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Relationship of time-reversal symmetry breaking to optical Kerr rotation
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We prove an instance of the reciprocity theorem that demonstrates that Kerr rotation, also known as the
magneto-optical Kerr effect, may only arise in materials that break microscopic time-reversal symmetry. This
argument applies in the linear-response regime and only fails for nonlinear effects. Recent measurements with
a modified Sagnac interferometer have found finite Kerr rotation in a variety of superconductors. The Sagnac
interferometer is a probe for nonreciprocity, so it must be that time-reversal symmetry is broken in these materials.
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I. INTRODUCTION

Recently, there has been controversy [1–8] surrounding
the apparent measurement of finite polarization rotation,
also known as the magneto-optical polar Kerr effect, in
optical reflection measurements off of a variety of high-Tc

superconductors [9,10] The polar Kerr effect is characterized
by the Kerr angle θK , which is the difference in phase angle
delays yielded by oppositely circularly polarized plane-wave
beams of light upon normal incidence reflection from a sample.
Although the Kerr effect is often associated with magnetic
materials [8,11,12], it has been suggested that the observations
of Karapetyan and co-workers [9,10] are more consistent
with cholesteric order [4]—an order characterized by mirror
asymmetry about any plane. Although these measurements
convincingly demonstrate a real and novel effect, we argue that
the interpretation of cholesteric order is flawed. This discussion
has broached a much more long-standing controversy [13–43]
regarding the correct form of gyrotropic electromagnetic con-
stitutive relations and whether Kerr rotation is allowed by gen-
eral optically active media—media that break only mirror sym-
metry about a plane containing the surface normal [44]. In this
Rapid Communication, we prove a general theorem that guar-
antees that the observation of Kerr rotation must always imply
that it is microscopic time-reversal symmetry that is broken.

The idea that the Kerr effect implies microscopic time-
reversal symmetry breaking has been argued by a number
of authors [23–32], but those conclusions made by Halperin
[33] provide a useful introduction. He considers a plane-wave
source and adjacent detector, both at a fixed distance along the
z axis to the sample at z = 0. The distance is great enough such
that the source and detector may as well be considered on top of
each other. Let R++ and R−− be the reflection amplitudes for
circular polarization states reflecting into circular polarization
states with the same sense of rotation; for incident and
reflected rays propagating along the ẑ axis, ± refers to
the polarization state of the electric field given by E± =
Re{ 1√

2
(x̂ ± iŷ)eikzz−iωt } as z → ∞. ± also may be understood

as the sign of the spin angular momentum of the light with
respect to the ẑ axis and independent of the direction of prop-
agation kzẑ; ± is not the helicity. By application of Onsager’s
relations, Halperin demonstrates that if the material is time-
reversal symmetric, then R++ = R−−. Since the Kerr angle is
θK = 1

2 (arg R++ − arg R−−), it will be zero when the material
preserves time-reversal symmetry. Although his argument is
satisfactory, it is deserving of a more rigorous discussion.

We begin as Halperin does. Consider a general measure-
ment of the reflection amplitudes where the pair of sources,
each collocated with a detector, are positioned arbitrarily with
respect to a sample and each other. Let the sources be of
arbitrary shape, but emit light, which, in the absence of all
other sources or scatterers, appears as a circularly polarized
plane wave at infinite distance. In the presence of scatterers,
the emitted field may still be described as having a circular
polarization state ± near the source, if not as a plane wave. We
consider the experiment where light of the + polarization state
is emitted at a source located at r1 and the + component of the
reflected wave is measured at a detector at r2. Let, also, light of
the − polarization state be sourced at r2 and the − component
of the polarization be measured at r1. This is accomplished
if the collocated detectors are such that they signal the arrival
of a photon in the time reverse of the quantum optical state
initially formed at the respective source. Again, the Kerr angle
is the measured difference in complex arguments of the two
propagation amplitudes. In the limit of r1 → r2 → ∞, the
measured reflection amplitudes are the same as R++ and R−−
described by Halperin.

We will demonstrate that, for the measurement described
above, when the instrumentation and the sample consist of ma-
terials that are all time-reverse symmetric, the electromagnetic
propagation amplitude from r1 to r2 will always be identical to
that for propagation from r2 to r1. It then follows that the Kerr
angle will also be zero when there is time-reversal symmetry
and that broken-mirror symmetry, alone, cannot give rise to
Kerr rotation.

II. PROPAGATORS FOR OPTICAL MEASUREMENTS

Photon Green’s functions describe optical measurements.
In the macroscopic limit, the light emitted from a source and
measured by a detector is modeled by the retarded Green’s
function for the macroscopic Maxwell’s equations,

∇ × E = −1

c
∂tB, ∇ · D = ρf ,

∇ × H = 1

c
∂tD + 4π

c
J, ∇ · B = 0,

where B = ∇ × A and E = − 1
c
∂tA in the radiation gauge. At

optical frequencies, it is sufficient to describe the material’s re-
sponse with just a dielectric susceptibility tensor χ̃(t2,r2,t1,r1)
[44,45]. The retarded Green’s function G̃ret relates the source

1098-0121/2014/90(12)/121112(5) 121112-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.121112


RAPID COMMUNICATIONS

ALEXANDER D. FRIED PHYSICAL REVIEW B 90, 121112(R) (2014)

current J = (Jx,Jy,Jz) to the macroscopic vector potential A,

A(t2,r2) = 4π

c

∫
G̃ret(t2,r2,t1,r1)J(t1,r1)dt1dr1. (1)

Precise statements of the symmetries of the electromagnetic
field and its measurement entail that the reflection amplitudes
be considered quantum mechanically [46,47]. The quantum
electrodynamic field measured at (t2,r2) by a point dipole
detector, aligned to the μ linear polarization state, will be
Âμ(t2,r2)|0〉, where Âμ(0,r) = Â†

μ(0,r) is the position-space
field operator and |0〉 is the vacuum state. Likewise, supposing
a pointlike dipole source creates a ν linearly polarized photon
at (t1,r1), then the quantum field it initially forms will
be Âν(t1,r1)|0〉. For t2 > t1, the amplitude for free-space
propagation between the source and the receiver is given by

〈0|Âμ(t2,r2)Âν(t1,r1)|0〉 = δμν

δ
(
t2 − t1 − 1

c
|r2 − r1|

)
4π |r1 − r2| .

