarization, which provides the only element that permits a
decrease of the electron-electron repulsive potential energy
through the Pauli exclusion principle. The onset of mag-
netization, however, entails spatial restriction of electrons,
with a resulting increase of kinetic energy, a characteristic
feature of the itinerant Stoner-Wohlfarth picture [69]. We now
find that this overall result of uncorrelated LDA is reversed
upon inclusion of electronic correlations in iron using the
Gutzwiller wave function. The Gutzwiller projection takes care
of correctly reducing the large intra-atomic electron repulsion
at the onset of a Hund’s rule local moments, independently
of collective ordering of local moments among themselves.
The main lowering of potential energy is intra-atomic, thus
not connected with interatomic ferromagnetic ordering. The
collective ferromagnetic ordering successively permits the
d-electron delocalization (mostly t2g in Fe) which is otherwise
impeded by incoherent spin polarizations of neighboring
atoms. This gains some kinetic energy, sacrificing, in fact,
some potential energy as also signaled by a slight decrease of
on-site magnetic moments.

This overall finding, which also seems compatible with
the LDA + DMFT results by Anisimov et al. [30,31], is
sufficiently striking to call for strong attention, as well as
for an independent future assessment of the accuracy of the
correlations introduced by our Gutzwiller approach. In reality,
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FIG. 4. (Color online) Comparison of projected density of states and band structure between spin-unpolarized LDA + G (solid lines) and
LDA (dotted lines).

several properties of Fe around the Curie temperature can
already be invoked in support of our results. Indeed, it is
well known that magnetic splitting of electron bands survives
well above TC [70,71], suggestive of magnetic moments
preexisting the onset of ferromagnetism. In addition, the
Curie temperature does not diminish under pressure, as would
be expected if magnetic order set in at the expense of the
kinetic energy; rather, it slightly increases [72]. Finally, the
electrical resistivity, ρ, drops quite sharply below TC , and the
slope dρ/dT versus temperature increases, actually almost
doubles [71,73,74], indicating that the electrons move with
more ease in the ferromagnet. In fact, all the above properties
have been explained in the past by assuming a kind of
two-fluid picture, with itinerant electrons scattering off the
critical fluctuations of magnetic moments near their ordering
temperature [75,76]. Evidently, such a two-fluid scenario is
hard to conceive in the Stoner-Wohlfarth model, while it fits
well with our findings.

D. Comparisons with LDA, GGA, LDA + U

The previous section presented our most important results.
Before closing, we discuss some other general results of the
LDA + G calculation in comparison with those of different
approximations. Even without expecting improvements over
previous highly accurate calculations, such as the spin-
polarized GGA (see, e.g., Ref. [25]), because of our limited
basis set, it is instructive to compare the band structures
and density of states obtained within LDA, LDA + G, and
GGA, shown in Figs. 4–7, and estimated lattice parameters,
magnetization, and total magnetic moment, see Fig. 2.

The SIESTA GGA prediction for the iron lattice parameter
is 2.87 Å, in good agreement with the experimental value,
while its magnetic moment is slightly overestimated (2.33 vs
2.22 Bohr magnetons; see Ref. [65]). We note that LDA +
G corrects, without a need for gradient terms, the lattice
parameter underestimation which is a well-known flaw of
LDA. LDA + G also increases the total magnetic moment from
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FIG. 5. (Color online) Comparison of projected density of states and band structure between spin-unpolarized LDA + G (solid lines) and
GGA (dotted lines).
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FIG. 6. (Color online) Comparison of projected density of states and band structure between spin-polarized LDA + G (solid lines) and
LDA (dotted lines). The line colors blue and black refer to minority and majority components, respectively.

the underestimated LDA value to a slightly overestimated one,
now larger than the GGA result (see again Fig. 2). Comparing
the polarized band structures, we note an upward shift of the
minority band in LDA + G with respect to GGA, consistent
with the larger magnetization obtained by the former, although
the shapes are quite similar. In particular, the minority band
at � within LDA + G lies above the Fermi energy, while it
is below in GGA and in experiments (see Fig. 8) [77–79].
The detailed band behavior near � is notoriously delicate, as
recently discussed in Ref. [77], and depends crucially on all
parameters that contribute to determine the precise value of
magnetization, not least the uncertainty in the expression of
the double-counting term. Previous LDA + U calculations of
iron [43,50] indeed pointed out the differences arising by using
an around-mean-field instead of a fully localized expression
for the double-counting energy, a question that would be worth
further investigation [80].

