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We present a symmetry analysis of electronic band structure including spin-orbit interaction close to the
insulating gap edge in monolayer black phosphorus (“phosphorene”). Expressions for energy dispersion relation
and spin-dependent eigenstates for electrons and holes are found via simplification of a perturbative expansion in
wave vector k away from the zone center using elementary group theory. Importantly, we expose the underlying
symmetries giving rise to substantial anisotropy in optical absorption, charge, and spin transport properties, and
reveal the mechanism responsible for valence band distortion and possible lack of a true direct gap.
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I. INTRODUCTION

The experimental isolation of atomically thin two-
dimensional (2D) layers from van der Waals bonded three-
dimensional (3D) solids has exposed many new opportuni-
ties for revealing unconventional electron transport physics.
This research area, famously begun with exfoliation of the
semimetal graphene from bulk graphite, has now vastly
expanded to include work on related group-IV structures
(silicene [1], germanene [2], and stanene [3]), and on bi-
nary semiconductors such as transition-metal dichalcogenides
(WS2 [4], etc.), topological insulators such as Bi2Se3 [5], and
the group–III-V insulator boron nitride [6]. However, until
recently, little has been done to explore the possibility that
other forms of elemental compounds beyond group IV can be
exfoliated into few- or single-layer structures like graphite can.
Among candidate bulk source materials, orthorhombic black
phosphorus (elemental group V) has emerged as a contender.

The classical literature on this substance, reviewed in
Ref. [7], is fairly complete at first glance. Single crystals
of this ambient-stable allotrope are typically produced using
high-pressure Bridgman growth [8,9] from which atomic
structure was first determined via x-ray diffraction more than
50 years ago [10,11]. Early experimental results on charge
transport [12] were complemented by investigations into
both electrical and optical properties [13,14] and compared
with theoretical predictions [15,16]. Unexpected phenomena
including superconductivity [17] up to 13 K and evidence of
2D transport [18] motivated a modest resurgence of interest
several decades ago.

Following in the footsteps of graphene’s rise in the past
decade, more recent experimental work on black phospho-
rus has focused on field-effect transistor action using thin
multilayered exfoliated flakes as channel conductor [19,20].
Single-layer black phosphorus, dubbed “phosphorene”, is of
particular interest but has not yet been incorporated into elec-
trical devices. The properties of this two-dimensional semicon-
ductor have been studied in detail only by using the familiar
machinery for band-structure calculation. Several groups have
addressed this problem using different approaches, including
the empirical tight-binding [21,22], pseudopotential [23], and
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ab initio [density functional theory (DFT)] [24–28] methods,
all of which can be compared to empirical dispersion relations
obtained using angle-resolved photoemission spectroscopy
(ARPES) from the clean surface [29]. Among the intriguing
band-structure features found are p-type semiconducting band
gap in the visible or infrared region and large excitonic
binding energy [20,30], prominent anisotropy of effective
mass and hence carrier mobility [25,26], ultraflat valence band
dispersion and possible indirect band gap, strain-induced gap
modification [28], high optical efficiency [31], etc.

Despite this abundance of band-structure results in the
available literature, several elementary questions remain unan-
swered, all of which become crucially important once single-
layer phosphorene devices are experimentally realized. For
example, what is the origin of the large valence band effective
mass anisotropy? What mechanisms determine whether this
material has a truly direct band gap? What are the optical
transition selection rules? What are the dominant wave-
function components that dictate spin-dependent properties?
etc. The answers to these questions are essential in providing
insight for predictions of the properties of electrons and
holes affecting charge and spin transport in this material,
and are therefore necessary in developing possible device
applications.

Various brute-force numerical schemes can churn out the
relevant quantities needed to answer the questions above, but
they often come at the expense of obscuring the physics at their
root, i.e., the fundamental symmetries manifest in the structure
of this physical materials system. In this paper, we exploit
the discrete lattice/wave-function symmetries in phosphorene
using the formal results of group theory to directly answer
these questions. By first identifying the symmetry properties of
wave functions at the Brillouin zone center, we simplify k · p̂
perturbation theory using the method of invariants [32] and
matrix element theorem to identify terms contributing to the
dispersion and spin-dependent eigenstates of all relevant bands
at nearby momenta. All the symmetry-protected properties are
captured by k · p̂ parameters that can be easily verified by
numerical calculations and empirically determined by further
experiments.

This paper is organized as follows: Section II provides
general information on the symmetry of the phosphorene 2D
lattice, from which we analyze the symmetries of constituent
atomic orbitals and the nearly free electron model. In Sec. III,
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we investigate the spin-independent part of the Hamiltonian
using the method of invariants and reveal the fundamental
origins of the effective mass anisotropy, especially those
interactions resulting in an ultraflat valence band. Optical
selection rules are also provided. Using the same approach,
in Sec. IV we focus on the spin-orbit interaction and construct
the spin-dependent eigenstates. From these results, we analyze
spin-relaxation anisotropy before providing a summary and
outlook in Sec. V.

II. SYMMETRY CONSIDERATIONS

A. Lattice symmetry and space-group operators

The black phosphorus monolayer is a 2D hexagonal lattice
that is buckled, or “puckered”, along the armchair direction.
This geometry results in two types of bonds [see Fig. 1(a)]. P
atoms connected by bonds parallel to the 2D plane (type I, with
bond length d1 = 2.224 Å) form upper and lower sublayers,
while bonds connecting P atoms between these two sublayers
(type II) have a length d2 = 2.244 Å and are oriented 71.7◦ out
of the plane. In the following discussion, we use Cartesian co-
ordinates with the origin at the center of one type-II bond. The z

axis is chosen to be out of plane, with the in-plane x axis along
the armchair direction and the y axis transverse to it (along
the zigzag direction). In this rectangular x-y basis, the two
Bravais lattice constants are ax = 4.376 Å and ay = 3.314 Å
[see Fig. 1(b)], and within a unit cell there are four P atoms.
The inset in Fig. 1(b) shows the first Brillouin zone of this
2D orthorhombic lattice with high-symmetry points labeled:

FIG. 1. (Color online) Orthorhombic lattice of phosphorene.
(a) In real space, two types of bonds between neighboring atoms
are indicated by d1 and d2. The origin of the Cartesian coordinates
(red arrows) is chosen to be at the center of a d2 bond. (b) Top view,
showing the two lattice vectors (blue arrows). Inset: 2D projection
of the reciprocal lattice Brillouin zone, with high-symmetry points
indicated.

TABLE I. Character table of the �-point space group, including
basis functions of the IRs. x, y, and z are components of polar vectors,
while Ax , Ay , and Az are components of axial vectors.

E τC2x C2y τC2z i τRx Ry τRz

�+
1 1 1 1 1 1 1 1 1

�+
2 1 −1 1 −1 1 −1 1 −1 Ay

�+
3 1 1 −1 −1 1 1 −1 −1 Ax

�+
4 1 −1 −1 1 1 −1 −1 1 Az

�−
1 1 1 1 1 −1 −1 −1 −1

�−
2 1 −1 1 −1 −1 1 −1 1 y

�−
3 1 1 −1 −1 −1 −1 1 1 x

�−
4 1 −1 −1 1 −1 1 1 −1 z

� point is the zone center, and X and Y points are at ( π
ax

,0)
and (0, π

ay
), respectively, half of the reciprocal lattice vectors.