Squared, this is the transition probability density for the
detection of a photon at time t2 given its creation at t1
[46]. When the sources are of a single frequency ω, the
phase delay, as used to define the Kerr angle, is the complex
argument of the propagator in the frequency-position domain:
G̃ret(ω; r2,r1) = ∫

G̃ret(t2,r2,t1,r1)eiω(t2−t1)dt2dt1.
When the light is interacting with matter, then to lowest

order, the linear response of the macroscopic field at the
detector A(t,r2) for r2 outside of the material, to an optical
source at r1, also outside of the material, is given by Eq. (1)
[47]. The retarded Green’s function is obtained by complex
conjugating the negative frequency part of the following
time-ordered propagator:

GF
μν(t2,r2,t1,r1) = 〈g|T [Âμ(t2,r2)Âν(t1,r1)]|g〉, (2)

where T is the time-ordering operator for photons:
T [Âμ(t2,r2)Âν(t1,r1)] = θ (t2 − t1)Âμ(t2,r2)Âν(t1,r1) +

θ (t1 − t2)Âν(t1,r1)Âμ(t2,r2). We choose to focus on the time-
ordered propagator just to emphasize how propagators are
calculated from quantum perturbative methods.

The expectation value is taken with respect to the many-
body ground state |g〉 = limt→−∞ĝ†(t)|0〉 of the whole system.
This ground state includes the material, the environment, and
any instrumentation. If the system is at finite temperature, then
a Boltzmann-weighted sum of propagators, evaluated with
respect to the stationary states of the system is used in lieu
of the above. In this way, even incoherent optical sources [23]
may be described.

In assuming that the measurement is described exactly by
Eq. (2), it is implied that the source is the perturbation to the
full Hamiltonian of the world Ĥ , which describes the light,
the material, and the detectors. The perturbing source J(t,r) is
slowly turned on from zero at t = −∞ and slowly turned off at
t = ∞. It is also assumed that the sample, the source, and the
receiver do not interact in any way other than by the scattered
light; this is tantamount to requiring that the operators Âμ(t,r2)
and Âν(t,r1) commute with each other and with ĝ(t) and ĝ†(t)
at equal times. These are the same conditions requisite for
application of the Kubo formula, and results similar to those
in the next section appear in many texts in connection with it
[48].

III. THE RECIPROCITY THEOREM

We will prove that, if time-reversal symmetry is respected,
then no Kerr rotation is observed, by showing that this
symmetry condition implies that the propagator for + po-
larized light traversing from r1 → r2 and the propagator for
− polarized light traversing from r2 → r1 are identical. Of
central importance is that the measurement is performed with
collocated sources and detectors, which create or destroy
photons in states that are the time reverse of each other.
This condition is clearly true for the two pointlike dipole
sources/detectors, located at r1 and r2, considered in this
discussion. We later describe an example of how this is
achieved in practice.

The antilinear time-reversal operator [49–52] T commutes
with the Hamiltonian Ĥ ; T ĤT † = Ĥ but still inverts the
time-evolution operator T e−iĤ tT † = eiĤ t as well as anti-
commutes with all other operator generators of motion. Its
action on quantum states u,v is T |u〉 = |ū∗〉 where the overbar
represents the time-reversed state and ∗ refers to the fact that
the map is to the “complex-conjugate Hilbert space” [51],
where 〈u∗|v∗〉 = 〈v|u〉 and 〈u∗|e−iĤ t |v∗〉 = 〈v|eiĤ t |u〉.

The vector potential has odd time-reversal parity,
so T Âμ(0,r)T † = −Âμ(0,r). Since Âμ(t,r) = eiĤ t Âμ(0,r)
e−iĤ t , then T Âμ(t,r)T † = −Âμ(−t,r). It follows that:

〈g|T [Âμ(t2,r2)Âν(t1,r1)]|g〉
= 〈g|T †T T [Âμ(t2,r2)T †T Âν(t1,r1)]T †T |g〉
= 〈ḡ∗|T [T Âμ(t2,r2)T †T Âν(t1,r1)T †]|ḡ∗〉
= 〈ḡ∗|T [(−1)Âμ(−t2,r2)(−1)Âν(−t1,r1)]|ḡ∗〉
= 〈ḡ|T [Âν(−t1,r1)Âμ(−t2,r2)]|ḡ〉
= 〈ḡ|T [Âν(t2,r1)Âμ(t1,r2)]|ḡ〉, (3)

where the last equality follows from time-translation symme-
try. It is then the case that if the ground state of the material is
time-reversal symmetric, |ḡ〉 = |g〉 that

GF
μν(t2,r2,t1,r1) = GF

νμ(t2,r1,t1,r2). (4)

There is a similar derivation of this symmetry for the retarded
propagator, or else, it is obtained from analytic continuation
of the above.

We refer to this result as the “reciprocity theorem,” and it is
only satisfied when the ground state possesses microscopic
time-reversal symmetry. Again, the restriction to pointlike
dipole sources is unnecessary as an extended source is
described by integrating r1 and r2 over the respective volumes.
Linear absorption in the sample is inconsequential; whereas
the transition amplitude for absorption of a photon from
r1 may be different for the amplitude of absorption for
a photon from r2, these amplitudes are not measured and
do not contribute to 2. Finally, Onsager’s relations [53–63]
for the linear response, the Rayleigh-Carson electromagnetic
reciprocity theorem [64–67], and its quantum counterpart for
unitary evolution [49,52,68,69], are all known manifestations
of Eq. (4).