V. FINAL REMARKS

We presented here the step-by-step implementation proto-
col of a simplified density-self-consistent scheme integrating

the standard local density functional formalism of Kohn and
Sham DFT with that implied by Gutzwiller wave-function
corrections. Other applications of the Gutzwiller method to re-
alistic electronic structure calculations have recently appeared.
Bünemann, Weber, and Gebhard [81–83] implemented a
non-self-consistent Gutzwiller approach to electronic structure
calculations, where a tight-binding model was set up from
effective hopping parameters computed through a Kohn-Sham
density functional calculation, and afterwards solved within
the multiband GA. An approach where both density and
Gutzwiller parameters are optimized self-consistently was
proposed in Refs. [17] and [13] and applied to several case
studies [11,15], including Fe [12]. This method is in principle
similar to ours, with the difference that it does not include
the possibility of using a projector with nonzero off-diagonal
matrix elements, which is instead a natural feature of our
mixed-basis parametrization with �̂ operators. More recently,
a fully unrestricted and density self-consistent Gutzwiller +
LDA approach has been proposed [16] and applied to the
γ -α isostructural transition of Ce [18]. This method is in
its formulation equivalent to ours, though different in the
implementation.
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FIG. 7. (Color online) Comparison of projected density of states and band structure between spin-polarized LDA + G (solid lines) and
GGA (dotted lines). The line colors blue and black refer to minority and majority components, respectively.
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FIG. 8. (Color online) Comparison of band structure of spin-
polarized iron within LDA + G (black lines for majority, blue dashed
lines for minority spin) with photoemission data taken from Ref. [79].
Red diamonds refer to majority spin and yellow circles refer to
minority spin.

As an important and basic application, we applied the
resulting LDA + G method to the electronic structure of
bcc Fe, where important open questions about the role
of correlations still remain, including the possibility of an
orbital-selective localization of eg electrons; see Ref. [30] and
references therein. Although we did not find an actual orbitally
selective localization of electrons, our results confirm that the
magnetism of iron is, at least partially, driven by a double-
exchange mechanism, caused by stronger localization of eg

states relative to t2g ones, a typically many-body phenomenon
not described by conventional DFT. The double exchange
mechanism would, of course, also arise as a direct consequence
of a selective eg localization. This dual, itinerant and localized,
character of ferromagnetism in iron has been often invoked to
explain the persistence of magnetic excitations well above
the Curie temperature [70] (see, e.g., Refs. [76] and [84]),
which clearly cannot be captured by the mean-field scenario
of spin-polarized LDA. LDA + G instead provides a unified
framework where both itinerant and localized characters can
be described within the same electronic structure calculation.
We note that a gain of kinetic energy has been proposed
earlier as the source of ferromagnetic ordering by Hirsch, who
demonstrated it in detail in the case of EuB6 [34].

The Gutzwiller approach predicts an enhancement of
local moments, already at the unpolarized LDA level. The
spin-polarized calculation separately provides the energy gain
caused by interatomic magnetic alignment and ordering. The
two phenomena, onset of magnetic moment and ordering,
which come by necessity together and are treated on the same
footing within simple LDA, local spin density approximation
(LSDA), and LDA + U, are correctly very distinct within
LDA + G. Identifying and pursuing experimental evidence
for the double exchange mechanism in the ferromagnetic
ordering of Fe is, of course, a very relevant question. Most