Phosphorene shares the same in-plane translation symmetry
with its bulk counterpart black phosphorus, whose space group
is base-centered orthorhombic with international number and
symbol 64 : Cmca [33]. The lattice structure in Fig. 1 provides
all necessary information about its nonsymmorphic space
group, whose factor group is isomorphic to the point group
D2h. There are eight elements in this nontrivial factor group;
each of them is a coset about the direct product of a symmetry
operator and the lattice vector translation subgroup T . Among
these eight symmetry operators, four are pure rotations (either
proper or improper), including the identity operator E, the
space inversion operator i, the operator corresponding to 180◦
rotation around the y axis C2y , and the operator corresponding
to reflection with respect to the y = 0 plane Ry . The remaining
four are a translation τ = ( ax

2 ,
ay

2 ) in addition to pure rotations,
including τC2x , τC2z, τRx , and τRz. Since the D2h group is
Abelian (commutative), each group element forms a single
class.

The most important information about the symmetry of
this space group and its eight irreducible representations (IRs)
is included in the character table (see Table I). Since this is
the same group as that of the Brillouin-zone-center � point,
these IRs are denoted by �

+(−)
i , with subscript i = 1,2,3,4,

and superscript + (−) indicating even (odd) parity under the
inversion operator. In this table, we also list the basis functions
of some IRs. Here, x, y, and z are components of a polar
vector (e.g., the momentum operator p̂), while Ax , Ay , and
Az are those of an axial, or “pseudo-”, vector (essential for
analyzing the effect of spin-orbit interaction with vector field
∝ ∇V × p̂).

In the following subsection, we will briefly discuss the
symmetries of the atomic orbitals and the empty lattice
“nearly free” electron band structure at the � point, using the
information in Table I. These considerations provide intuition
on the symmetry-related coupling of the eigenstates near the
zone center and are important for understanding the overall
electronic structure.

B. Atomic orbital symmetries at the center of the Brillouin zone

The band structure of black phosphorus was studied by
Takao et al. [21] with a spin-independent tight-binding model
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FIG. 2. (Color online) Four configurations of the py orbitals
within a unit cell, together with their associated IRs, all of which
are odd under the reflection operator Ry . They represent the four
zone-center eigenstates composed solely from the pure py atomic
orbitals. From left to right, the eigenenergies of the four orbital
states decrease [E(�+

3 ) > E(�−
2 ) > E(�+

4 ) > E(�−
1 )], according to

the bonding or antibonding nature of the covalent bonds between
neighboring atoms. Note that the �−

2 configuration also represents
the long-wavelength acoustic phonon mode where all atoms move in
phase along the zigzag direction.

using a basis of one s orbital and three p orbitals. With four
P atoms within a unit cell, there are therefore 16 bands. By
calculating the hopping energy and orbital overlaps between
neighboring atoms, they determined the band gaps of black
phosphorus in the form of monolayer and bulk, and indexed
the symmetries of eigenstates at the � point. In general, wave
functions constructed this way will consist of sp3 hybridized
atomic orbitals. However, at the zone center, the py orbital
(which is odd under Ry) is isolated from the remaining s,
px , and pz orbitals that remain mixed (similar to the case
of pure pz orbitals in monolayer graphene due to the Rz

operator).
According to the character table (Table I), all the 16

eigenstates at the � point are nondegenerate since all the
IRs are one dimensional. Four of these IRs, associated with
the four py orbital configurations illustrated in Fig. 2, are
odd under the reflection operator Ry : �+

3 , �+
4 , �−

1 , and �−
2 .

The bonding energy is dominated by type-I bonds (within
each sublayer) that hybridize ppπ and ppσ covalent chemical
bonds, the latter of which is much stronger due to higher
orbital overlap. Type-II bonds (connecting the two sublayers)
are pure but weaker ppπ bonds and have only a secondary
contribution to the bonding energy. By considering the bonding
and antibonding nature of the py orbitals, we give in Fig. 2
the relative order of the four eigenenergies, which matches the
tight-binding calculation [21].

Takao et al. gave the pz orbital configurations at the band-
gap edge (�+

2 for the valence band and �−
4 for the conduction

band). In Figs. 3(a)–3(c), we list the configurations of all the
px , pz, and s orbitals, respectively, for the four IRs �+

1 , �+
2 ,

�−
3 , and �−

4 that are even under the reflection operator Ry ,
and order them according to their bond energy. Within the
sp3 tight-binding model, each of these four representations
corresponds to three bands, among which the contributions
of px , pz, and s orbital components with the same symmetry
vary.

Similar to our discussion of the py orbital, we now
examine the bonding or antibonding characteristics of these
atomic orbital configurations and determine the relative energy
ordering of the eigenstates. In the following sections, we will
focus on the band edge states which belong to �+

2 and �−
4 ,

both dominated by the pz orbital. In this case [see Fig. 3(b)],
ppσ bonds are within the type-II bonds, which are bonding

FIG. 3. (Color online) Same as Fig. 2, here for (a) px , (b) pz,
and (c) s orbitals that are even under the reflection operator Ry .
IRs in each row are listed from left to right in descending order of
total covalent bond energy. Similar to �−

2 in Fig. 2, here we see
configurations corresponding to the remaining two long-wavelength
acoustic phonon modes: �−

3 in (a) corresponds to in-plane motion
along the armchair direction while �−

4 in (b) corresponds to out-of-
plane (flexural) phonons.

(antibonding) in �+
2 (�−

4 ) with lower (higher) energy assigning
it the top of the valence band (bottom of the conduction band).

Using the first-principles calculation package QUANTUM

ESPRESSO [34], we studied this energy order of the �-point
eigenstates. Different density functionals and pseudopotentials
chosen as input to the ab initio calculation vary the detailed
values of energy differences at the � point as well as the
dispersion curves away from it. However, the band ordering
at the � point is consistent with those given by Takao
et al. (only a few bands very close in energy switch places).
This verifies that the order of the �-point eigenstates is
generally determined by the symmetries of the atomic orbitals
alone.

C. Empty-lattice band structure

The atomic orbitals give a perturbative picture of the
electronic structure in the tight-binding regime. A use-
ful approximation in the opposite (delocalized) extreme is
the nearly free electron model that describes the empty-
lattice band structure, in which the electronic states are pure
plane waves with wave numbers given by the reciprocal
lattice vectors (Gn). Using projection operators, we obtain
the symmetrized wave functions which are linear combinations
of plane waves degenerate at the � point. When the atomic
potentials are introduced into this nearly free electron model,
only those symmetrized wave functions belonging to the same
IR can be linearly combined to form the real eigenstates (the
symmetry of the eigenstates from empty lattice to the real
lattice is maintained) and result in broken degeneracy with the
possibility of band gaps.

An important potential concern with this approach is that
it does not account for the transformation properties of the
wave functions under out-of-plane reflection. Therefore, in
principle, wave functions constructed in this way provide
only incomplete symmetry properties. However, since the
dynamical characteristics of interest involve only in-plane

115439-3



PENGKE LI AND IAN APPELBAUM PHYSICAL REVIEW B 90, 115439 (2014)

FIG. 4. (Color online) Free electron band structure, including
symmetry labels (yellow) of zone-center eigenstates formed from
superpositions of plane waves centered at the reciprocal lattice points
indicated (purple).

symmetries, the simple nearly free electron model can indeed
provide sufficient information.

