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Transition metal dichalcogenides (TMDCs) have emerged as a new two-dimensional material’s field since the
monolayer and few-layer limits show different properties when compared to each other and to their respective
bulk materials. For example, in some cases when the bulk material is exfoliated down to a monolayer, an
indirect-to-direct band gap in the visible range is observed. The number of layers N (N even or odd) drives
changes in space-group symmetry that are reflected in the optical properties. The understanding of the space-group
symmetry as a function of the number of layers is therefore important for the correct interpretation of the
experimental data. Here we present a thorough group theory study of the symmetry aspects relevant to optical
and spectroscopic analysis, for the most common polytypes of TMDCs, i.e., 2Ha, 2Hc and 1T , as a function of
the number of layers. Real space symmetries, the group of the wave vectors, the relevance of inversion symmetry,
irreducible representations of the vibrational modes, optical activity, and Raman tensors are discussed.
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I. INTRODUCTION

The interest in two-dimensional (2D) layered materials
increased after the successful isolation of monolayer graphene
(the 2D component of graphite) reported in 2004 [1]. The
monolayer of hexagonally-linked carbon atoms made it pos-
sible to study a brand-new set of magnetic, electric, and
optical phenomena related to the Dirac-like nature of graphene
electrons [2]. The lack of a band gap, however, imposes some
difficulties to graphene’s application in electronics, despite its
high carrier mobility.

Other classes of 2D materials are now also being intensively
studied for many different applications motivated mainly by
the need of a band gap. Perovskite-based oxides, van der Waals
solids such as Bi2Se3, Bi2Te3 [3], hexagonal boron nitride (h-
BN) [4], and transition metal dichalcogenides (TMDCs), such
as MoS2 and WSe2 [5–7], offer a wide range of compounds
and combinations with potential use in the emerging field of
2D heterostructures [8] (for example, tunable optoelectronic
properties are obtained by a suitable choice of component
layers [9,10]). The TMDCs are layered materials of the form
MX2, where M stands for groups 4–10 of transition metals
and X stands for the chalcogen atoms S, Se, or Te [11]. The
M and X atoms are strongly linked through covalent bonds to
form 2D layers. Two adjacent sheets of chalcogen atoms are
separated by a sheet of transition metal atoms in an X-M-X
configuration, and the “monolayer” is actually composed of
an atomic trilayer (TL) structure. The interaction among these
trilayers are weak van der Waals interactions. The difference
in the stacking order gives rise to different polytypes, while
the combination of these different atoms leads to a variety of
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more than 30 different layered materials, with different optical,
mechanical and electrical properties [11–13].

Some semiconducting TMDCs in this so-called monolayer
form show a direct band gap in the visible range, which does
not exist in their bulk counterparts [5–7,14,15]. These band
gaps open the possibility for flexible and transparent sensor ap-
plications [11,12,16], and the construction of heterostructures
offers the possibility of tuning the TMDC behavior [9,10,16].
The breaking of inversion symmetry in the monolayer, with
the strong spin-orbit interaction coming from the metal d

orbitals, gives rise to the spin splitting of the valence band at
the high-symmetry K points of the Brillouin zone (BZ) [17].
Since the K and K ′ points in the BZ are related to each other
by time reversal symmetry, the spin splitting yields distinct
symmetries from these two valleys, and the manipulation of
this coupling opens the possibility of a variety of valleytronic
applications [17–22].

The dependence on the number of layers (N ) and on the
changes of the symmetry group have already been investigated
in the characterization of the various TMDC optical properties,
by means of Raman spectroscopy and second harmonic gen-
eration (SHG) [21,23–29]. Group theory provides a valuable
theoretical tool that can be used to understand the selection
rules for the optical transitions, to find the eigenvectors for the
lattice vibrations, and to identify the lifting of degeneracies
due to external symmetry-breaking perturbations [30,31].
A detailed study of these symmetry aspects for few-layers
TMDCs is valuable to predict interesting characteristics and
to properly interpret experimental results for these compounds,
since few-layers TMDCs will belong to different space groups
according to the number of layers, and their space groups will
be different from those of their bulk crystal counterparts.