Some scattering-matrix formulations of the theorem claim
to satisfy reciprocity only in the asymptotic far-field limit
[70–72]. This is because scattering-matrix elements define
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transition amplitudes between free-space plane-wave elec-
tromagnetic fields in the asymptotic past or future and the
perturbation expansion of the S matrix is performed in powers
of the scattering material’s contribution to the Hamiltonian
[47]. We approach reciprocity from a different perspective and
find no such restriction as we evaluate expectation values of
the propagator with respect to |g〉 and perturbatively expand
the measured quantity A(t,r) in powers of the optical source’s
semiclassical contribution to the Hamiltonian Âμ(t,r)Jμ(t,r)
as in linear response [56,57].

To conclude the proof, circular polarization states may
be represented by linear states via Â±(0,r) = 1√

2
[Âx(0,r) ±

iÂy(0,r)], so T Â+(0,r)T † = −Â−(0,r). This is sensible since
the ± photon polarization states are eigenstates of spin
angular momentum and the time-reversal operator reverses
its direction. We return to considering retarded propagators
as they describe evolution of the system forward in time;
when there is time-reversal symmetry, analytic continuation of
Eq. (4) gives

Gret
++(t2,r2,t1,r1) = Gret

−−(t2,r1,t1,r2). (5)

Then there cannot be Kerr rotation as the frequency domain
propagators are also the same, so θK = 1

2 arg Gret
++(ω; r2,r1) −

1
2 arg Gret

−−(ω; r1,r2) = 0.
This result does not always hold for nonlinear response

because the reflection amplitudes are not related by time-
reversal symmetry. Consider a nonparametric process where
the reflection of + polarized light results in a spin excitation
〈e↑| = limt→∞〈g|ê↑(t). If the equilibrium state is time-reverse
symmetric, |g〉 = |ḡ〉 and T ê↓(t)T † = ê↑(−t), where |e↓〉 =
limt→−∞ ê

†
↓(t)|g〉, then applying T to a higher-order propaga-

tor [58,59,73] yields

〈e↑|T [Â+(t3,r2)Â+(t2,r1)Â+(t1,r1)]|g〉
= −〈g|T [Â−(t3,r1)Â−(t3 + t1 − t2,r1)Â−(t1,r2)]|e↓〉. (6)

In other words, the amplitude of a process that results in the
creation of an excited state of the material for light going
from r1 → r2 is equal to that where an initial excited state
decays and emits a photon for light going from r2 → r1.
Because the optical field is perturbing the material from the
unilluminated equilibrium state in the infinite past, although
the nonlinear excitation and decay processes are both possible,
the Boltzmann weight for the material beginning in the excited
state will be less than that of the ground state. Although the
two amplitudes above are equal up to a sign, their weightings
are different, and so there may be an asymmetry with respect
to time-reversal of the sum of all weighted amplitudes for
light going from r1 → r2 and vice versa. Kerr rotation may
then be measured even if the equilibrium state of the material
is time-reverse symmetric. This Kerr angle will be intensity
dependent and if, as intensity is tuned to zero, the Kerr angle
also approaches zero, then the equilibrium state of the material
is necessarily time-reverse symmetric. Nonreciprocity is also
possible if the spectral content of the incident and reflected
beams differ as when there is harmonic generation or Raman
shifts. This is demonstrated in a similar manner to that of the
above; if light of frequency ω1 reflects to light of frequency
ω2, there is no condition that the source for the incident light

is such that the spectral weights for ω1 and ω2 are the same.
Thus, the two weighted sums of amplitudes will differ.

Nonequilibrium systems, such as a relaxing glass or
a system driven by some other external source field, are
inherently changing as a function of time and so can give
rise to nonreciprocity. However, there is a subtlety in that Ĥ is
the Hamiltonian for the whole world, so it is inaccurate, in this
argument, to speak of open systems that break time-translation
symmetry and invalidate the last step in (3). In other words,
Eq. (5) fails when microscopic time-reversal symmetry is
broken but does not distinguish between systems in which it is
broken due to a phase of matter that arises from spontaneous
symmetry breaking or from an external forcing as in the
spin Hall effect [74] where an applied current results in an
unbalanced population of spins. Likewise, there might be a
highly excited state of a material that breaks mirror symmetry
and emits radiation as it relaxes asymmetrically in the two
circular polarization states, again, leading to an unbalanced
spin population. If these nonequilibrium systems are steady
state [75], then there will still be a density matrix ρ̂ that is not
Boltzmann and is used to evaluate Eq. (2). Unless this density
matrix manifestly breaks time-reversal symmetry [T ,ρ̂] 
= 0,
then the measurement will satisfy reciprocity, and there can be
no Kerr rotation.

IV. CONCLUSION

In proving Eq. (5), we have dispelled some incorrect
ideas, recently promulgated [2,4,5,13–22] as well as affirmed
and clarified the work of a number of studies [23–43]. To
summarize: (1) Kerr rotation may only arise from microscopic
time-reversal symmetry breaking as will circular dichroism
in normal incidence reflection. This symmetry breaking may
occur either through spontaneous symmetry breaking or by
nonequilibrium processes. Optically active materials, such as
those with a k-linear susceptibility or any other form of mirror-
symmetry breaking, cannot give rise to Kerr rotation as they
are time-reversal symmetric. (2) The proof above coincides
with Onsager’s relations and the electromagnetic reciprocity
theorem, and all three will fail only when microscopic time-
reversal symmetry is broken. The theorems do not apply for
nonlinear response, however nonlinear response must exhibit
intensity-dependent observables, such as Kerr rotation, or
an alteration in the reflected frequency spectrum. There are
nonlinear effects that are intensity independent and only alter
the spectral content, such as spontaneous Raman shifts or
spontaneous parametric photon down-conversion, but these
effects are incoherent and yield a random-phase delay.