of it is implicit in the well-known survival of the local moment
above the Curie temperature [70] and in the lack of pressure
decrease of the Curie temperature itself [72]. As for what
concerns our method, even at zero temperature there is ample
room for improvement. Besides a desirable enlargement of
the basis, the present calculations of the electronic structure
of Fe through LDA + G implemented in the SIESTA code
could be further perfected. For example, and first of all, this
could be done with the inclusion of two separate hopping
renormalization factors on each eg and t2g multiplet of a
double-ζ basis set, through which we would be able to
better account for the effects of Hubbard-U and exchange
parameter J on electron localization. The slightly excessive
magnetic moment we found can most likely be corrected
through a better choice for the Hubbard-U and by an improved
evaluation of double-counting energy. In spite of the great
number of parameters contained in �̂, the Lanczos-enhanced
LM algorithm we implemented here for the minimization of
the energy with respect to Gutzwiller parameters is stable and
fast and can be easily parallelized to deal with more complex
systems such as crystals having more than one atom per unit
cell as transition-metal compounds.
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APPENDIX A: IMPOSING SYMMETRIES
ON THE GUTZWILLER PROJECTOR

The easiest basis in which to define the Gutzwiller projector
is the basis of Slater determinants of single-particle wave func-
tions, which we indicate in the text as the basis of electronic
configurations (BC). A sample N -particle configuration on
d orbitals is, for instance, the five-electron, maximum-spin
configuration, which in second quantized form reads(

2∏
m=−2

c
†
m↑

)
|0 〉. (A1)

If we wish to write the most general projector in the BC,
the number of parameters we need is, in principle, equal to
22(2l+1) × 22(2l+1), where 22(2l+1) is the size of the many-body
Hilbert space for multiplet of orbitals of angular momentum
l. This is a huge number, which is hardly possible to treat
with numerical optimization already when l = 4 or 5. In order
to lower the amount of parameters that build up a Gutzwiller
projector, we need to switch from this type of configuration
basis, whose states are identified by single-particle quantum
numbers as single-particle spin σ and magnetic quantum

125102-14



GUTZWILLER ELECTRONIC STRUCTURE CALCULATIONS . . . PHYSICAL REVIEW B 90, 125102 (2014)

number m, to a basis of multiparticle quantum numbers that are
good quantum numbers of the problem we are studying, which
are, in the case of a system with full rotational invariance, the
total spin S2, the total angular momentum L2, and the total spin
and angular momentum magnetic quantum numbers Sz and Lz,
respectively. We refer to this basis of many-body states labeled
by good quantum numbers of the problem as the many-body
symmetric basis (MBSB). In the case of paramagnetic iron,
the orbital rotational symmetry is broken by the cubic crystal
field, resulting in a different set of conserved orbital quantum
numbers, corresponding to the irreducible representations of
the cubic group. In the case of spin-polarized iron, also the
spin rotational invariance is broken in favor of a lower spin
easy-axis symmetry, where only Sz remains a good quantum
number.

1. Spin rotational symmetry

It is well known (see, for instance, Ref. [85]) that the
eigenstates of the total spin operator square S2 on the basis
of a set of N spins can be written in terms of Young
tableaux. This is possible because of the isomorphism between
the group SU (N ) and the irreducible representations of the
permutation group, which are represented by Young tableaux.
A general tableau provides a rule for the symmetrization-
antisymmetrization with respect to particle exchange of a
Slater determinant with a given number of electrons in a
given orbital and spin configuration. Each box of a tableau
corresponds to a particular filled single-particle orbital state,
containing either a spin-up (↑) or a spin-down (↓) electron.
The orbitals belonging to the same row of a tableau must be
symmetrized, while those belonging to different rows must be
antisymmetrized. The many-body wave function produced by
this symmetrization-antisymmetrization recipe turns out to be
an eigenstate of both S · S and Sz. The eigenvalue of Sz can
be obtained by summing the spins in each box of the tableau,
while the eigenvalue of S · S corresponds to the tableau shape.
For instance, the state with maximum Sz component on d

orbitals is built from the totally symmetric tableau,

, (A2)

which corresponds to S = 5/2. This particular state is a
single Slater determinant, already belonging to the basis of
configurations. The row-wise antisymmetrization rule of a
tableau automatically imposes the Pauli principle on the wave
function, so that only wave functions obtained from one-
column tableaux, or two-column tableaux with opposite spins
on each column, are nonzero. For instance, the two-particle
singlet state has a simple representation in terms of the totally
antisymmetric two-particle tableau,