Group theory has already been used to describe the structure
of TMDCs in the bulk form for different polytypes [32,33],
in the few-TL 2Hc polytype for zone center phonons (at the
� BZ point) [23–25] and for the electronic structure at the
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� and K points [34], and for a more detailed understanding
of some nonlinear optical processes [26]. In this work, group
theory is applied to TMDCs in both the trigonal prismatic (H )
and octahedral (T ) metal atom coordinations, considering the
stacking order for 2Ha and 2Hc for H , and 1T for T , and
the dependence on the number of layers N (even or odd), and
considering the full set of wave vectors in the BZ, i.e., going
beyond the zone center. In Sec. II, the symmetry analysis in real
space is developed for the 2H (Sec. IIA1) and 1T (Sec. IIA2)
polytypes, while the reciprocal space treatment is shown in
Sec. II B. The relevance of inversion symmetry for the different
TMDCs polytypes is discussed in Sec. II C. The irreducible
representations for vibrational modes for few-TL TMDCs
considering the high-symmetry points and lines in the BZ are
presented in Sec. II D, and the Raman and infrared selection
rules are shown in Sec. II E, while Sec. II F gives the Raman
tensors. Finally, Sec. III summarizes the main conclusions
and comments on the cases of lowering of symmetry induced
by strain in MoS2, by engineering heterostructures, and by
breaking the out-of-plane translational symmetry in WSe2.

II. SYMMETRY ANALYSIS

A. Real space symmetry

The family of layered TMDCs is composed of several
polytypes with a different number of TLs, or different metal
atom coordinations that form the primitive unit cell (see Table
I). The main polytypes under experimental and theoretical
consideration nowadays (and analyzed in the present work)
are the trigonal prismatic 2H [two TLs in a trigonal prismatic
coordination (H ) are required to form the bulk primitive
unit cell] and the octahedral 1T [one TL in an octahedral
coordination (T ) is required to form the bulk primitive unit
cell] (see Fig. 1). Each polytype, in turn, has a monolayer
(one TL) as a basic 2D building block unit. The bulk crystal is
made by piling up these monolayer units, namely 1H (trigonal
prismatic or AbA coordination, where upper cases represent
chalcogen atoms and lower cases represent metal atoms) and
1T (octahedral or AbC coordination), as can be observed in
Figs. 1(a) and 1(b), respectively. The blue spheres represent
transition metal atoms, and the orange spheres represent the
chalcogen atoms. For bulk versions of these layered materials,
where the out-of-plane translational symmetry is present,
the lateral views of the unit cells are highlighted with red
rectangles in Figs. 1(c), 1(d), and 1(e).

There are several other polytypes for stacks of more than
two TLs, and at least 11 polytypes were identified in TMDCs
[33]. For example, the unit cell of the 3R-MoS2 (with the
stacking /AbA BcB CaC/)[32,33] comprises nine atoms in
three TLs. The treatment of these polytypes with a high number
of TLs is beyond the scope of this work, but for the 3R case,
Table I summarizes some symmetry considerations and gives
representative TMDC examples.

1. 2H polytype

The 2H bulk polytype can assume two forms with different
stacking symmetries: 2Ha (or /AbA CbC/ stacking) [32,33],
and 2Hc (/CaC AcA/ stacking) [33]. In 2Ha stacking, one
transition metal atom is always on top of another transition
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(e)(d)(c)

(a) (b)
1H (AbA) 1

2Ha (/AbA CbC/) 2Hc (/CaC AcA/) 1T (/AbC/AbC/)
(e)(d)(c)

(a) (b)
1H (AbA) 1

2Ha (/AbA CbC/) 2Hc (/CaC AcA/) 1T (/AbC/AbC/)

FIG. 1. (Color online) Transition metal atom coordination for (a)
trigonal prismatic (H ) and (b) octahedral (T ) TMDCs polytypes.
The blue spheres represent transition metal atoms and orange ones,
chalcogen atoms. In (c), (d), and (e) the top and lateral views (top
and bottom in each figure, respectively) of the primitive unit cells for
bulk TMDCs materials are shown. The black rhombuses show the
top view of the primitive unit cell, and the red rectangles indicate
the lateral view. The primitive unit cell of the (c) 2Ha or the (d)
2Hc polytypes comprise six atoms, two transition metal atoms, and
four chalcogenides (Z = 2) in the trigonal prismatic coordination
illustrated in (a), while the 1T polytype shown in (e) has three atoms,
comprising two chalcogenides, and one transition metal atom (Z = 1)
in the octahedral coordination illustrated in (b).

metal atom of the next layer, as shown in Fig. 1(c). This
polytype is reported to occur in NbSe2, NbS2, TaS2, and TaSe2

crystals [32]. In 2Hc stacking, any transition metal atom is
sitting on top of two chalcogenides atoms of the subsequent
layer, as shown in Fig. 1(d). This polytype occurs in MoS2,
WS2, MoSe2, and WSe2 crystals. Both polytypes belong to the
nonsymmorphic hexagonal space group P 63/mmc [32] (D4

6h

in Schönflies notation, or #194 in the International Tables for
Crystallography Vol. A (ITCA) [35]). The primitive unit cell
for the bulk has six atoms (Z = 2, where Z is the number of
structural MX2 units required to form the primitive unit cell),
and three atoms in each TL, as can be seen in the red rectangles
of Figs. 1(c) and 1(d). The Wyckoff positions for the 2H bulk
polytypes, as well as the number of structural formulas Z are
given in Table I.