Because of the orthorhombic symmetry of monolayer black
phosphorus, the degeneracy of nearly free electron states
at the � point can only be singlet (Gn = 0), doublet (Gn
on the kx or ky axes), or quartet (general Gn). Figure 4 shows
the empty-lattice band structure including the lowest nine �-
point eigenstates. In the following sections, we will show that
the in-plane momentum matrix elements 〈p̂x,y〉 of the zone-
center eigenstates play a fundamental role in determining the
electronic structure of phosphorene. The nearly free electron
model explicitly shows that 〈p̂x,y〉 are nonzero only between
degenerate states with relevant wave-vector components. For
instance, for the doubly degenerate first excited states in the
form of symmetrized wave functions with Gn = (± 2πx

ax
,0), we

have

〈�+
2 |p̂x |�−

4 〉 =
〈

cos
2πx

ax

∣∣∣∣�i
∂

∂x

∣∣∣∣ sin
2πx

ax

〉
= 2π�

ax

, (1)

while 〈�+
2 |p̂y |�−

4 〉 = 0. Similarly, p̂x and p̂y between either of
these two states and any other remaining �-point plane-wave
state vanish, consistent with the matrix element theorem as
discussed below.

III. SPIN-INDEPENDENT PROPERTIES

In this section, we study the spin-independent band-
structure properties close to the band gap in phosphorene. We
construct the k · p̂ Hamiltonian near the zone center using the
method of invariants [32], and show that the dispersion relation
of the conduction band and valence band can be captured by
an effective mass approximation only in the kx direction, while
in the ky direction the unique coupling from remote bands can
potentially lead to an indirect band gap.

A. Hamiltonian and method of invariants

Following conventional k · p̂ theory, the Hamiltonian is
given by

H = H0 + Hk·p̂ + HSO + HSO,k, (2)

TABLE II. Table of invariants.

IRs �+
1 �+

2 �+
3 �+

4 �−
2 �−

3 �−
4

Invariants k2
x + k2

y σy σx σz

ky,

−kxσz

kx,

kyσz

kxσy − kyσx

where

H0 = �
2

2m0

(
k2
x + k2

y

)
, (3)

Hk·p̂ = �

m0
(kxp̂x + kyp̂y), (4)

HSO = �

4m2
0c

2
∇V × p̂ · �σ , and (5)

HSO,k = �
2

4m2
0c

2

[
(kxσy − kyσx)

∂V

∂z
+ kyσz

∂V

∂x
− kxσz

∂V

∂y

]
.

(6)

Here, H0 is the in-plane free electron dispersion, and Hk·p̂
is the k · p̂ term to be treated perturbatively. In this section,
we will focus on these two spin-independent terms. The
spin-related properties are captured by the k-independent
HSO and k-dependent HSO,k terms, and are discussed in
the subsequent section. Note that for light atoms such as
phosphorus, the interaction strength hierarchy is generally
Hk·p̂ � HSO � HSO,k.

Given the symmetry of the problem, we naturally choose
to represent this Hamiltonian in a basis defined by the
spin-independent �-point eigenstates. Matrix elements of
perturbative terms in Eq. (2) can then be determined by the
method of invariants [32]: only if the IR associated with the
invariant component operator is included in the direct sum
decomposition of the direct product of the two IRs of the basis
functions can the matrix element be nonzero. In Table II, we
list the association of the IRs with all the invariant components
of terms in Eq. (2) according to their transformation properties
under the symmetry operators in Table I.

Our main focus is on the lowest conduction band and the
highest valence band, which belong to the IRs �−

4 and �+
2 ,

respectively. For convenience, we list the direct product of
these two IRs with all IRs in Table III. In particular, we will
reveal the origin of the anisotropy of the energy dispersion
relation in the kx and ky directions, which is naturally endowed
by the orthorhombic symmetry of the crystal lattice.

B. Effective mass of electrons and holes in the kx direction

With the help of Table II, we see that the perturbative
term proportional to kxp̂x in Eq. (4) belongs to �−

3 . This
term directly couples the lowest conduction band and the

TABLE III. Direct product between �+
2 (�−

4 ) and all IRs.

⊗ �+
1 �+

2 �+
3 �+

4 �−
1 �−

2 �−
3 �−

4

�+
2 �+

2 �+
1 �+

4 �+
3 �−

2 �−
1 �−

4 �−
3

�−
4 �−

4 �−
3 �−

2 �−
1 �+

4 �+
3 �+

2 �+
1
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highest valence band in off-diagonal matrix elements (�−
3 =

�−
4 ⊗ �+

2 ; see Table III). Similarly, the term proportional to k2
x

in Eq. (3) belongs to �+
1 and corresponds to diagonal matrix

elements �−
4 ⊗ �−

4 and �+
2 ⊗ �+

2 . Notice that the second
lowest conduction band also belongs to �+

2 and therefore is
expected to affect the �−

4 bottom conduction band significantly
as well. Given the fact that all other remote bands belonging
to �+

2 or �−
4 are much further away in energy, we can

describe the kx direction dispersion relation close to the
band gap by a minimal 3 × 3 Hamiltonian with a basis of
{�+

2c,�
−
4c,�

+
2v} (where the subscripts v and c indicate “valence”

and “conduction,” respectively):

H3×3 =

⎛
⎜⎜⎝

E1 + Eg + �
2k2

x

2m0
Px2kx 0

Px2kx Eg + �
2k2

x

2m0
Px1kx

0 Px1kx
�

2k2
x

2m0

⎞
⎟⎟⎠, (7)

where Eg is the band gap at the � point, E1 is the energy
difference between �+

2c and �−
4c, and the off-diagonal matrix

elements are dependent on

Px1 = �

m0
〈�−

4c|p̂x |�+
2v〉, (8)

Px2 = �

m0
〈�−

4c|p̂x |�+
2c〉. (9)

Such couplings are shown by double arrows in Fig. 5 on the kx

side of the � point in a schematic band structure. Note that, for

FIG. 5. (Color online) Schematic band structure of phosphorene
near the zone center, illustrating the relevant perturbative interactions
allowed by symmetry. Red double arrows indicate dominant coupling
terms, and pink arrows highlight important non-negligible additional
interactions. The gray region represents the forbidden gap. See
Eq. (19) and related text for conditions resulting in indirect gap
(E0,k0 	= 0). Not to scale.

zone-center wave functions, we can always adjust their overall
phases so that Px1 and Px2 are real numbers.

Applying second-order perturbation theory, Eq. (7) yields
analytic expressions for the dispersion relations of electrons
and holes in the kx direction:

Ee(kx) = Eg + �
2

2m0
k2
x − P 2

x2

E1
k2
x + P 2

x1

Eg

k2
x, (10)

Eh(kx) = �
2

2m0
k2
x − P 2

x1

Eg

k2
x. (11)

From these eigenenergies, we can then calculate the effective
masses via [ 1

�2
d2E
dk2

x
]−1:

1

me,x

= 1

m0
− 2P 2

x2

E1
+ 2P 2

x1

Eg

, (12)

1

mh,x

= − 1

m0
+ 2P 2

x1

Eg

. (13)

To evaluate me and mh, we utilize the results of the free
electron model in Sec. II C. Our DFT calculations show that
both �−

4c and �+
2v have a dominant first excited state plane-wave

component with G = ( 2π
ax

,0), while for �+
2,c this component is

small and the majority is the second excited state with G =
(0, 2π

ay
), regardless of the DFT details. Thus, the magnitudes

of both me,x and mh,x are largely dictated by the term related
to Px1 (illustrated in Fig. 5 by the large red double arrow on
the kx side), with amplitude on the order of 2π�

2

m0ax
[see Eq. (1)],

while the Px2-related term is a small correction to me,x that
reduces the difference between m−1

e,x and m−1
h,x .