, (A3)

applied to a couple of electrons with opposite spin. By
application of raising and lowering operators S+ and S− on a
many-body wave function, one obtains another wave function
which is generated by a tableau of the same shape. Every
wave function with fixed values of S and Sz has an additional

degeneracy which can be computed from the shape of the
generating tableau, according to some simple rules [85].

2. Implementation of crystal point symmetry

In order to provide a classification of many-body wave
functions according to point group quantum numbers, it is
necessary to label them with angular momentum quantum
numbers.

a. Building eigenstates of angular momentum

Thanks to Young tableaux we are able to label states with
the quantum numbers {N,S2,Sz,Lz}. For each of these sets of
quantum numbers, there are several states with different values
of the square modulus L(L + 1) of total angular momentum.
If the BC of our problem is already built from single-particle
eigenstates of L · L and Lz, as for instance the 3d orbitals of
a transition metal (l = 2), it is very easy to build the angular
momentum raising operator explicitly,

L+ =
l−1∑

m=−l

√
l(l + 1) − m(m + 1) c

†
m+1cm. (A4)

From L · L = L+L− + Lz

(
Lz − 1

)
we can build the operator

L · L, which will be block diagonal in every subspace with
fixed {N,S2,Sz,Lz}. The diagonalization of every block gives
the desired set of states, labeled by {N,S2,Sz,Lz}. For large
many-body spaces, as for instance the one built from d-
electrons of a transition metal, another index θ might be needed
in order to distinguish between different states having the same
set of quantum numbers listed above.

3. Building eigenstates of point group symmetry operators

Provided that a set of many-body eigenstates of spin and
angular momentum operators has been given, it is easy to
break the rotational symmetry of the MBSB in favor of some
lower crystal symmetry when necessary. In this section we
treat the case of cubic symmetry, which is the case of iron. The
ingredients we need for this purpose are just the following:

(1) the 3 × 3 matrix representation G(g)ij of the action
of each element g of the cubic group on a three-dimensional
vector r;

(2) the character table of the group (for the cubic group it
is shown in Table VII);

(3) the r-space representation in spherical coordinates of
an external potential with the symmetry of the group; an

TABLE VII. Character table of the cubic group. The first row lists
all the group classes along with the number of symmetry operations
they contain. The following rows list the irreducible representations
and their character on each symmetry class. From Ref. [86].

E 8C3 3C2(C2
4 ) 6C2 6C4

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
T1 3 0 −1 −1 1
T2 3 0 −1 1 −1
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example for a potential with cubic symmetry is

v[r̂(θ,φ)] = cos(θ )4 + 1
4 [3 + cos(4φ)] sin(θ )4, (A5)

where r̂ is the radial unit vector.
Once these three ingredients are at hand, we proceed as

follows.
(i) For each set of spherical harmonics YL,m(θ,φ) with

given L, we compute (by means of the algorithm of Gimbutas
et al. [87]) and diagonalize the matrix

C
(L)
m,m′ =

∫
Y ∗

L,m(r̂)v(r̂)YL,m′(r̂) d�. (A6)

(ii) For each set of spherical harmonics with given l and
for each group element g, we calculate the matrix elements

M(g)Lm,m′ =
∫

Y ∗
L,m(r̂)YL,m′(G(g)−1 r̂) d�. (A7)

(iii) For each eigenvalue ε of the matrix C(L), and for all
eigenvectors cε,L,i relative to this eigenvalue, we compute the
character

χ (C,L,ε) =
∑

i

∑
j

c
ε,L,i
j M(g ∈ C)Ljkc

ε,L,i
k (A8)

relative to the class C. The value of the character enables us to
assign the correct label of irreducible representation I to the
eigenvectors cε,L,i .