The 2Hb polytype is possible and occurs for nonstoichio-
metric compounds with an excess of metal atoms intercalated
in the van der Waals gap [33]. Table I gives symmetry
information and examples for this polytype. Some differences
between the definition of 2Hb and 2Hc are found in the
literature [32,33], and the most recent nomenclature is used
in this work [33,36].

For few-layer systems there is a reduction in symmetry due
to the lack of translational symmetry along the z axis (the z axis
is perpendicular to the basal plane of the TLs). The symmetry
operations are reduced from 24 in the bulk to 12 for both

C2 v
A A

C2
C

v
CC2

B
v
B

d
A

C2
B

d
CC2

A

d
B

C2
C

(a) (b) (c)

(d) (e) (f)

C3

h

i

a1a2

a1a2

C3

FIG. 2. (Color online) Primitive unit cell and symmetry opera-
tions of the 2Hc polytype. Blue spheres represent transition metal
atoms and orange spheres represent chalcogen atoms. (a) and (d)
show the top view for the 1TL and 2TLs, respectively. �a1 and �a2 are
the primitive unit vectors, indicated in (a), while (b) and (e) represent
the symmetry operations for the 1TL and 2TLs, respectively. The C3

axes are perpendicular to the xy plane in (b) and (e), and they are
represented by black triangles. Three vertical mirror planes σv and
three dihedral mirror planes σd are indicated as red lines in (b) and
(e), respectively, while the black lines are the three C ′

2 rotation axes
in the horizontal mirror σh, represented in (c) and (f) together with
the primitive unit cell. The σh itself is not a symmetry operation for
2TLs, but it is discussed here since it is part of the S6 operation,
which is given as a C6 rotation followed by a σh reflection in this
plane. The red lines in (e) denote the σd mirror planes, and the red dot
in the center of (f) indicates the position of the inversion symmetry
operation.

even and odd numbers of TLs. Therefore, the few-TLs space
groups are different from the bulk space groups and depend on
the parity of the number of layers (even or odd number of TLs).
Figure 2 illustrates the 1TL and 2TL stacking arrangements
for the 2Hc polytype. The hexagonal real space for 1TL and
2TLs are given in Figs. 2(a) and 2(d), respectively.

The 2Hc polytype symmetry operations are illustrated in
Figs. 2(b) and 2(e), which are the top-views of the primitive
unit cells. In Figs. 2(c) and 2(f), the lateral views of the
primitive unit cells are given for 1TL and 2TLs, respectively.
The space groups of few-layer TMDCs can be renamed
according to the “layered subperiodic groups”, from the
International Tables for Crystallography Vol. E (ITCE) [37],
but here we adopt the ITCA nomenclature [35] for comparison
with related literature [38]. The 1TL of the 2H polytype
belongs to the P 6̄m2 (D1

3h or #187) hexagonal symmorphic
space group, as well as to other few-layer compounds with
odd number of layers, whose point symmetry operations are
E (identity), 2C3 [clockwise and anticlockwise rotations of
120◦ about the axis represented as a black triangle in Fig. 2
(b)], 3C ′

2 (two-fold axis in the σh plane), σh (the horizontal
reflection plane that passes through the transition metal atom),
2S3 (C3 clockwise and anticlockwise rotations, followed by a
σh reflection), and 3σv (vertical reflection planes).
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The 2TLs of 2H polytype and any other even number of TLs
belong to the D3

3d (P 3̄m1, #164) symmorphic space group,
whose symmetry operations are E, 2C3, 3C ′

2 [rotation axes
placed in between two adjacent TLs, i.e., in the middle of the
van der Waals gap in Fig. 2(f)], inversion i [red dot in the
σh plane of Fig. 2 (f)], 3σd [dihedral vertical mirror planes
represented by red lines in Fig. 2 (e)], and 2S6 (clockwise and
anticlockwise rotations of 60◦ followed by a σh reflection).
For the 3TLs case, when another TL unit is added to the 2TLs
shown in Figs. 2(d), 2(e), and 2(f), the symmetry operations
are the same as those observed for 1TL, since the σh plane is
recovered as a symmetry operation. The addition of subsequent
layers will always show symmetry variations depending on
whether the number of layers is odd or even, and the difference
between these two groups is ultimately given by the presence
of the inversion symmetry in 2TLs (which is absent in 1TL)
and the presence of the σh plane in 1TL (which is absent in
2TLs).