It should be noted that a recently proposed two-band model
yields a similar dispersion relation in the kx direction [28]. In
that model, it is claimed that the effect of the �+

2c conduction
band (as well as the contribution of remote bands) has been
lumped into off-diagonal matrix elements by terms quadratic
in k after Löwdin partitioning [35]. We are compelled to point
out that this result is flawed, however, since k2

x is not an
invariant of �−

4 ⊗ �+
2 = �−

3 , and Löwdin partitioning always
maintains the underlying symmetry. Furthermore, inclusion of
specious odd-power terms [16] in the eigenenergies (due to the
coupling of the off-diagonal linear and quadratic terms) breaks
time-reversal symmetry such that dispersions in +kx and −kx

directions are unphysically different. For the same reason,
the off-diagonal k2

y term in that two-band model (leading to
a k4

y dispersion relation) is also incorrect. In the following
subsection, we will show the correct origins of the flat valence
band and possible indirect band gap in the ky direction.

C. Dispersion relation in the ky direction

Unlike the case in the kx direction, direct coupling of the
band-edge states �+

2v and �−
4c is absent in the ky direction;

energetically remote bands must therefore be taken into
account. The situation for the conduction band is relatively
simple: According to Tables II and III, the invariant component
ky belongs to �−

2 and couples �−
4c to �+

3 states. As discussed in
Sec. II B, within the sp3 tight-binding model giving the lowest
16 bands, �+

3 is the highest-energy state among the four pure
py orbitals. Numerical calculation shows that it lies beyond
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�−
4c [21], consistent with our DFT calculation. Together with

other (even higher) states with the same symmetry, �+
3c repels

the dispersion of the lowest conduction band downward via
the matrix element

Py1 = �

m0
〈�+

3c|p̂y |�−
4c〉. (14)

This interaction is schematically shown with a double-sided
pink arrow in Fig. 5. Since the plane-wave component of G =
(0, 2π

ay
) in �+

4c is relatively small, Py1 is not large enough to
reverse the conduction band’s positive curvature. However, it
does result in a value of the effective mass larger than m0.

The valence band state �+
2v requires a different analysis.

According to Table III, and reflected in Fig. 5, �−
1v can directly

couple to �+
2v via kyp̂y perturbation. This state, the lowest

among the four pure py orbital states (see Fig. 2), compels us
to consider a matrix element

Py2 = �

m0
〈�−

1v|p̂y |�+
2v〉. (15)

Compared with Px1, this quantity is relatively small due to
the minority (0, 2π

ay
) plane-wave component in �+

2v (despite its

dominant role in �−
1v). However, without a counterbalancing

interaction, its presence would repel the �+
2,v band upward,

leading to an electronlike positive effective mass and close the
band gap.

Previous DFT calculation by others has already shown that
monolayer black phosphorus potentially possesses an indirect
band gap, in which the maximum of the valence band is located
along the ky direction away from the zone center [28]. Using
various input density functionals and pseudopotentials, we
have verified the persistence of this feature which leads to
a small positive energy difference (E0 ∼ meV, depending on
the details of the numerical procedures) between the valence
band maximum at wave vector k0 (≈10% from BZ edge) and
eigenenergy at the zone center. In contrast to an ordinary
quadratic dispersion relation, understanding such unusual
band structure requires careful examination of the couplings
between �+

2v, �−
1v, �+

2c, and further upper conduction bands of
�−

1 symmetry.
We have mentioned that for both �−

1v and �+
2c states, plane-

wave component (0, 2π
ay

) dominates the wave functions. As
indicated in Fig. 5 by a large red double arrow, the direct
coupling of these two states by kyp̂y in

Py3 = �

m0
〈�−

1v|p̂y |�+
2c〉 ∼ 2π�

2

m0ay

(16)

is very large. Thus, the �−
1v band is strongly repelled downward

along the ky direction, giving a dispersion

E1v(ky) ≈ −E2 − P 2
y3

E1 + Eg + E2
k2
y, (17)

where E2 is the energy difference from �+
2v to �−

1v. Both the
free electron dispersion and the effect from �+

2v [Eq. (15)] are
neglected in this expression, due to their minor contributions
compared with the influence of Py3. As ky increases, the energy
difference between �+

2v and �−
1v therefore quickly grows,

further diminishing their coupling.

An additional interaction is still needed to induce a holelike
negative effective mass for �+

2v to preserve the open band
gap. This role is played by conduction band states with �−

1
symmetry, as shown in Fig. 5 by the matrix element

Py4 = �

m0
〈�−

1c|p̂y |�+
2v〉. (18)

Under the basis functions of {�−
1c,�

+
2c,�

+
2v,�

−
1v}, one could

construct a 4 × 4 Hamiltonian similar to Eq. (7), including
all important kyp̂y interactions affecting the valence band.
However, just from the Hamiltonian matrix element analysis in
Eqs. (15)–(18), the application of Löwdin partitioning already
gives the unusual valence band dispersion in the ky direction
approximated by

Eh(ky) = �
2

2m0
k2
y − P 2

y4

E3
k2
y − P 2

y2k
2
y

E1v(ky)
, (19)

where E3 is the energy difference from �−
1c to �+

2v. Note that,
in the denominator of the last term, we use the complete
dispersion of the �−

1v band [Eq. (17)] which is negative and
depends on ky , rather than −E2, the fixed energy difference
between �−

1v and �+
2v.

Equation (19) guarantees a holelike dispersion if the
second term (repulsion from �−

1c) overcomes the first (free
electron) term. The ultraflat valence band along ky is thus
due to the counteracting effects of �−

1v and �−
1c close to the

zone center; phosphorene is indirect gap (k0 	= 0) when the

matrix element magnitudes satisfy
P 2

y2

E2
+ �

2

2m0
>

P 2
y4

E3
> �

2

2m0
.

Although this condition is predicted by DFT, other indications
of inaccuracies or variations in that numerical method (for
example, gross underestimation of the band gap or the details
of relaxed structure) [36] suggest that we cannot exclude
the possibility that repulsion from �−

1c is so strong that
P 2

y4

E3
>

P 2
y2

E2
+ �

2

2m0
, resulting in a direct gap. The true nature

of the valence band must therefore be revealed by experiment.

D. Optical selection rules

The interaction between matter and radiation e
m

A · p̂ has the
same symmetry as Hk·p̂ (the electric field of light transforms
like an ordinary polar vector). Therefore, we can use the
perturbative coupling superimposed as arrows on Fig. 5
to reveal the selection rules of optical transitions between
conduction and valence bands in phosphorene.