These results constrain the predictions of all constitutive
relations [76] used to model time-reversal symmetric media.
A common source of confusion impeding the acceptance of
these arguments has been the calculations of Kerr rotation
when using the mirror-symmetry-breaking k-linear constitu-
tive relations with material constants allowed to vary with
position [18,31]: B = H and D = ε0(r)E + γ (r)∇ × E or D =
ε0(r)E + ∇ × [γ (r)E], where ε0 is the isotropic permittivity
and γ is the spatially dependent isotropic gyrotropic parameter
[44]. The resolution of this paradox is that only when
the material constants are homogeneous will these relations
conform to the intended symmetries of the model. When
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there is a surface or spatial inhomogeneity, these constitutive
relations do not satisfy Onsager’s relations [28,29], which
means they do not explicitly satisfy time-reversal symmetry
and cannot appropriately describe the system under discussion.
Furthermore, in lossless media, they do not respect Poynting’s
theorem [39,77] or follow from a least-action principle [78].

Onsager’s relations must be enforced if time-reversal
symmetric media are to be modeled correctly. Consider the
following permittivity tensor:

εμν(ω,r,r′) = ε0
μν(ω,r)δ(r − r′)

−γμνλ(ω,r,r′)∂λδ(r − r′). (7)

This form generalizes the constitutive relations for k-linear
response in homogeneous media, where γμνλ and ε0

μν will
be constant, to a form where they are spatially depen-
dent. Onsager’s relations εμν(ω,r,r′) = ενμ(ω,r′,r) require
that ε0

μν(ω,r) = ε0
νμ(ω,r) and γμνλ(ω,r,r′) = −γνμλ(ω,r′,r).

For isotropic media, ε0
μν(ω,r) = ε0(r) and γμνλ(ω,r,r′) ≡

εμνλη(r,r′), where η(r,r′) is a scalar symmetric function.
As an example, if η(r,r′) = γ ( 1

2 r + 1
2 r′), where γ (r) is

some other scalar function, then D = ε0(r)E + 1
2γ (r)∇ × E +

1
2∇ × [γ (r)E]. It can be easily checked that this form does not
predict Kerr rotation [34–36,38,39], but our proof of Eq. (5)
guaranteed that this would be the case for any choice of η(r,r′)
that is symmetric in the arguments as Onsager’s relations are
correctly included.

The Sagnac interferometer [24,79–83], the instrument used
to measure the Kerr angle in the papers of Karapetyan and
co-workers [9,10], being a unique test for reciprocity, only
measures microscopic time-reversal symmetry breaking. This
is so because the interferometer measures the Kerr angle by
interfering two beams of light made to reflect from the sample
in a fashion such that the sourcing aperture for one beam
is the receiving aperture for the other and vice versa. The
Sagnac interferometer conveys light of two linear polarization
states to the sample by a polarization maintaining single-mode
optical fiber. The end face of the fiber is an aperture for
the two linear polarization states, and the two modes that
couple from free space to the two fiber axes are the time
reverse of those two that are emitted from it. A quarter-wave
plate, with the slow axis oriented at 45◦ with respect to
the two polarization states emerging from the fiber axes, is
placed between the fiber end face and the sample. The two
orthogonal linearly polarized beams of light emitted from the
fiber are transformed into opposite circularly polarized states

after traversing the quarter-wave plate. The circularly polarized
beams of light partially reflect from the sample into the
same circular polarization states and will pass through the
quarter-wave plate a second time, transforming back into
orthogonal linear polarization states, but now rotated 90◦ from
before. In this way, the beams couple from one axis of the
fiber to the other and interfere at a polarizer, oriented at 45◦
with respect to both axes of the fiber, placed at the other end
of the fiber-optic cable. A lock-in amplifier technique recovers
the Kerr angle from the interference intensity [82]. Because
the fiber is highly birefringent and the diode light source has
8-μm coherence length, only light that couples, after reflecting
from the sample, between different axes in the fiber will
traverse optical path lengths that differ by less than a coherence
length and interfere coherently at the polarizer [82].

The reciprocity theorem applies to the Sagnac interferom-
eter exactly. The spatial filtering of the fiber ensures that the
electromagnetic spatial modes that are sourced and received
by the fiber are exactly the time reverse of each other.
Comparing the phase delays of light exchanged between the
two fiber axes uniquely tests for microscopic time-reversal
symmetry breaking not only in a sample being probed, but also
within the optical components that make up the instrument
itself. Misalignments or imperfect optical components will
not introduce spurious signals as they will have time-reversal
symmetric responses.

Because of the reciprocity theorem, the suggestion [4]
that the recent measurements of a Kerr effect [10] stem
from an equilibrium phase of matter with mirror-symmetry
breaking and without time-reversal symmetry breaking, cannot
be correct. Instead, the reciprocity theorem implies that either
the ground state must break time-reversal symmetry or the
sample is in a highly nonequilibrium state that does as well.
More tests are needed to determine if nonlinear effects are
relevant.

ACKNOWLEDGMENTS

This work would not have been possible without the support
and insightful feedback of R. Laughlin and M. Fejer. We also
acknowledge helpful discussions with W. Cho, A. Kapitulnik,
S. Kivelson, S. Rhagu, H. Karapetyan, P. Hosur, S. Fan, S.
Lederer, and V. Mineev. We are grateful for support from
the Center for Probing the Nanoscale, NSF NSEC Grant No.
PHY-0830228.

[1] V. P. Mineev and Y. Yoshioka, Phys. Rev. B 89, 139902(E)
(2014).

[2] V. P. Mineev and Y. Yoshioka, Phys. Rev. B 81, 094525 (2010).
[3] P. Hosur, A. Kapitulnik, S. A. Kivelson, J. Orenstein, S. Raghu,

W. Cho, and A. D. Fried, arXiv:1405.0752.
[4] P. Hosur, A. Kapitulnik, S. A. Kivelson, J. Orenstein, and

S. Raghu, Phys. Rev. B 87, 115116 (2013).
[5] B. Arfi and L. P. Gorkov, Phys. Rev. B 46, 9163 (1992).
[6] S. S. Pershoguba, K. Kechedzhi, and V. M. Yakovenko, Phys.