2. 1T polytype

From a symmetry standpoint, the 1T polytype is con-
structed by piling up single 1TL units, where each subsequent
layer is exactly the same as the previous one, with one
transition metal atom (or chalcogen atom) on top of another
transition metal atom (or chalcogen atom), in an octahedral
coordination. In the bulk TMDC, the stacking is /AbC/AbC/
(see Fig. 1). The bulk form belongs to the D3

3d (P 3̄m1, #164)
symmorphic space group. The unit cell comprises three atoms
of one TL [red rectangle in Fig. 1(e)]. The Wyckoff positions
and number of structural formulas (Z) for the 1T polytype
TMDCs are given in Table I. Because all layers are identical,
the symmetry operations do not change by increasing the
number of TLs, no matter if N is even or odd. Figures 3(a)
and 3(d) show the 1TL and 2TLs structures, respectively, of
the 1T polytype. The symmetry operations of 1TL are E, 2C3,
3C ′

2 [the C ′
2 rotation axes are in the reflection plane, between

the two chalcogen atoms, dividing in half the transition metal
atom, as shown in the black lines in Fig. 3 (c)], inversion i

(red dot in the transition metal atom), 3σd [dihedral vertical
mirror planes represented by red lines in Fig. 3(b)], and 2S6

(clockwise and anticlockwise rotations of 60◦ followed by a
σh reflection). In the 2TL case, the same operations are still
valid, but now the inversion and the reflection plane [Fig. 3(f)]
for the S6 operation are located in the van der Waals gap.

B. Group of the wave vector

The reciprocal space high-symmetry points and directions
for the 2H and 1T polytypes are shown in Fig. 4. Here �a1 and
�a2 are the primitive vectors of the real 2D lattice described by
Eq. (1) and are shown in Fig. 2(a). Correspondingly, �b1 and �b2

[described in Eq. (2)] are the reciprocal lattice vectors shown
in Fig. 4.

�a1 = a

2
(
√

3x̂ + ŷ), �a2 = a

2
(−

√
3x̂ + ŷ), (1)

�b1 = 2π

a

(√
3

3
k̂x + k̂y

)
, �b2 = 2π

a

(
−

√
3

3
k̂x + k̂y

)
.

(2)

(a) (b) (c)

(d) (e) (f)

i

d
CC2

A

C3

d
A

C2
B

d
B

C2
C

i

d
CC2

A

C3

d
A

C2
B

d
B

C2
C

a1a2

a1a2

FIG. 3. (Color online) Primitive unit cells and symmetry opera-
tions of the 1T TMDCs polytypes (bulk, 1TL and 2TLs). (a) and (d)
show the 1TL and 2TL top view. In (d), chalcogen atoms are on top of
chalcogen atoms, and transition metal atoms are on top of transition
metal atoms, giving a similar top view to that observed for 1TL. In
(b) and (e), the C3 rotation axes (represented as black triangles) are
perpendicular to the basal plane. The red lines represent σd mirror
planes, while the black lines stand for C ′

2 rotation axes that lie in the
σh plane. The primitive unit cells for 1TL (and bulk) and for 2TLs
are shown in (c) and (f), respectively, and the red dot in their centers
denotes the inversion operations. Notice that σh is not a symmetry
operation for 1TL (or N odd), 2TLs (or N even), or bulk, but the
reflection plane is shown here to indicate the reflection in the two S6

operations.

The differences between the space groups D1
3h and D3

3d

when the number of TLs is odd or even define different
symmetries for the group of the wave vectors (GWV) at
each high-symmetry point or direction of the reciprocal space.
Knowledge of the GWV is important because the invariance
of the Hamiltonian under symmetry operations usually leads
to degeneracies at these high-symmetry points or directions
in the BZ [39–41]. The GWV for the 2H TMDCs is similar

b1b2

FIG. 4. (Color online) The Brillouin Zone (BZ) symmetries: �,
K , K ′, and M are high-symmetry points; the T , T ′, and � are high-
symmetry lines, and the u denotes the symmetry for a generic point.
�b1 and �b2 denote the in-plane reciprocal lattice vectors.

115438-4



GROUP THEORY ANALYSIS OF PHONONS IN TWO- . . . PHYSICAL REVIEW B 90, 115438 (2014)

to the GWV found for N -layer graphene and bulk graphite
[38], since the space groups for bulk, N even, and N odd
(N � 3) TLs in the TMDC family resemble the corresponding
graphene systems. However, the 1TL case in TMDCs lacks
inversion symmetry and therefore belongs to the same space
group (P 6̄m2) as that for other N -odd layers. Table II shows
the groups that are isomorphic to the GWV for all the BZ
high-symmetry points and axes occurring for bulk and for
both odd or even number of TLs in the 2H polytype.