The dominant transition paths are represented by the two
red double arrows. When the electric field polarization is
parallel to the x direction, photons with �ω � Eg can cause
excitation across the band gap from �+

2v to �−
4c. On the other

hand, photons with orthogonal polarization parallel to the y

direction can excite lower valence band �−
1v electrons to the

upper conduction band �+
2c, which requires a frequency deep

into the ultraviolet regime (Eg + E1 + E2 ∼ 5 eV photon
energy). In addition to the bands shown in Fig. 5 that are
relevant to the band-edge dispersion, we note that there is
also a �+

4v band between �+
2v and �−

1v, as well as a �−
3c band

in-between �+
2c and �+

3c. Optical transition with y polarization
is also allowed between these two states (�+

4v ⊗ �3c− = �−
2 ),

which are separated by ∼ 5 eV but extend along the � − X

axis and reach a minimum energy separation at the location
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of a valence band satellite valley. This could explain the
∼ 3.7 eV onset photon energy in the calculated absorption
spectrum of y-polarized light [30]. The sensitivity of the
absorption spectrum to electric field orientation, confirmed
by DFT calculation [26], may make phosphorene an ideal
photoconductive polarimeter in near-infrared frequencies.

In anticipation of the next section where we consider
spin properties, it is appropriate to point out in the present
discussion of radiative selection rules that optical orientation in
phosphorene is hopelessly inefficient: Unlike in bulk semicon-
ductors with cubic symmetry, where degeneracy of the p-like
valence band is preserved in the spin-independent Hamiltonian
allowing strong mixing of spin and orbital angular momentum,
here with inversion-symmetric but orthorhombic phosphorene
we have only nondegenerate and energetically well-separated
bands. Spin-orbit interaction can thus only have a small
perturbative mixing of spin states. Illumination with linear
polarization almost entirely preserves spin during absorptive
transitions, so that excitation of the spin-unpolarized valence
band will result only in population of a nearly spin-unpolarized
conduction band.

IV. SPIN-DEPENDENT PROPERTIES

The spin-orbit interaction (SOI) in semiconductors com-
posed of light atoms is expected to be weak, resulting in
relatively pure spin states and long spin lifetime in the intrinsic
regime. By this reasoning, SOI in phosphorus allotropes should
resemble that of its neighbor on the periodic table, silicon,
an indirect-gap group-IV bulk semiconductor that has a long
spin lifetime for electrons in the conduction band [37–39]
and a small split-off energy (44 meV) in the valence band.
The latter feature of the band structure is a result of the SOI
perturbing an otherwise threefold-degenerate p-like valence
band extremum. Phosphorene, on the other hand, has only
nondegenerate and energy-isolated bands (other than the few
accidental crossings). When SOI is included in the calculation,
we therefore expect only that some of the bands will be
unnoticeably shifted, as confirmed by DFT calculation [26].

Although SOI has a negligible effect on the band struc-
ture (Hamiltonian eigenvalues) in phosphorene, it is still
worthwhile to examine the effect it has on spin-dependent
eigenstates, especially because the in-plane anisotropy is ex-
pected to extend to spin-related phenomena such as relaxation
mechanisms. In this section, we will now derive the spin-
dependent Hamiltonian including HSO and HSO,k, again using
the method of invariants, and calculate the spin-dependent
eigenstates of electrons and holes that capture the underlying
symmetries.

Before starting our discussion, we compare some other
spin-related properties between phosphorene and silicon,
the latter of which is believed to be a promising material
candidate for spintronic devices [40]. Aside from the low
atomic number already mentioned, there are two important
factors leading to the rather long spin lifetime in Si. One
is the centrosymmetric property of the diamond lattice that
(along with Kramers’ time-reversal symmetry) preserves spin
degeneracy, and precludes the Dyakonov-Perel spin-relaxation
mechanism where momentum scattering causes a fluctuating

effective magnetic field driving spin flips [41]. The other is the
absence of nuclear spin in the most abundant isotope 28Si, so
that there is little hyperfine interaction affecting the electron
spin states.

Whereas the high abundance of 31P isotope (with half-
integer nuclear spin) makes hyperfine interaction in phos-
phorene worth considering, it is outside the scope of this
paper. However, phosphorene is indeed centrosymmetric (see
Table I), and so like Si, Dyakonov-Perel spin relaxation
is absent. The dominant spin-relaxation mechanism in both
materials is then the Elliott and Yafet processes.

Generally speaking, perturbative spin-orbit coupling be-
tween different bands causes a mixing of pure Pauli spinors so
that the two degenerate spin states within the same ith band
can be written as

|i⇑〉 = Ci

⎛
⎝|i↑〉 +

∑
j 	=i

aj |j↑〉 + bj |j↓〉
⎞
⎠, (20)

|i⇓〉 = Ci

⎛
⎝|i↓〉 +

∑
j 	=i

a∗
j |j↓〉 − b∗

j |j↑〉
⎞
⎠, (21)

where Ci is a normalization factor. The dominant orbital
component in both |i⇑〉 and |i⇓〉 is |i〉, whose amplitude is
very close to unity. However, the coefficients |bj | � |aj | � 1
depending on their perturbation origins. In our following
discussion, we ignore the prefactor Ci ≈ 1, and for clarity,
write the spin-dependent eigenstates in the form of two-row
matrices such as

|i⇑〉 =
(

a1 a2 . . . 1 . . .

b1 b2 . . . 0 . . .

)
, (22)

|i⇓〉 =
(−b∗

1 −b∗
2 . . . 0 . . .

a∗
1 a∗

2 . . . 1 . . .

)
, (23)

where quantities in the top (bottom) row indicate coefficients
of |↑〉 (|↓〉) states, and each column corresponds to a given
band.

Spin flips are induced by an interaction 〈⇑|�|⇓〉, where
� is a scattering potential. The spin-independent part of this
potential, normally leading to momentum scattering, will then
couple the same spin components of |⇑〉 and |⇓〉, resulting in
the Elliot mechanism [42], whereas the spin-dependent part of
the scatterer will couple opposite spin components and give
rise to the Yafet term [43]. These two quantities coherently
interfere to yield the total spin relaxation rate τ−1

s , proportional
to the square of the matrix element according to Fermi’s golden
rule. A major goal of the following sections is to examine
the symmetry of these processes and understand the spin-
relaxation anisotropy in terms of the spin-dependent eigenstate
components.

A. Hamiltonian and spin-dependent eigenstates

The incorporation of spin-orbit interactions [Eqs. (5)
and (6)] within the framework of the method of invariants
is as straightforward as our treatment of Hk·p̂. We start with
a discussion of the valence band Hamiltonian matrix of the
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k-independent SOI (HSO). From Table II, one finds that the
three invariant components of HSO belong to the IRs of �+

2 , �+
3 ,

and �+
4 , which couples the highest valence band �+

2v to remote
bands belong to �+

1 , �+
4 , and �+

3 , respectively. Therefore, in
a basis {�+

3 , �+
4 , �+

1 , �+
2v}, the matrix form of HSO can be

written

H hole
SO =

⎛
⎜⎝

iδ32σz

iδ42σx

iδ12σy

−iδ32σz −iδ42σx −iδ12σy

⎞
⎟⎠,

(24)

where

δl2 =
∑
�+

l

i�

4m2
0c

2
〈�+

l | ∂V

∂xm

p̂n − ∂V

∂xn

p̂m|�+
2v〉, (25)

which are real numbers taking into account all remote bands
belonging to the IR �+

l . Here, {lmn} is a cyclic permutation of
{1,2,3} and {x1,x2,x3} correspond to {x, y, z}. By expanding
the Pauli matrices, H hole

SO in Eq. (24) is an 8 × 8 matrix, where
each basis function is the direct product of a spin-independent
wave function and a spinor (|↑〉 or |↓〉, eigenstates of σz). Note
that the lack of matrix elements other than those involving
�+

2v in Eq. (24) does not imply that they are zero; rather, we
focus here only on the matrix elements that are important
in determining the valence band eigenvectors to lowest
order.