Rev. Lett. 111, 047005 (2013).

[7] S. S. Pershoguba, K. Kechedzhi, and V. M. Yakovenko, Phys.
Rev. Lett. 113, 129901(E) (2014).

[8] V. Aji, Y. He, and C. M. Varma, Phys. Rev. B 87, 174518 (2013).
[9] H. Karapetyan, M. Hucker, G. D. Gu, J. M. Tranquada, M. M.

Fejer, J. Xia, and A. Kapitulnik, Phys. Rev. Lett. 109, 147001
(2012).

[10] H. Karapetyan, J. Xia, M. Hucker, G. D. Gu, J. M. Tranquada,
M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett 112, 047003
(2014).

[11] P. N. Argyres, Phys. Rev. 97, 334 (1955).

121112-4

http://dx.doi.org/10.1103/PhysRevB.89.139902
http://dx.doi.org/10.1103/PhysRevB.89.139902
http://dx.doi.org/10.1103/PhysRevB.89.139902
http://dx.doi.org/10.1103/PhysRevB.89.139902
http://dx.doi.org/10.1103/PhysRevB.81.094525
http://dx.doi.org/10.1103/PhysRevB.81.094525
http://dx.doi.org/10.1103/PhysRevB.81.094525
http://dx.doi.org/10.1103/PhysRevB.81.094525
http://arxiv.org/abs/arXiv:1405.0752
http://dx.doi.org/10.1103/PhysRevB.87.115116
http://dx.doi.org/10.1103/PhysRevB.87.115116
http://dx.doi.org/10.1103/PhysRevB.87.115116
http://dx.doi.org/10.1103/PhysRevB.87.115116
http://dx.doi.org/10.1103/PhysRevB.46.9163
http://dx.doi.org/10.1103/PhysRevB.46.9163
http://dx.doi.org/10.1103/PhysRevB.46.9163
http://dx.doi.org/10.1103/PhysRevB.46.9163
http://dx.doi.org/10.1103/PhysRevLett.111.047005
http://dx.doi.org/10.1103/PhysRevLett.111.047005
http://dx.doi.org/10.1103/PhysRevLett.111.047005
http://dx.doi.org/10.1103/PhysRevLett.111.047005
http://dx.doi.org/10.1103/PhysRevLett.113.129901
http://dx.doi.org/10.1103/PhysRevLett.113.129901
http://dx.doi.org/10.1103/PhysRevLett.113.129901
http://dx.doi.org/10.1103/PhysRevLett.113.129901
http://dx.doi.org/10.1103/PhysRevB.87.174518
http://dx.doi.org/10.1103/PhysRevB.87.174518
http://dx.doi.org/10.1103/PhysRevB.87.174518
http://dx.doi.org/10.1103/PhysRevB.87.174518
http://dx.doi.org/10.1103/PhysRevLett.109.147001
http://dx.doi.org/10.1103/PhysRevLett.109.147001
http://dx.doi.org/10.1103/PhysRevLett.109.147001
http://dx.doi.org/10.1103/PhysRevLett.109.147001
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRevLett.112.047003
http://dx.doi.org/10.1103/PhysRev.97.334
http://dx.doi.org/10.1103/PhysRev.97.334
http://dx.doi.org/10.1103/PhysRev.97.334
http://dx.doi.org/10.1103/PhysRev.97.334


RAPID COMMUNICATIONS

RELATIONSHIP OF TIME-REVERSAL SYMMETRY . . . PHYSICAL REVIEW B 90, 121112(R) (2014)

[12] J. Orenstein, Phys. Rev. Lett. 107, 067002 (2011).
[13] P. J. Bennett, S. Dhanjal, Y. P. Svirko, and N. I. Zheludev, Opt.

Lett. 21, 1955 (1996).
[14] Y. P. Svirko and N. Zheludev, Faraday Discuss. 99, 359 (1994).
[15] N. I. Zheludev, S. V. Popov, Y. P. Svirko, A. Malinowski, and

D. Y. Paraschuk, Phys. Rev. B 50, 11508 (1994).
[16] N. I. Zheludev, S. V. Popov, Yu. P. Svirko, A. Malinowski, and

A. R. Bungay, Phys. Rev. B 52, 2203 (1995).
[17] A. R. Bungay, Y. P. Svirko, and N. I. Zheludev, Phys. Rev. Lett.

70, 3039 (1993).
[18] A. R. Bungay, Y. P. Svirko, and N. I. Zheludev, Phys. Rev. B

47, 11730 (1993).
[19] A. R. Bungay, S. V. Popov, Y. P. Svirko, and N. I. Zheludev,

Chem. Phys. Lett. 217, 249 (1994).
[20] Y. P. Svirko and N. I. Zheludev, Opt. Lett. 20, 1809 (1995).
[21] V. M. Agranovich and V. L. Ginzberg, Zh. Eksp. Teor. Fiz. 63,

838 (1972) [,Sov. Phys. JETP 36, 440 (1973)].
[22] V. M. Agranovich and V. I. Yudson, Opt. Commun. 5, 422

(1972).
[23] A. L. Shelankov and G. E. Pikus, Phys. Rev. B 46, 3326 (1992).
[24] J. S. Dodge, L. Klein, M. M. Fejer, and A. Kapitulnik, J. Appl.

Phys. 79, 6186 (1996).
[25] N. P. Armitage, Phys. Rev. B 90, 035135 (2014).
[26] G. S. Canright and A. G. Rojo, Phys. Rev. Lett. 68, 1601 (1992).
[27] G. S. Canright and A. G. Rojo, Phys. Rev. B 46, 14078 (1992).
[28] L. C. Lew Yan Voon, A. Fainstein, P. Etchegoin, P. Santos, and

M. Cardona, Phys. Rev. B 52, 2201 (1995).
[29] P. Etchegoin, A. Fainstein, P. Santos, L. C. Lew Yan Voon, and

M. Cardona, Solid State Commun. 92, 505 (1994).
[30] M. P. Silverman and J. Badoz, J. Opt. Soc. Am. A 7, 1163 (1990).
[31] M. P. Silverman, J. Opt. Soc. Am. A 3, 831 (1986).
[32] M. P. Silverman, J. Badoz, and B. Briat, Opt. Lett. 17, 886

(1992).
[33] B. I. Halperin, The Physics and Chemistry of Oxide Supercon-

ductors, edited by H. K. V. Lotsch, Springer Proceedings in
Physics (Springer-Verlag, Berlin, 1992) Vol. 60, p. 439.

