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Spin-orbit splitting of surface states is analyzed within and beyond the Rashba model using as examples the
(111) surfaces of noble metals, Ag2Bi surface alloy, and topological insulator Bi2Se3. The ab initio analysis of
relativistic velocity proves the Rashba model to be fundamentally inapplicable to real crystals. The splitting is
found to be primarily due to a spin-orbit induced in-plane modification of the wave function, namely, to its effect
on the nonrelativistic Hamiltonian. The usual Rashba splitting—given by charge distribution asymmetry—is an
order of magnitude smaller.
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I. INTRODUCTION

Spin structure of nonmagnetic surfaces has attracted much
interest in the last decade due to the promising properties
of spin-split surface states for spintronics applications [1,2].
The idea of using the Rashba effect [3,4] in the Datta-Das
spin transistor [5] and for spin filtering [6] has stimulated
great activity in the search of enhanced spin-orbit splitting
at surfaces. Upon the discovery in 1996 of the splitting of
the surface state on Au(111) [7–9] much attention has turned
to metal surfaces: spin-split surface states were promptly
found on (110) surfaces of W and Mo covered with thin
overlayers [10–16] and on clean surfaces of Bi and Sb [17–20].
The giant spin splitting found in Bi and Pb/Ag(111) surface
alloys [21–24] has inspired a search for a strong Rashba
effect in heavy-element adsorbates on technologically more
attractive (111) surfaces of Si and Ge [25–28]. Recently, a giant
Rashba splitting was observed in ternary semiconductors BiTeI
[29–32], BiTeCl [33,34], and BiTeBr [35].

The way to practical spintronics depends on a deep
understanding of fundamental mechanisms by which material
properties determine the magnitude of the spin-orbit splitting.
The early theoretical analyses of the splitting effect at the
high-Z crystal surfaces [36–39] emphasized its similarity to
the Rashba effect in semiconductor heterojunctions, which
is well understood within the two-dimensional electron-gas
model [3,4]. The model is described by the Rashba-Bychkov
(RB) Hamiltonian:

ĤRB = p̂2
‖/2m∗ + αRσ · (n × p̂‖). (1)

In application to semi-infinite crystals, the microscopic model
behind Eq. (1) is obtained from the true two-component
Hamiltonian (in Rydberg atomic units)

Ĥ = p̂2 + V (r) + βσ · [∇V (r) × p̂] (2)

by neglecting the variation of the crystal potential V (r) parallel
to the surface [see Fig. 1(a)]. Thus, Eq. (1) assumes a free
motion along the surface, and the material dependence of
the spin-orbit splitting comes through the Rashba parameter
αR. In the RB model, αR has a clear physical meaning
of the expectation value of the potential gradient in the

surface-normal direction n (along the y axis):

αR = β〈ψ |∂V/∂y|ψ〉 = β

∫ +∞

−∞

∂V

∂y
ρ(y) dy, (3)

with β = �/4m2c2. Owing to the perfectly parabolic disper-
sion E(k‖) of the Au(111) surface state [8] and to the nearly
total spin polarization of the split branches, the Au(111) case
is often considered a textbook example of Rashba effect in
metals and a demonstration of the applicability of Eq. (1).
This view is detailed in [39,40]: since the spin-orbit interaction
is significant only in a close vicinity of the nucleus, where
the potential is spherically symmetric, the value of αR is
determined by the surface-perpendicular asymmetry of the
probability density distribution ρ(r) = |ψ(r)|2 at the nuclei.
This idea, expressed by Eqs. (1) and (3), has been the basis
for the analysis of individual atomic contributions to the spin
splitting and polarization at real surfaces [27,28,41–43]. In
addition, in [23–25,44,45] an important role is attributed to
the in-plane inversion asymmetry and to the related surface-
parallel potential gradient. In spite of their different views
on the relative importance of surface-normal and in-plane
asymmetry, all the studies have focused on the shape of ρ(r)
and how it may affect the ∇V expectation value, but so far no
attempts have been made to express the asymmetry underlying
the effect in energy units and to quantify different contributions
to the spin-orbit splitting. The microscopic origin of the Rashba
effect, i.e., its relation to the shape of the wave function in real
crystals, thus remains an open question.

The aim of this work is to understand the physics behind
the Rashba parameter in real crystals. An ab initio analysis of
the Hamiltonian Eq. (2) is performed to reveal the actual value
of the RB term. A surprising result is that the pure Rashba
contribution to the splitting—the one given by Eqs. (1) and
(3)—typically yields only a few percent of the whole effect,
while the major part arises from a relativistic modification of
the wave function through its influence on the nonrelativistic
energy operator.

II. MICROSCOPIC RASHBA MODEL

Before we turn to real crystals let us take a closer look at
how the microscopic Rashba model works. To be specific about
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FIG. 1. (Color online) Microscopic Rashba model. (a) Coordinate frame. (b) Model potential V (y) = −Va
∑

n cos(2πny/a) with lattice
constant a = πa0, Va = 0.1 Ry, and vacuum level V0 = 1.5 Ry. (c) Effective potentials Ṽ↓(y) = Ṽ↑(−y) in Eq. (4). (d) Surface-state wave
function. (e) Complex band structure: inside the gap it is Re ky = π/a. (f) Energy dispersion E(k‖) of the surface states for the potential V

shown in graph (b). (g) The same for the potential 2V . (h) 2αR = d(E↑ − E↓)/dk‖ for the split surface states for the potential V0 (solid lines)
and 2V0 (dashed lines). (i,j) Splitting parameter α′′

R as a function (i) of the surface barrier V0 and (j) of the eigenenergy at �̄ for the potential
with and without a “singularity” at the surface, graph (k).