HSO,k in Eq. (6) gives a small correction to HSO that is
usually negligible since |�k| is comparable with |p| only when
k reaches the zone edge. In phosphorene, however, due to the
unusually flat valence band, ky of hole states can be relatively
large (� 10% of π/ay), and the resulting HSO,k cannot be
ignored. The components of HSO,k transform like polar vectors
as shown in Table II and for simplicity we only keep the more
important ky-related terms. Applying the same procedure as
above, we obtain the matrix form of HSO,k for hole states as

H hole
SO,k =

⎛
⎝ iα42kyσz −iα32kyσx

−iα42kyσz

iα32kyσx

⎞
⎠, (26)

which is a 6 × 6 matrix in the basis {�+
2v, �−

4 , �−
3 }⊗{↑,

↓}. Again, we are only interested in the matrix elements
that couple to �+

2v in lowest order. The α parameters

in Eq. (26) are

α32 =
∑
�−

3

i�2

4m2
0c

2
〈�−

3 |∂V

∂z
|�+

2v〉, (27)

α42 =
∑
�−

4

i�2

4m2
0c

2
〈�−

4 |∂V

∂x
|�+

2v〉. (28)

The essential spin-orbit interaction of hole states is now
captured by H hole

SO ⊕ H hole
SO,k, reducible to a 12 × 12 matrix

because of the redundant �+
2v. In combination with the spin-

independent H0 and Hk·p̂ operators discussed in the previous
section, one can diagonalize the total Hamiltonian and obtain
the spin-dependent eigenstates for holes.

Several simplifying approximations can be made. Because
it appears in the same matrix element and is much smaller than
the Px1kx terms in Eq. (7), α42kyσz in Eq. (26) can reasonably
be ignored. In addition, the Pyky terms (coupling between
�+

2v and �−
1 bands) can be neglected for two reasons: (i) the

amplitudes of Py2 and Py4 are small; and (ii) the effect from
�−

1 bands below and above �+
2v counteract each other near the

� point (reflected by the flat band there).
To avoid lengthy summations and energy denominators,

we define the following quantities related to the δ, α, and P

parameters:

�l2 =
∑
�+

l

i�

4m2
0c

2

〈�+
l | ∂V

∂xm
p̂n − ∂V

∂xn
p̂m|�+

2v〉
E�+

l
− E�+

2v

, (29)

A32ky =
∑
�−

3

i�2

4m2
0c

2

〈�−
3 | ∂V

∂z
|�+

2v〉ky

E�−
3

− E�+
2v

, (30)

�x1kx = Px1kx

Eg

. (31)

Because of their origins in the Hk·p̂ � HSO � HSO,k pertur-
bation terms, the hierarchy between these unitless parameters
is A32ky � �l2 � �x1kx � 1.

Each spin-dependent eigenvector includes 12 coefficients
corresponding to the 12 basis functions which span the
subspace of six IRs {�+

3 , �+
4 , �+

1 , �+
2v, �−

4c, �−
3 } and

the two spinors. We write the spin-dependent eigenvectors
in the form of Eqs. (22) and (23) giving 2 × 6 matrices:

|h⇑⊥〉 =
(

i�32 0 0 1 �x1kx 0
0 i�42 �12 0 0 −iA32ky

)
, (32)

|h⇓⊥〉 =
(

0 i�42 −�12 0 0 −iA32ky

−i�32 0 0 1 �x1kx 0

)
. (33)

Here “h” stands for “hole” and the subscript “⊥” indicates that
the spin orientation z is out of plane. Notice that, before the
trivial normalization, the dominant coefficients have the value
of 1, corresponding to the |�+

2v↑〉 (|�+
2v↓〉) basis function in

|h⇑⊥〉 (|h⇓⊥〉).
Equations (32) and (33) explicitly indicate the spin purity of

the eigenstates. One can evaluate the total square amplitude of

the minority-spin components (the so-called spin-mixing co-
efficient), which is approximately �2

42 + �2
12 (the A2

42k
2
y term

is a small correction). In Eq. (29), the energy denominators
are several eV or more, while the remainder are within the
same order of the δl2 parameters in Eq. (25). It is known that
the dominant contribution to spin-orbit coupling is from the
part of wave functions orthogonal to the core states, which
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are populated in the vicinity of the nucleus where the atomic
potential changes drastically [44,45]. As in Si, these core
electrons are 2p states, so we can estimate using the same
parameters: δl2 ∼meV [38]. This value then gives �l2 ∼ 10−3,
so the spin-mixing coefficient for holes in phosphorene should
be similar to that of conduction band electrons in Si, which is
approximately 10−5–10−6.

Equations (32) and (33) are fundamental in helping us
understand the spin-flip process, in which a transition occurs
between |h⇑⊥〉 and |h⇓⊥〉 during momentum scattering. As
an example, we analyze the symmetry of the Elliott-Yafet
(EY) spin-flipping process due to scattering by small-q
long-wavelength acoustic phonons (in-phase quasiuniform
vibration of atoms). This is the dominant spin-relaxation
mechanism that limits the intrinsic spin lifetime in such a
centrosymmetric system at finite temperature.

The Elliott term [42] proportional to ∇V has the same
symmetry of a polar vector or the p orbitals of �−

2 in Fig. 2,
�−

3 in Fig. 3(a), and �−
4 in Fig. 3(b). It couples the same

spin components between |h⇑⊥〉 and |h⇓⊥〉. Equations (32)
and (33) show that this happens between �+

2v and �−
3 (with

the coefficients 1 and −A32ky), as well as between �−
4c and

�+
1 (with the coefficients �x1kx and �12), and the responsible

phonon mode is the �−
4 -related ∂V

∂z
Elliott term (out-of-plane

motion of atoms, or flexural phonons).
On the other hand, the Yafet operator that couples opposite

spin components [43] between |h⇑⊥〉 and |h⇓⊥〉 is propor-
tional to ∇HSO, which is the gradient of an axial vector with
symmetry

(�−
4 ⊕ �−

3 ⊕ �−
2 ) ⊗ (�+

4 ⊕ �+
3 ⊕ �+

2 )

= 3�−
1 ⊕ 2�−

2 ⊕ 2�−
3 ⊕ 2�−

4 . (34)

Examining Eqs. (32) and (33), one sees that the dominant
coupling is between �+

2v and �−
4c by one of the two �−

3 IRs in
Eq. (34) that is related to ∂

∂z
( ∂V

∂z
px − ∂V

∂x
pz)σy . This term also

corresponds to flexural phonons [the other term belonging to
�−

3 IR is ∂
∂y

( ∂V
∂x

py − ∂V
∂y

px)σz, which does not flip the spin].
The same formalism can be applied to study the spin-

dependent conduction band electrons. Here, we list the

expressions for Hamiltonian matrices and spin-dependent
eigenstates of the lowest eigenvalue (conduction band min-
imum). In a basis {�−