[34] V. M. Agranovich and V. I. Yudson, Opt. Commun. 9, 58 (1973).
[35] U. Schlagheck, Opt. Commun. 13, 273 (1975).
[36] A. P. Vinogradov and I. I. Skidanov, Bianisotropics 2000:

8th International Conference on Electromagnetics of Complex
Media, Lisbon, Portugal, 2000 (Instituto Superior Tecnico,
Lisbon, 2000).

[37] V. N. Gridnev, Phys. Rev. B 51, 13079 (1995).
[38] B. V. Bokut, A. N. Serdyukov, and F. I. Fedorov, Zh. Prikl.

Spektrosk. 19, 377 (1973) [,J. Appl. Spectrosc. 19, 1108 (1973)].
[39] F. I. Fedorov, Sov. Phys. Usp. 15, 849 (1973).
[40] D. F. Nelson and A. L. Ivanov, Opt. Lett. 23, 86 (1998).
[41] D. F. Nelson, Phys. Rev. E. 51, 6142 (1995).
[42] B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev,

J. Phys.: Condens. Matter 5, 8233 (1993).
[43] E. O. Kamenetskii, Microw. Opt. Technol. Lett. 19, 412 (1998).
[44] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media, 2rd ed. (Pergamon, Oxford, 1984), Vol. 8.
[45] P. S. Pershan, J. Appl. Phys. 38, 1482 (1967).
[46] R. J. Glauber, Phys. Rev. 130, 2529 (1963).

[47] A. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (Courier Dover, Mineola, NY, 2003).

[48] P. C. Martin, Measurements and Correlation Functions (Gordon
and Breach, New York, 1968), pp. 23–25.

[49] S. Weinberg, The Quantum Theory of Fields: Volume 1,
Foundations (Cambridge University Press, Cambridge, UK,
1995).

[50] R. G. Sachs, The Physics of Time Reversal (University of
Chicago Press, Chicago, 1987).

[51] J. Schwinger, Phys. Rev. 82, 914 (1951).
[52] F. Coester, Phys. Rev. 89, 619 (1953).
[53] L. Onsager, Phys. Rev. 37, 405 (1931).
[54] L. Onsager, Phys. Rev. 38, 2265 (1931).
[55] H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945).
[56] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[57] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[58] G. F. Efremov and M. A. Novikov, Laser Phys. 4, 112 (1994).
[59] W. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017 (1959).
[60] H. B. Callen and R. F. Greene, Phys. Rev. 86, 702

(1952).
[61] R. F. Greene and H. B. Callen, Phys. Rev. 88, 1387 (1952).
[62] S. R. de Groot and P. Mazur, Phys. Rev. 94, 218 (1954).
[63] P. Mazur and S. R. de Groot, Phys. Rev. 94, 224 (1954).
[64] V. H. Rumsey, Phys. Rev. 94, 1483 (1954).
[65] A. T. de Hoop and G. de Jong, Proc. Inst. Electr. Eng. 121, 1051

(1974).
[66] J. R. Carson, Bell Syst. Tech. J. 3, 393 (1924).
[67] E. A. Lacomba and D. B. Hernandez, Differential Geometry,

Calculus of Variations, and Their Applications (Dekker, New
York, 1985).

[68] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory, 3rd ed. (Elsevier, Oxford, 1977).

[69] F. Coester, Phys. Rev. 84, 1259 (1951).
[70] R. G. Newton, Scattering Theory of Waves and Particles

(McGraw-Hill, New York, 1966).
[71] A. T. de Hoop, Appl. Sci. Res., Sect. B 8, 135 (1960).
[72] D. S. Saxon, Phys. Rev. 100, 1771 (1955).
[73] R. L. Peterson, Rev. Mod. Phys. 39, 69 (1967).
[74] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,

Science 306, 1910 (2004).
[75] P. Coleman and W. Mao, J. Phys.: Condens. Matter 16, L263

(2004).
[76] J. Lekner, Pure Appl. Opt. 5, 417 (1996).
[77] A. Lakhtakia, V. V. Varadan, and V. K. Varadan, J. Opt. Soc.

Am. A 5, 175 (1988).
[78] A. D. Fried, Ph.D. thesis, Stanford University, 2014.
[79] S. Spielman, K. Fesler, C. B. Eom, T. H. Geballe, M. M. Fejer,

and A. Kapitulnik, Phys. Rev. Lett. 65, 123 (1990).
[80] J. Xia, P. Beyersdorf, M. M. Fejer, and A. Kapitulnik, Appl.

Phys. Lett. 89, 062508 (2006).
[81] A. Kapitulnik, J. S. Dodge, and M. M. Fejer, J. Appl. Phys. 75,

6872 (1994).
[82] A. Fried, M. Fejer, and A. Kapitulnik, arXiv:1403.4227.
[83] H. Lefevre, The Fiber Optic Gyroscope (Artech House, Nor-

wood, MA, 1993).