The 1T polytype has the same GWV regardless the number
of layers in the sample. The bulk is symmorphic, so it has
the same GWV. Table III shows the GWV for different high-
symmetry points and axes within the BZ for this polytype.

C. Relevance of inversion symmetry

The presence or absence of inversion symmetry is an
important aspect of TMDCs since it opens the possibility of
coupled spin and valley physics [17]. The strong spin-orbit
coupling in TMDC materials is due to the d orbitals in their
heavy metal atoms. The absence of inversion symmetry lifts
the degeneracy of the same energy at the same �k value, at the
K point of the BZ, and spin splitting values on the order of
0.4 eV have been observed in WSe2 [21].

The inversion symmetry is also important for optics,
e.g., the second-harmonic generation (SHG) technique, which
has been routinely used to probe not only the presence of
inversion symmetry, but also the crystal orientation [26,27]
and, recently, the effect on SHG of two artificially stacked
TMDCs layers [42]. For centrosymmetric crystals, the χ (2)

nonlinear susceptibility vanishes [43], and no SHG signal is
observed. The 2H TMDCs polytype (and in this case, also
including the 1TL) belong to the noncentrosymmetric space
group D1

3h and then it is possible to observe a SHG signal
[21,26–28,42–44]. The N -even TLs for 2H TMDCs do not
show SHG since their space groups are centrosymmetric.
For the 1T TMDCs polytype, both N -even and N -odd TLs
have the same centrosymmetric space group D3

3d , and the
SHG signal is not expected. In this sense, the SHG mapping
(together with other characterization tools) could be used to
detect different polytypes in the same sample since the 2H

polytype with an odd number of layers shows SHG, while the
layered 1T polytype does not.

D. Irreducible representations for vibrational modes

The irreducible representations for the lattice vibrations
(�vib) are given by the direct product �vib = �eq ⊕ �vec,
where �eq denotes the equivalence representation for the
atomic sites, and �vec is the representation for the x, y and
z real space vectors [40]. The �vec representation can be
written as �vec = �x ⊕ �y ⊕ �z, or �vec = �x,y ⊕ �z when
x and y have the same irreducible representation. The �vib

representations for the 2Ha, 2Hc, and 1T polytypes are
given in Tables IV, V, and VI, respectively, for all the BZ
high-symmetry points and lines (shown in Fig. 4), and for
odd or even numbers of TLs. It is worth noting that for
the 2Hc polytype, the �vib for the K ′ point is the complex
conjugated form of the �vib for the K point, while for the
2Ha polytype the atomic sites are different (due to different
Wyckoff positions) and the �vib of the K and K ′ points are the
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TABLE III. Space group and group of the wave vector (GWV) for the high-symmetry points and directions in the BZ for 1T polytype in
TMDCs, valid for N -layer (even or odd) and bulk.

Space group � K(K ′) M T (T ′) � u

D3
3d (P 3̄m1, #164) D3

3d (P 3̄m1, #164) D2
3 (P 321, #150) C3

2h (C2/m, #12) C3
2 (C2, #5) Cxz

s (or C3
s , Cm, #8)a C1

1 (P 1, #1)

a“xz” denotes the σ ’s mirror plane.

same. In the 1T polytype, the �vib for the K and K ′ points is
also the same. The conversion from the space group (SG) to the
point group (PG) notation for the irreducible representations is
indicated in each character table of the Supplemental Material
[45]. The irreducible representations for vibrations for each
high-symmetry point and line of the BZ for the bulk polytypes
are also given in Tables SI, SII, and SIII of the Supplemental
Material [45].

E. Raman and infrared activity

For bulk 2H polytypes (1T polytype), the lattice vibration
irreducible representations �vib for the 18 (9) zone center
phonons are reproduced in the first line of Table VII (see
also Tables SI and SII from the Supplemental Material) [45].
The classification of the modes as Raman active, infrared (IR)
active, acoustic, and silent are given in Table VII.

For the 2D polytypes, the Raman and IR active modes
show symmetry variations depending on the number of layers
since the high-symmetry � points have different GWV. The
GWV at the � point is D1

3h for N -odd 2H polytypes, D3
3d

for N -even 2H polytypes, and D3
3d for the N -even and

N -odd 1T polytype. The total number of modes for N even
or N odd layers in the 2H and 1T polytypes, including their
classification as Raman active, IR active, acoustic, and silent
modes are given in Tables VIII and IX, respectively.