The matrices U
(L)
ij = c

ε,L,i
j are the unitary matrices we need

to apply to every block of many-body basis states with a
given value of L in order to switch from a basis labeled with
{N,S2,Sz,L

2,Lz} to a basis indicated by {N,S2,Sz,L
2,I,ι},

where ι labels the states within the same irreducible represen-
tationI (the quantum number L is still used to label states since
each irreducible representation of the cubic group comes from
a definite representation of the rotation group O(3). However,
in the case of cubic symmetry L is no longer a conserved
quantum number, and the ground-state of the Hamiltonian
will not necessarily have a definite L).

APPENDIX B: BUILDING THE MOST GENERAL
GUTZWILLER PARAMETER MATRIX

In this section we show how to parametrize the matrix
�̂of Gutzwiller parameters in the case of full spin and orbital
rotational symmetry. The procedure is similar in the case of
cubic symmetry.

We can easily construct the most general Gutzwiller
parameter matrix �̂ commuting with the operators Ŝ2, L̂2,
Ŝx,y,z, and L̂x,y,z by the following procedure.

(1) Operatively, we find the quantum numbers that
uniquely identify the irreducible representation of the sym-
metry group, in this case spin and spatial rotations SU (2) ×
O(3). These quantum numbers are α = {N,S,L}. The same
representation can appear multiple times, so we add another
quantum number θ to distinguish between equivalent repre-
sentations. Each irreducible representation has a degeneracy
n{α,θ} = L(L + 1) × S(S + 1); we distinguish between states
that are a basis for the same irreducible representation {α,θ} =
{N,S,L,θ} through the index ι = ι(αθ ). In the case of spin
and rotational symmetry ι lists all the eigenstates of Ŝz and L̂z

within the same S and L.

(2) With the previous definitions, the matrix elements of
�̂ are labeled

�αθι,βθ ′ι′ = δαβδιι′φ
α
θθ ′ , (B1)

where φα
θθ ′ is a reduced matrix element. The labels αθι and

βθ ′ι′ identify univocally one state of the MBSB, so that our
parametrization of �̂ is complete.

The same recipe holds when the spatial symmetry is,
for example, the crystal cubic symmetry. In this case, α =
{N,S,I}.

The result expressed by Eq. (B1) comes directly from
Schur’s lemma, which states that a matrix commuting all
the matrices of an irreducible representation of a group G
must be a multiple of identity. The matrix �αθι,βθ ′ι′ must
be nonzero only for α = β since, if Ĝ is a generator of the
group and εα its eigenvalue with respect to any basis vector
belonging to irreducible representation α, the commutation
relations [�̂,Ĝ] = 0 imply that

Ĝ�̂|α 〉 = �̂Ĝ|�α 〉 = εα�̂|�α〉 (B2)

and that �̂|α〉 must be a vector with the same quantum
numbers α.

Again from the condition of zero commutator, we have
that �αθι,αθ ′ι′ , seen as a matrix in the indices ιι′ with fixed
θ = θ ′, must commute with all the matrices of irreducible
representation α, and by Schur’s lemma it must be a multiple
of the identity matrix. For θ �= θ ′ the same statement does not
hold, since the representations are distinct.

However, their equivalence implies that the matrices of
the first are related to the matrices of the second through a
unitary transformation. We can choose this transformation to
be the identity, and this enables us to draw for θ �= θ ′ the same
conclusions as for θ = θ ′, so that �αθι,αθ ′ι′ is diagonal in ιι′
irrespectively of θ and θ ′.

1. Symmetry reduction of parameter space

The procedure explained in the previous paragraphs makes
it possible to considerably reduce the number of parameters
for the Gutzwiller projector, so that its numerical optimization
becomes not only computationally feasible, but also reason-
ably cheap. In Table VIII we list the sizes of local many-body
irreducible representations and the number of independent
Gutzwiller parameters compatible with a few different spin
and point symmetries.