121112-5

http://dx.doi.org/10.1103/PhysRevLett.107.067002
http://dx.doi.org/10.1103/PhysRevLett.107.067002
http://dx.doi.org/10.1103/PhysRevLett.107.067002
http://dx.doi.org/10.1103/PhysRevLett.107.067002
http://dx.doi.org/10.1364/OL.21.001955
http://dx.doi.org/10.1364/OL.21.001955
http://dx.doi.org/10.1364/OL.21.001955
http://dx.doi.org/10.1364/OL.21.001955
http://dx.doi.org/10.1039/fd9949900359
http://dx.doi.org/10.1039/fd9949900359
http://dx.doi.org/10.1039/fd9949900359
http://dx.doi.org/10.1039/fd9949900359
http://dx.doi.org/10.1103/PhysRevB.50.11508
http://dx.doi.org/10.1103/PhysRevB.50.11508
http://dx.doi.org/10.1103/PhysRevB.50.11508
http://dx.doi.org/10.1103/PhysRevB.50.11508
http://dx.doi.org/10.1103/PhysRevB.52.2203
http://dx.doi.org/10.1103/PhysRevB.52.2203
http://dx.doi.org/10.1103/PhysRevB.52.2203
http://dx.doi.org/10.1103/PhysRevB.52.2203
http://dx.doi.org/10.1103/PhysRevLett.70.3039
http://dx.doi.org/10.1103/PhysRevLett.70.3039
http://dx.doi.org/10.1103/PhysRevLett.70.3039
http://dx.doi.org/10.1103/PhysRevLett.70.3039
http://dx.doi.org/10.1103/PhysRevB.47.11730
http://dx.doi.org/10.1103/PhysRevB.47.11730
http://dx.doi.org/10.1103/PhysRevB.47.11730
http://dx.doi.org/10.1103/PhysRevB.47.11730
http://dx.doi.org/10.1016/0009-2614(93)E1381-P
http://dx.doi.org/10.1016/0009-2614(93)E1381-P
http://dx.doi.org/10.1016/0009-2614(93)E1381-P
http://dx.doi.org/10.1016/0009-2614(93)E1381-P
http://dx.doi.org/10.1364/OL.20.001809
http://dx.doi.org/10.1364/OL.20.001809
http://dx.doi.org/10.1364/OL.20.001809
http://dx.doi.org/10.1364/OL.20.001809
http://dx.doi.org/10.1016/0030-4018(72)90049-1
http://dx.doi.org/10.1016/0030-4018(72)90049-1
http://dx.doi.org/10.1016/0030-4018(72)90049-1
http://dx.doi.org/10.1016/0030-4018(72)90049-1
http://dx.doi.org/10.1103/PhysRevB.46.3326
http://dx.doi.org/10.1103/PhysRevB.46.3326
http://dx.doi.org/10.1103/PhysRevB.46.3326
http://dx.doi.org/10.1103/PhysRevB.46.3326
http://dx.doi.org/10.1063/1.362567
http://dx.doi.org/10.1063/1.362567
http://dx.doi.org/10.1063/1.362567
http://dx.doi.org/10.1063/1.362567
http://dx.doi.org/10.1103/PhysRevB.90.035135
http://dx.doi.org/10.1103/PhysRevB.90.035135
http://dx.doi.org/10.1103/PhysRevB.90.035135
http://dx.doi.org/10.1103/PhysRevB.90.035135
http://dx.doi.org/10.1103/PhysRevLett.68.1601
http://dx.doi.org/10.1103/PhysRevLett.68.1601
http://dx.doi.org/10.1103/PhysRevLett.68.1601
http://dx.doi.org/10.1103/PhysRevLett.68.1601
http://dx.doi.org/10.1103/PhysRevB.46.14078
http://dx.doi.org/10.1103/PhysRevB.46.14078
http://dx.doi.org/10.1103/PhysRevB.46.14078
http://dx.doi.org/10.1103/PhysRevB.46.14078
http://dx.doi.org/10.1103/PhysRevB.52.2201
http://dx.doi.org/10.1103/PhysRevB.52.2201
http://dx.doi.org/10.1103/PhysRevB.52.2201
http://dx.doi.org/10.1103/PhysRevB.52.2201
http://dx.doi.org/10.1016/0038-1098(94)90487-1
http://dx.doi.org/10.1016/0038-1098(94)90487-1
http://dx.doi.org/10.1016/0038-1098(94)90487-1
http://dx.doi.org/10.1016/0038-1098(94)90487-1
http://dx.doi.org/10.1364/JOSAA.7.001163
http://dx.doi.org/10.1364/JOSAA.7.001163
http://dx.doi.org/10.1364/JOSAA.7.001163
http://dx.doi.org/10.1364/JOSAA.7.001163
http://dx.doi.org/10.1364/JOSAA.3.000830
http://dx.doi.org/10.1364/JOSAA.3.000830
http://dx.doi.org/10.1364/JOSAA.3.000830
http://dx.doi.org/10.1364/JOSAA.3.000830
http://dx.doi.org/10.1364/OL.17.000886
http://dx.doi.org/10.1364/OL.17.000886
http://dx.doi.org/10.1364/OL.17.000886
http://dx.doi.org/10.1364/OL.17.000886
http://dx.doi.org/10.1016/0030-4018(73)90335-0
http://dx.doi.org/10.1016/0030-4018(73)90335-0
http://dx.doi.org/10.1016/0030-4018(73)90335-0
http://dx.doi.org/10.1016/0030-4018(73)90335-0
http://dx.doi.org/10.1016/0030-4018(75)90098-X
http://dx.doi.org/10.1016/0030-4018(75)90098-X
http://dx.doi.org/10.1016/0030-4018(75)90098-X
http://dx.doi.org/10.1016/0030-4018(75)90098-X
http://dx.doi.org/10.1103/PhysRevB.51.13079
http://dx.doi.org/10.1103/PhysRevB.51.13079
http://dx.doi.org/10.1103/PhysRevB.51.13079
http://dx.doi.org/10.1103/PhysRevB.51.13079
http://dx.doi.org/10.1007/BF00610769
http://dx.doi.org/10.1007/BF00610769
http://dx.doi.org/10.1007/BF00610769
http://dx.doi.org/10.1007/BF00610769
http://dx.doi.org/10.1070/PU1973v015n06ABEH005099
http://dx.doi.org/10.1070/PU1973v015n06ABEH005099
http://dx.doi.org/10.1070/PU1973v015n06ABEH005099
http://dx.doi.org/10.1070/PU1973v015n06ABEH005099