In the 1T polytype, since the space group is the same in both
N -even and N -odd, the representations for the few-TL films
of this polytype refer to the same irreducible representations
of the group of the wave vector D3

3d at the � point, which in
turn are the same as those found for its bulk counterpart.

F. Raman tensors

To define whether or not a specific vibrational mode will
be experimentally observed in a given Raman scattering
geometry, we use here the Porto notation [46,47], which
indicates the crystal orientation with respect to the polarization
and propagation directions of the laser. Four letters are used

in the Porto notation to describe the scattering process in
the a(bc)d form: while “a” and “d” are the propagation
directions of the incident and scattered light, respectively,
“b” and “c” represent the polarization directions for the
incident and scattered light, respectively. One common Raman
experimental geometry is the backscattering configuration,
where the incident and scattered light have an opposite sense.
For example, in the z(xy)z configuration the z and z are the
directions of the incident and scattered light, with the opposite
sense, x is the polarization direction of the incident light, and
y is the polarization direction of the scattered light.

The Raman scattering intensity given by the Hamiltonian
perturbation term is proportional to |̂es · ←→α êi |2, where ês is
the unit vector along the polarization direction of the scattered
light, êi is the unit vector along the polarization direction
of the incident light, and ←→α is the Raman tensor. The
quadratic functions (xx, xy, xz, yz, ...,) indicate the irreducible
representations for the Raman-active modes. Following this
procedure, the Raman tensors for all the Raman active modes
of N -layer thin films can be found. For the 2H polytype with
N -odd few layers (D1

3h group of the wave vector for the �

point), the Raman tensors are [48]

�+
1 (A′

1) :

⎛⎝a 0 0
0 a 0
0 0 b

⎞⎠,

�+
3 (E′)(x) :

⎛⎝0 d 0
d 0 0
0 0 0

⎞⎠, �+
3 (E′)(y) :

⎛⎝d 0 0
0 −d 0
0 0 0

⎞⎠,

�−
3 (E′′) :

⎛⎝0 0 0
0 0 c

0 c 0

⎞⎠,

⎛⎝0 0 −c

0 0 0
−c 0 0

⎞⎠.

For the N -even 2H polytype, and for the N even or odd
for the 1T polytype, as well as for the 1T bulk crystal (D3

3d

TABLE IV. Normal vibrational mode irreducible representations (�vib) for the N -layer TMDCs 2Ha-polytype (/AbA CbC/), considering
all the high-symmetry points and lines in the BZ.

2Ha-polytype (/AbA CbC/)

N odd N even

�
(

3N−1
2

)
(�+

1 ⊕ �−
3 ) ⊕ (

3N+1
2

)
(�+

3 ⊕ �−
2 )

(
3N

2

)
(�+

1 ⊕ �+
3 ⊕ �−

2 ⊕ �−
3 )

K(K ′)
(

3N−1
2

)
(K+

1 ⊕ K−
2 ⊕ K−∗

2 ) ⊕ (
3N+1

2

)
(K+

2 ⊕ K+∗
2 ⊕ K−

1 )
(

3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M 3N (M1 ⊕ M4) ⊕ (
3N−1

2

)
M2 ⊕ (

3N+1
2

)
M3 3N (M+

1 ⊕ M−
2 ) ⊕ (

3N

2

)
(M+

2 ⊕ M−
1 )

� 3N (�1 ⊕ �4) ⊕ (
3N−1

2

)
�2 ⊕ (

3N+1
2

)
�3 6N�1 ⊕ 3N�2

T (T ′)
(

9N+1
2

)
T + ⊕ (

9N−1
2

)
T − (

9N

2

)
(T1 ⊕ T2)

u
(

9N+1
2

)
u+ ⊕ (

9N−1
2

)
u− 9Nu
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TABLE V. Normal vibrational mode irreducible representations (�vib) for the N -layer TMDCs 2Hc-polytype (/CaC AcA/), considering
all the high-symmetry points and lines in the BZ.