3 , �−
2 , �−

1 , �−
4c}, HSO for �−

4c electrons
is

H electron
SO =

⎛
⎜⎝

iδ34σy

iδ24σx

iδ14σz

−iδ34σy −iδ24σx −iδ14σz

⎞
⎟⎠,

(35)

where

δl4 =
∑
�−

l

�
2

4m2
0c

2
〈�−

l | ∂V

∂xm

p̂n − ∂V

∂xn

p̂m|�−
4c〉. (36)

As in Eq. (26) for holes, the HSO,k matrix for electrons in the
ky direction, using the basis {�−

4c, �+
2 , �+

1 }, reads as

H electron
SO,k =

⎛
⎝ iα24kyσz −iα14kyσx

−iα24kyσz

iα14kyσx

⎞
⎠, (37)

where the α parameters are

α24 =
∑
�+

2

i�2

4m2
0c

2
〈�+

2 |∂V

∂z
|�−

4c〉, (38)

α14 =
∑
�+

1

i�2

4m2
0c

2
〈�+

1 |∂V

∂x
|�−

4c〉. (39)

As in Eqs. (29) and (30), we define

�l4 =
∑
�−

l

i�

4m2
0c

2

〈�+
l | ∂V

∂xm
p̂n − ∂V

∂xn
p̂m|�−

4c〉
E�−

l
− E�−

4c

, (40)

A14ky =
∑
�+

1

i�2

4m2
0c

2

〈�+
1 | ∂V

∂z
|�−

4c〉ky

E�+
1

− E�−
4c

. (41)

The resulting spin-dependent electron eigenstates in the basis
{�−

3 , �−
2 , �−

1 , �−
4c, �+

2v, �+
1 } are

|e⇑⊥〉 =
(

0 0 i�14 1 �x1kx 0
�34 i�24 0 0 0 −iA14ky

)
, (42)

|e⇓⊥〉 =
(−�34 i�24 0 0 0 −iA14ky

0 0 −i�14 1 �x1kx 0

)
. (43)

B. Anisotropy of spin-dependent properties
We naturally expect that the orthorhombic inequivalence

of the three orthogonal armchair, zigzag, and out-of-plane
axes will induce anisotropy of the spin-dependent properties
of electrons and holes. Already from our analysis of the
band dispersion, we can see an obvious anisotropy in the
spin-diffusion length λs = √

τsD, where the carrier diffusion
coefficient D is related to the anisotropic effective mass.
However, there is an additional contribution: the spin lifetime
τs also has an anisotropy, related in this case not to the
wave-vector direction, but rather to the spin orientation.

In the previous subsection, we have derived the spin-
dependent Hamiltonian and eigenstates with the spin ori-
entation in the out-of-plane z direction. However, in most
spin-injection experiments, the spin orientation is fixed by
the magnetization of ferromagnetic thin-film contacts with an
in-plane easy axis. It is therefore more relevant to study the
spin-dependent eigenstates and related properties with the spin
quantization axis z in plane. Of course, the spatial symmetry
of the system is invariant regardless of the coordinate system
we choose, and so are the properties of IRs and the relations
between them (Table III); only the coordinate labels change.
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First, we calculate the spin-dependent properties of hole
states under a new coordinate system where z is chosen to be
along the armchair, x along the zigzag, and y along the out-
of-plane direction. We apply the cyclic permutation xyz →
zxy to the coordinates in Fig. 1(a), and the corresponding
invariant components in Table II (note that one could also
keep the coordinate system unchanged but alternatively derive
spin-dependent eigenstates from linear combination of |h⇑⊥〉
and |h⇓⊥〉, and |e⇑⊥〉 and |e⇓⊥〉, according to the chosen
spin orientation). The spin-dependent Hamiltonian can be
derived straightforwardly, so we do not repeat the previous
procedures but rather give the result of the spin-dependent
eigenstates.

Like Eqs. (32) and (33), the spin-dependent eigenvectors
for valence band holes under the new coordinate system also
include 12 coefficients corresponding to the 12 basis functions
which expand the subspace of six IRs {�+

3 , �+
4 , �+

1 , �+
2v, �−

4c,
�−

3 } and the two spinors. In the form of Eqs. (22) and (23),
they read as

|h⇑ac〉 =
(

0 i�42 0 1 �z1kz −iA32kx

�32 0 i�12 0 A42kx 0

)
,

(44)

|h⇓ac〉 =
(−�32 0 i�12 0 −A42kx 0

0 −i�42 0 1 �z1kz iA32kx

)
.

(45)

Here, the subscript “ac” stands for “armchair” and indicates
the spin orientation. �z1 has the same value as �x1 defined by
Eq. (31) since we have only changed the labeling from x to z.
Also, similar to the definition of A32 in Eq. (30), we have

A42ky =
∑
�−

4

i�2

4m2
0c

2

〈�−
4 | ∂V

∂z
|�+

2v〉ky

E�−
4

− E�+
2v

. (46)

Equations (44) and (45) directly show that spin mixing to
lowest order is �2

32 + �2
12, different from the previous case

(�2
42 + �2

12) when the spin orientation z is out of plane. It
will be shown that if z is along the zigzag direction, the spin
mixing is �2

32 + �2
42 [see Eqs. (47) and (48)]. The anisotropy

of the spin mixing is generally reflected in the definition of
Eq. (29) by the energy denominators, while the numerators
scale similarly, due to their major origins related to the 2p core
states, as previously discussed [44,45]. Numerical calculation
shows that, for the �+

2v hole band, the closest �+
3 is the fourth

conduction band approximately 3.5 eV above, while the closest
neighboring �+

4 and �+
1 bands are the second and third valence

bands (not shown in Fig. 5) that are approximately 1.8 eV
below. We therefore estimate that the spin mixing with z in
plane is approximately half of that with z out of plane, and the
Elliott-process-limited spin lifetime is consequently ∼4 times
longer.

A more intriguing feature of the anisotropy is that of the
phonon polarization in spin-flip scattering. Again, we take
the interaction with long-wavelength acoustic phonons as an
example. In contrast to the case when z is out of plane, here
the coupling of the dominant �+

2v band by the Elliott operator
to �−

3 vanishes since the coefficient for �−
3 ↑(↓) in |h⇓ac(⇑ac)〉

is zero. However, the coupling between �+
2v and �−

4 survives,
with the coefficient −A42ky . More importantly, the interaction
belongs to �−

3 = �+
2v ⊗ �−

4 , which still corresponds to ∂V
∂z

, but
is now related to in-plane, instead of flexural, phonons.

It is well known that, due to their quadratic dispersion
relation, the thermal population of flexural phonons in 2D
materials diverges when the phonon wave vector q approaches
zero. Such a singularity does not exist in the case of in-plane
phonons with linear dispersion. The intrinsic spin lifetime in
2D materials is thus essentially limited by the interaction with
flexural phonons while the influence from in-plane phonons
is much less crucial [4]. However, here in phosphorene, for
spins oriented in the armchair direction the Elliott spin-flip
coupling of the dominant �+

2v component via flexural phonons
is excluded by symmetry.