http://dx.doi.org/10.1364/OL.23.000086
http://dx.doi.org/10.1364/OL.23.000086
http://dx.doi.org/10.1364/OL.23.000086
http://dx.doi.org/10.1364/OL.23.000086
http://dx.doi.org/10.1103/PhysRevE.51.6142
http://dx.doi.org/10.1103/PhysRevE.51.6142
http://dx.doi.org/10.1103/PhysRevE.51.6142
http://dx.doi.org/10.1103/PhysRevE.51.6142
http://dx.doi.org/10.1088/0953-8984/5/44/014
http://dx.doi.org/10.1088/0953-8984/5/44/014
http://dx.doi.org/10.1088/0953-8984/5/44/014
http://dx.doi.org/10.1088/0953-8984/5/44/014
http://dx.doi.org/10.1002/(SICI)1098-2760(19981220)19:6<412::AID-MOP10>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2760(19981220)19:6<412::AID-MOP10>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2760(19981220)19:6<412::AID-MOP10>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2760(19981220)19:6<412::AID-MOP10>3.0.CO;2-Z
http://dx.doi.org/10.1063/1.1709678
http://dx.doi.org/10.1063/1.1709678
http://dx.doi.org/10.1063/1.1709678
http://dx.doi.org/10.1063/1.1709678
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.82.914
http://dx.doi.org/10.1103/PhysRev.82.914
http://dx.doi.org/10.1103/PhysRev.82.914
http://dx.doi.org/10.1103/PhysRev.82.914
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.89.619
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1103/RevModPhys.17.343
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1103/RevModPhys.31.1017
http://dx.doi.org/10.1103/RevModPhys.31.1017
http://dx.doi.org/10.1103/RevModPhys.31.1017
http://dx.doi.org/10.1103/RevModPhys.31.1017
http://dx.doi.org/10.1103/PhysRev.86.702
http://dx.doi.org/10.1103/PhysRev.86.702
http://dx.doi.org/10.1103/PhysRev.86.702
http://dx.doi.org/10.1103/PhysRev.86.702
http://dx.doi.org/10.1103/PhysRev.88.1387
http://dx.doi.org/10.1103/PhysRev.88.1387
http://dx.doi.org/10.1103/PhysRev.88.1387
http://dx.doi.org/10.1103/PhysRev.88.1387
http://dx.doi.org/10.1103/PhysRev.94.218
http://dx.doi.org/10.1103/PhysRev.94.218
http://dx.doi.org/10.1103/PhysRev.94.218
http://dx.doi.org/10.1103/PhysRev.94.218
http://dx.doi.org/10.1103/PhysRev.94.224
http://dx.doi.org/10.1103/PhysRev.94.224
http://dx.doi.org/10.1103/PhysRev.94.224
http://dx.doi.org/10.1103/PhysRev.94.224
http://dx.doi.org/10.1103/PhysRev.94.1483
http://dx.doi.org/10.1103/PhysRev.94.1483
http://dx.doi.org/10.1103/PhysRev.94.1483
http://dx.doi.org/10.1103/PhysRev.94.1483
http://dx.doi.org/10.1049/piee.1974.0247
http://dx.doi.org/10.1049/piee.1974.0247
http://dx.doi.org/10.1049/piee.1974.0247
http://dx.doi.org/10.1049/piee.1974.0247
http://dx.doi.org/10.1002/j.1538-7305.1924.tb00009.x
http://dx.doi.org/10.1002/j.1538-7305.1924.tb00009.x
http://dx.doi.org/10.1002/j.1538-7305.1924.tb00009.x
http://dx.doi.org/10.1002/j.1538-7305.1924.tb00009.x
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1103/PhysRev.84.1259
http://dx.doi.org/10.1007/BF02920050
http://dx.doi.org/10.1007/BF02920050
http://dx.doi.org/10.1007/BF02920050
http://dx.doi.org/10.1007/BF02920050
http://dx.doi.org/10.1103/PhysRev.100.1771
http://dx.doi.org/10.1103/PhysRev.100.1771
http://dx.doi.org/10.1103/PhysRev.100.1771
http://dx.doi.org/10.1103/PhysRev.100.1771
http://dx.doi.org/10.1103/RevModPhys.39.69
http://dx.doi.org/10.1103/RevModPhys.39.69
http://dx.doi.org/10.1103/RevModPhys.39.69
http://dx.doi.org/10.1103/RevModPhys.39.69
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1088/0953-8984/16/20/L02
http://dx.doi.org/10.1088/0953-8984/16/20/L02
http://dx.doi.org/10.1088/0953-8984/16/20/L02
http://dx.doi.org/10.1088/0953-8984/16/20/L02
http://dx.doi.org/10.1088/0963-9659/5/4/008
http://dx.doi.org/10.1088/0963-9659/5/4/008
http://dx.doi.org/10.1088/0963-9659/5/4/008
http://dx.doi.org/10.1088/0963-9659/5/4/008
http://dx.doi.org/10.1364/JOSAA.5.000175
http://dx.doi.org/10.1364/JOSAA.5.000175
http://dx.doi.org/10.1364/JOSAA.5.000175
http://dx.doi.org/10.1364/JOSAA.5.000175
http://dx.doi.org/10.1103/PhysRevLett.65.123
http://dx.doi.org/10.1103/PhysRevLett.65.123
http://dx.doi.org/10.1103/PhysRevLett.65.123
http://dx.doi.org/10.1103/PhysRevLett.65.123
http://dx.doi.org/10.1063/1.2336620
http://dx.doi.org/10.1063/1.2336620
http://dx.doi.org/10.1063/1.2336620
http://dx.doi.org/10.1063/1.2336620
http://dx.doi.org/10.1063/1.356814
http://dx.doi.org/10.1063/1.356814
http://dx.doi.org/10.1063/1.356814
http://dx.doi.org/10.1063/1.356814
http://arxiv.org/abs/arXiv:1403.4227