2Hc-polytype (/CaC AcA/)

N odd N even

�
(

3N−1
2

)
(�+

1 ⊕ �−
3 ) ⊕ (

3N+1
2

)
(�+

3 ⊕ �−
2 )

(
3N

2

)
(�+

1 ⊕ �+
3 ⊕ �−

2 ⊕ �−
3 )

K(K ′∗)
(

3N+1
2

)
(K+

1 ⊕ K+
2 ⊕ K−∗

2 ) ⊕ (
3N−1

2

)
(K−

1 ⊕ K−
2 ⊕ K+∗

2 )
(

3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M 3N (M1 ⊕ M4) ⊕ (
3N−1

2

)
M2 ⊕ (

3N+1
2

)
M3 3N (M+

1 ⊕ M−
2 ) ⊕ (

3N

2

)(
M+

2 ⊕ M−
1 )

� 3N (�1 ⊕ �4) ⊕ (
3N−1

2

)
�2 ⊕ (

3N+1
2

)
�3 6N�1 ⊕ 3N�2

T (T ′)
(

9N+1
2

)
T + ⊕ (

9N−1
2

)
T − (

9N

2

)
(T1 ⊕ T2)

u
(

9N+1
2

)
u+ ⊕ (

9N−1
2

)
u− 9Nu

TABLE VI. Normal vibrational mode irreducible representations (�vib) for the N -layer TMDCs 1T -polytype (/AbC/AbC/), considering
all the high-symmetry points and lines in the BZ.

1T -polytype (/AbC/AbC/)

N odd N even

�
(

3N−1
2

)
(�+

1 ⊕ �+
3 ) ⊕ (

3N+1
2

)
(�−

2 ⊕ �−
3 )

(
3N

2

)
(�+

1 ⊕ �+
3 ⊕ �−

2 ⊕ �−
3 )

K(K ′)
(

3N−1
2

)
K1 ⊕ (

3N+1
2

)
K2 ⊕ 3NK3

(
3N

2

)
(K1 ⊕ K2) ⊕ 3NK3

M (3N − 1)(M+
1 ⊕ M−

1 ) ⊕ (
3N−1

2

)
M+

2 ⊕ (3N + 1)M−
2 3N (M+

1 ⊕ M−
2 ) ⊕ (

3N

2

)
(M+

2 ⊕ M−
1 )

� 6N�1 ⊕ 3N�2 6N�1 ⊕ 3N�2

T (T ′)
(

9N−1
2

)
T1 ⊕ (

9N+1
2

)
T2

(
9N

2

)
(T1 ⊕ T2)

u 9Nu 9Nu

TABLE VII. Normal vibrational mode irreducible representations (�vib) for bulk TMDCs at the � point within the 2Ha, 2Hc, and 1T

polytypes. The Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

2Ha and 2Hc polytypes 1T polytype

�vib �+
1 ⊕ 2�+

3 ⊕ �+
5 ⊕ 2�+

6 ⊕ 2�−
2 ⊕ �−

4 ⊕ 2�−
5 ⊕ �−

6 �+
1 ⊕ �+

3 ⊕ 2�−
2 ⊕ 2�−

3

Raman �+
1 ⊕ �+

5 ⊕ 2�+
6 �+

1 ⊕ �+
3

Infrared �−
2 ⊕ �−

5 �−
2 ⊕ �−

3

Acoustic �−
2 ⊕ �−

5 �−
2 ⊕ �−

3

Silent 2�+
3 ⊕ �−

4 ⊕ 1�−
6 -

TABLE VIII. Normal vibrational mode irreducible representations (�vib) for the N -layer TMDCs at the � point within the 2Ha and 2Hc

polytypes. Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

2Ha and 2Hc polytypes

N odd N even

�vib
(

3N−1
2

)
(�+

1 ⊕ �−
3 ) ⊕ (

3N+1
2

)
(�+

3 ⊕ �−
2 )

(
3N

2

)
(�+

1 ⊕ �+
3 ⊕ �−

2 ⊕ �−
3 )

Raman (3N−1)
2 (�+

1 ⊕ �−
3 ⊕ �+

3 ) 3N

2 (�+
1 ⊕ �+

3 )

Infrared (3N−1)
2 (�+

3 ⊕ �−
2 ) (3N−2)

2 (�−
2 ⊕ �−

3 )

Acoustic �+
3 ⊕ �−

2 �−
2 ⊕ �−

3

Silent – –
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TABLE IX. Normal vibrational mode irreducible representations (�vib) for the N -layer TMDCs at the � point within the 1T -polytype.
Raman active, infrared active, acoustic, and silent mode irreducible representations are identified.

1T polytype

N odd N even

�vib
(

3N−1
2

)
(�+

1 ⊕ �+
3 ) ⊕ (

3N+1
2

)
(�−

2 ⊕ �−
3 )

(
3N

2

)
(�+

1 ⊕ �+
3 ⊕ �−

2 ⊕ �−
3 )

Raman (3N−1)
2 (�+

1 ⊕ �+
3 ) 3N

2 (�+
1 ⊕ �+

3 )

Infrared (3N−1)
2 (�−

2 ⊕ �−
3 ) (3N−2)

2 (�−
2 ⊕ �−

3 )
Acoustic �−

2 ⊕ �−
3 �−

2 ⊕ �−
3

Silent - -

group of the wave vector for the � point), the Raman tensors
are [48]

�+
1

(
A1g

)
:

(
a 0 0
0 a 0
0 0 b

)
,

�+
3 (Eg)(1) :

(
c 0 0
0 −c d
0 d 0

)
, �+

3 (Eg)(2) :

(
0 −c −d
−c 0 0
−d 0 0

)
.