We have seen that scattering by acoustic phonons ultimately
determines the upper bound of the spin lifetime in phospho-
rene. However, this intrinsic mechanism will be superseded
by various extrinsic spin-relaxation mechanisms in anything
other than the most pure, well-isolated samples. Carrier spins
in 2D materials are especially sensitive to extrinsic effects
such as interactions with substrate and contacts, scattering
with impurities or defects, and the influence of deformation
such as nanoripples and strain. As long as these spin-flip pro-
cesses are within the perturbative regime, the spin-dependent
eigenvectors can be effectively used to determine whether a
certain process is symmetry allowed, as well as its orientation
dependence. The strength of the interaction can be evaluated
by the coefficients in these eigenvectors, calculated with the
assistance of numerical schemes able to yield the coupling
amplitude between basis functions.

Before closing this section, we derive expressions for the
spin-dependent hole eigenvectors for the remaining orientation
with z along the zigzag direction by applying the permutation
xyz → yzx to the table of invariants. Using a basis {�+

3 , �+
4 ,

�+
1 , �+

2v, �−
4c, �−

3 }, the eigenvectors read as

|h⇑zz〉 =
(

0 0 i�12 1 �y1ky 0
i�32 �42 0 0 iA42kz −A32kz

)
,

(47)

|h⇓zz〉 =
(

i�32 −�42 0 0 iA42kz A32kz

0 0 −i�12 1 �y1ky 0

)
.

(48)

The subscript “zz” stands for “zigzag.” Also, we give the spin-
dependent eigenvectors of the conduction band electron states
for the spin orientation aligned with both in-plane axes, in a
basis {�−

3 , �−
2 , �−

1 , �−
4c, �+

2v, �+
1 }. For z along the armchair

direction, the eigenvectors are

|e⇑ac〉 =
(

0 i�24 0 1 �z1kz −iA14kx

i�34 0 �14 0 −A24kx 0

)
,

(49)

|e⇓ac〉 =
(

i�34 0 −�14 0 A24kx 0
0 −i�24 0 1 �x1kx iA14ky

)
.

(50)
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For z along the zigzag direction, they are

|e⇑zz〉 =
(

i�34 0 0 1 �y1ky 0
0 �24 i�14 0 iA24kz A14kz

)
,

(51)

|e⇓zz〉 =
(

0 −�24 i�14 0 iA24kz −A14kz

−i�34 0 0 1 �y1ky 0

)
.

(52)

V. SUMMARY

We have detailed the myriad ways in which phosphorene’s
structural in-plane asymmetry is manifest in the anisotropy of
charge and spin properties of its electrons and holes, all of
which are otherwise obscured by the many numerical methods
previously applied to the problem. We have elucidated the
origin of the band dispersion anisotropy near the gap edge,
which is due to the specific directional preference of the
coupling between conduction and valence bands and governs
various transport and optical properties. By analyzing the
symmetry of spin-orbit coupling, we have derived compact
spin-dependent eigenstates of electrons and holes for all high-
symmetry quantization axes. As an example of the utility of
these eigenstates, we investigated the valence band anisotropy
of the Elliott-Yafet spin-relaxation process. By incorporating
the relevant invariant components into our model, such as those
of external applied fields, mechanical strain, and quantum
confinement, this theory is highly extensible to the analysis
of many other relevant circumstances of interest.

Importantly, our theory provides guidance for experimental
efforts to empirically confirm and quantify these charge and
spin phenomena. Valence band properties like the effective
mass anisotropy and possible indirect band gap are most
directly compared to results from ARPES [25,27]. This ultra-
high vacuum surface-sensitive method is especially convenient
since electrical contact to phosphorene transport layers has

not yet been realized, in part due to environmental sensitivity
and subsequent degradation [20]. Even without metallic
electrodes, basic transport properties can be determined with,
e.g., microwave Hall mobility measurement [46]. However,
investigation into many other properties (such as thermal and
excitonic transport, weak localization, or antilocalization, etc.)
may require fabrication of true electronic devices.

Optical noncontact techniques are also very useful in ver-
ifying the linear polarimetry in the visible spectrum, enabled
by the dipole selection rules. However, with the expected
inefficiency of optical orientation in this material, electrical
techniques are required to measure anisotropy of the spin
relaxation. Once single phosphorene layers can be stabilized
for device processing and fabrication, four-terminal nonlocal
geometry devices in the presence of oblique magnetic fields (to
precess spins out of plane) will be especially applicable [47].

In closing, we are obliged to point out the presence of
secondary features of the conduction and valence bands that
cannot be captured simply by the zone-center symmetries.
For example, satellite valleys may play a role in transport
properties of phosphorene when a high electric field acceler-
ates and heats mobile charge carriers. Interestingly, secondary
conduction band valleys are predicted by DFT calculation
along the ky direction, whereas the valence band valleys are
along the kx direction, several hundred meV from the band
edge.

Note added in proof. Group-theoretical methods were
recently applied to study the lattice dynamics and nonlinear
phenomena in N-layer phosphorene [48].
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Dresselhaus, and A. Jorio, arXiv:1408.6641.

115439-12

http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1143/JPSJ.51.1193
http://dx.doi.org/10.1143/JPSJ.51.1193
http://dx.doi.org/10.1143/JPSJ.51.1193
http://dx.doi.org/10.1143/JPSJ.51.1193
http://dx.doi.org/10.1063/1.3386509
http://dx.doi.org/10.1063/1.3386509
http://dx.doi.org/10.1063/1.3386509
http://dx.doi.org/10.1063/1.3386509
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1016/0038-1098(83)90962-6
http://dx.doi.org/10.1016/0038-1098(83)90962-6
http://dx.doi.org/10.1016/0038-1098(83)90962-6
http://dx.doi.org/10.1016/0038-1098(83)90962-6
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1063/1.1748067
http://dx.doi.org/10.1103/PhysRevB.89.245407
http://dx.doi.org/10.1103/PhysRevB.89.245407
http://dx.doi.org/10.1103/PhysRevB.89.245407
http://dx.doi.org/10.1103/PhysRevB.89.245407
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.99.177209
http://dx.doi.org/10.1103/PhysRevLett.107.107203
http://dx.doi.org/10.1103/PhysRevLett.107.107203
http://dx.doi.org/10.1103/PhysRevLett.107.107203
http://dx.doi.org/10.1103/PhysRevLett.107.107203
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1103/PhysRevLett.104.016601
http://dx.doi.org/10.1038/nmat3293
http://dx.doi.org/10.1038/nmat3293
http://dx.doi.org/10.1038/nmat3293
http://dx.doi.org/10.1038/nmat3293
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.96.266
http://dx.doi.org/10.1103/PhysRev.126.1317
http://dx.doi.org/10.1103/PhysRev.126.1317
http://dx.doi.org/10.1103/PhysRev.126.1317
http://dx.doi.org/10.1103/PhysRev.126.1317
http://dx.doi.org/10.1103/PhysRev.149.504
http://dx.doi.org/10.1103/PhysRev.149.504
http://dx.doi.org/10.1103/PhysRev.149.504
http://dx.doi.org/10.1103/PhysRev.149.504
http://dx.doi.org/10.1063/1.1723027
http://dx.doi.org/10.1063/1.1723027
http://dx.doi.org/10.1063/1.1723027
http://dx.doi.org/10.1063/1.1723027
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://dx.doi.org/10.1103/PhysRevLett.105.167202
http://arxiv.org/abs/arXiv:1408.6641