TABLE VIII. Number of many-body irreducible representations
generated by d electrons and size of Gutzwiller parameter space
for different types of spin (first column) and point (second column)
symmetries. The symbol U (1) refers to axial spin symmetry, SU (2)
to full rotational symmetry, O(3) to full spatial rotational symmetry.

Spin symmetry Point symmetry # Hilbert # �

SU (2) O(3) 78 112
U (1) O(3) 176 336
SU (2) Cubic 197 873
U (1) Cubic 428 2716
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APPENDIX C: SPARSE-CONSTRAINED LEVENBERG
MARQUARDT ALGORITHM

This algorithm performs the minimization of the Gutzwiller
variational energy Eq. (50) with respect to the matrix elements
of �̂. The details of the conventional constrained Levenberg-
Marquardt (LM) algorithm are well explained by Fletcher [60],
who suggests the multiplier penalty functional method (also
known as augmented Lagrangian method) as a way to impose
constraints.

Levenberg-Marquardt algorithm with Lanczos approximation
for the Hessian

Depending on the quantity of single-particle orbitals in-
volved in the definition of the Gutzwiller parameter matrix, the
number of parameters xi in the block-diagonal matrix �αβ can
be very large, which makes it computationally very expensive
to compute the inverse Hessian matrix h−1, which is needed
in the LM algorithm in order to find the descent direction δ,
from the equation ∑

j

hij δj = −gi, (C1)

where g is the gradient of Gutzwiller variational energy with
respect to Gutzwiller parameters. Provided that h is positive-
definite (and it can be modified to be so if necessary [60]), it
can be convenient to solve Eq. (C1) within a smaller parameter
space, defined by taking several Lanczos steps through the
Hessian matrix h. Also the memory storage of the algorithm
can take great advantage of this possibility, since the definition
of the Lanczos basis does not have as a requirement the
knowledge of the full matrix hij , but only the knowledge of
products hijxj . Keeping in memory the full Hessian matrix
is possible only for a small number of parameters, while it
implies a considerable slow down of simulations in the case
of a five-band Gutzwiller projector like the one we need
for dealing with transition metals. Whenever we choose the

starting Lanczos vector, we need to remember that finding an
accurate solution for Eq. (C1) requires the solution vector δ to
have a nonzero component on the first vector x of the Lanczos
chain. It can be shown that, provided h is positive definite, the
choice of the gradient g as a starting vector ensures that δ has
nonzero components on the first three vectors of the Lanczos
chain. Indeed, from the positive definiteness of h we get that∑

ij

δ∗
i hij δj > 0, (C2)

but since δ must be such that
∑

j hij δj = −gi [see Eq. (C1)],
we have that

g∗
i δi < 0, (C3)

so that g has a nonzero component on δ. However, we can say
more than this, namely that there is a nonzero component of δ

also on hg, since∑
ij

δ∗
j hij gi = −

∑
ij

(g∗
i hij δj )∗ = −

∑
j

gjg
∗
j < 0, (C4)

provided that the gradient is finite. Finally, there is a nonzero
component of δ also on h2 g, again due to the positive
definiteness of the Hessian,∑

ij

δ∗
i [h2]ij gj =

∑
ij

{g∗
i [h2]ij δj }∗

= −
∑

i

{g∗
i hij gj }∗ < 0. (C5)

This means that three Lanczos steps will certainly improve a
steepest descent problem. Any further step will further refine
the approximation to the correct descent direction δ. With the
choice of the gradient as starting vector for the Lanczos chain,
this minimization algorithm reduces to a constrained steepest
descent in the limit of a single-vector Lanczos chain.
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[18] N. Lanatà, Y.-X. Yao, C.-Z. Wang, K.-M. Ho, J. Schmalian,
K. Haule, and G. Kotliar, Phys. Rev. Lett. 111, 196801 (2013).

[19] M.-F. Tian, X. Y. Deng, Z. Fang, and X. Dai, Phys. Rev. B 84,
205124 (2011).
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