For the nonsymmorphic space group for the bulk 2H

polytype, the Raman tensors are [48]

�+
1 (A1g) :

(
a 0 0
0 a 0
0 0 b

)
,

�+
5

(
E1g

)
:

(
0 0 0
0 0 c
0 c 0

)
,

(
0 0 −c
0 0 0
−c 0 0

)
,

�+
6

(
E2g

)
:

(
0 d 0
d 0 0
0 0 0

)
,

(
d 0 0
0 −d 0
0 0 0

)
.

III. SUMMARY AND DISCUSSIONS

In this work, symmetry-related aspects of bulk and N -layer
2Ha, 2Hc and 1T TMDCs polytypes were discussed from
a group theory perspective. The analysis of the presence of
inversion symmetry gives different behaviors (in the case of
odd number of TLs) for the same number of layers in a given
material, with different polytypes. Therefore, it is possible to
design experiments to probe, for example, the presence of
different polytypes within the same sample, with the same
number of layers. The breaking of inversion symmetry is
crucial in materials suitable for specific applications, like
the development of valleytronic devices, and group theory
predictions give directions to researches on how to design
their devices to achieve their desired symmetry-related goals.

Some perturbations can lower the symmetry of these thin
films and this approach has been used to tune some charac-
teristics of these materials. In a strained MoS2 monolayer,
where the doubly degenerate Raman active mode E′ splits
into E′− and E′+ peaks (depending on the magnitude and
symmetry of the strain), an optical band gap was found and
its magnitude is approximately linear with strain for both
monolayer and bilayer MoS2 [30,31,49]. By using different
TMDCs, it is possible to engineer the optical band gap of
interest to the researcher. Another possibility is the piling
of different TMDCs to engineer new heterostructures, where

the inversion symmetry is broken with more options made
available by using multiple materials. Such heterostructures
are expected, for example, to give rise to tunable band gaps
from 0.79 to 1.16 eV [9].

The symmetry properties of the vibrational modes were
found for the high-symmetry points and lines in the BZ, ex-
tending previous knowledge beyond the zone center phonons
in TMDCs. One important aspect of this symmetry analysis
is that, from symmetry variations, it is possible to predict
the difference in phonon modes in these structures. N new
Raman-active modes have been observed in few layers TMDCs
like in WSe2 [24]. Density functional theory (DFT) combined
with polarization-dependent Raman measurements and group
theory were used to understand the first-order Raman spectra.
For example, the appearance of the inactive mode B1

2g in
bulk WSe2 and only for specific laser lines is still not well
understood and is usually attributed to resonance effects [24].
However, for N even and N odd few layers, A1g (for N even
TLs) and A′

1 (for N odd TLs) are both observed at 310 cm−1.
Furthermore, the E1g mode at around 175 cm−1 in bulk WSe2

(2Hc polytype) is not measurable under the backscattering
configuration along the z direction of light propagation, as
well as the E′′ mode for 1TL of the same polytype (see the
Raman tensors in Sec. II F). In films with N � 2, the E′′ mode
develops into Eg symmetry, for N -even TLs, and into E′ modes
for N -odd layers, which are both detectable under z(xx)z and
z(xy)z polarizations (these different behaviors are not related
to substrate effects, since these modes are also detected in
suspended samples) [24]. The mode at 260 cm−1 in bulk WSe2

was previously attributed to the Raman-active out-of-plane
A1g mode, but polarization measurements have shown that
even for z(xy)z configuration this mode is observed, in
contrast with the group theoretical prediction and the previous
symmetry assignment. This mode was consequently attributed
to second-order Raman scattering [24]. Similar results were
observed for MoTe2 [25] and are expected for other TMDCs.
The extended group theory analysis described here should be
used to guide researchers in making correct mode assignments
using the tables and discussion given in the present work.
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[34] A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta,

G. Burkard, and V. I. Fal’ko, Phys. Rev. B 88, 045416 (2013).
[35] International Tables for Crystallography, 5th ed., Vol. A: Space-

Group Symmetry, edited by T. Hahn (Springer, Dordrecht, The
Netherlands, 2005).
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