terminology, here by Rashba model is understood a system in
which electrons move freely along the surface. In the geometry
of Fig. 1(a), with the spin quantization axis along z and with
k‖ along x, the spatial and spin variables in the Schrödinger
equation separate, and for a given k‖ the problem reduces to a
pair of independent scalar equations for the two eigenfunctions
ψ↑(y) and ψ↓(y) [46]:

−ψ ′′
↑↓(y) + Ṽ↑↓(y)ψ↑↓(y) = (E − k2

‖)ψ↑↓(y). (4)

The effective potential Ṽ↑↓(y) = V (y) ± βk‖V ′
y(y) depends

upon spin (“−” for V↑ and “+” for V↓) and upon k‖. For a bulk
crystal with inversion symmetry, V (y) = V (−y), the effective
potentials are related as Ṽ↓(y) = Ṽ↑(−y), as illustrated by
Figs. 1(b) and 1(c) (bulk is to the left from the surface plane
yS). Equation (4) then yields the same band structure E(ky)
for both spins, for real and for complex ky [in the spectral
gap, Fig. 1(e)], which is known as Kramers degeneracy. The
existence of a surface state in the gap depends on whether
the regular solution of Eq. (4) for y > yS matches the bulk
evanescent wave at the same energy in both value and slope
[47,48] [see Fig. 1(d)]. Being equivalent in an infinite crystal,
the potentials Ṽ↓ and Ṽ↑ are different when looked at from the
surface [see Fig. 1(c)]: Ṽ↓(y) is slightly shifted to the left and
Ṽ↑(y) is slightly shifted to the right relative to V (y). Therefore,
the evanescent waves of spin ↑ and spin ↓ are different at yS,
and the matching occurs at different energies for spin ↑ and
spin ↓, which is known as Rashba splitting.

The dispersion lines E(k‖) calculated in the nonperturba-
tive complex-band-structure approach [49] are presented in
Fig. 1(f) with full lines for the potential V [shown in Fig. 1(b)]
and with dashed lines for the same bulk potential but for a
twice as large surface barrier, V0 → 2V0. Figure 1(g) shows the
results for the potential 2V (i.e., both V0 → 2V0 and Va → 2Va

for a larger “atomic number”). The spin-orbit effect on the
wave function leads to a dependence of αR on k‖ [see Fig. 1(h)],
i.e., to a nonparabolicity of E(k‖). [In the RB model Eq. (1)
the slope at k‖ = 0 (point �̄) equals zero [50], so at finite
k‖ we define 2αR = d(E↑ − E↓)/dk‖.] A more important and
counterintuitive result is that the potential scaling does not
always increase the splitting—it may even become smaller

because at sufficiently small k‖ αR decreases with increasing
the barrier height [see Figs. 1(f)–1(h)]. Microscopically, this
means that the effect of a larger potential gradient is completely
canceled by a modification of the wave function. From the
complex-band-structure point of view this stems from the fact
that in the 2V case [Fig. 1(g)] the surface state is pushed
toward the gap edge, where Im ky and, consequently, the wave
function changes faster with energy [see Fig. 1(e)].

The role of the surface is demonstrated by Fig. 1(i), which
compares the splitting as a function of the surface barrier V0

for a “clean” surface and for a surface with a “lighter adatom”
[see Fig. 1(k)]. For small k‖ the splitting grows as α′′

Rk3
‖ , so

Figs. 1(i) and 1(j) show the coefficient α′′
R determined by

regression. [The bulk potential is the one of Fig. 1(b), so
the two circles in the dashed curve in Fig. 1(i) correspond
to the data in Fig. 1(f).] In both cases α′′

R rapidly grows at
small V0, but at larger barriers it keeps growing in the adatom
case and decreases for the smooth barrier. This seemingly
different behavior, however, looks rather similar when α′′

R is
plotted as a function of the eigenenergy [see Fig. 1(j)]: in
both cases α′′

R is seen to diminish when the energy is pushed
to a gap edge, i.e., it shows the same trend as with scaling
the potential [Figs. 1(f) and 1(g)]. According to Eq. (3),
the peculiar dependence of αR on the system parameters
results from a complicated redistribution of the charge density,
whereby different contributions to the potential gradient either
cancel or enhance each other. A practical conclusion, however,
can be formulated quite simply: in a Rashba system, to achieve
larger splitting the surface state should be placed sufficiently
far from the edges of the gap. Note that here αR is controlled
through the modification of a nonrelativistic wave function:
indeed, at k‖ = 0 it is Ṽ↑ = Ṽ↓ = V , and the spin-orbit effect
on the wave function vanishes.

III. RASHBA SPLITTING IN REAL CRYSTALS

The fundamental difference between the spin-orbit splitting
in real crystals and in the RB model is best seen at the �̄

point, where the relativistic effect manifests itself as a nonzero
group velocity dE/dk‖, with the opposite sign for the two
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FIG. 2. (Color online) Group velocity as a function of the Bloch vector in the direction �̄M̄ for the surface states on Au(111), left;
Bi/Ag(111), middle; and Bi2Se3, right column. In the upper row, circles show a numerical derivative of the eigenvalues dE(k‖)/dk‖, and solid
lines show the nonrelativistic part vc. The middle row shows the relativistic part vr, and the bottom row shows the dispersion E(k‖). Everywhere
black color is used for the lower branch and red color is used for the upper one. For Bi/Ag(111), the broken line for the upper branch at
k‖ = 0.07 a.u.−1 indicates the interpolated values at the place of avoided crossing with a higher-lying surface state.

branches. The expression for dE/dk‖ follows from Eq. (2)
[cf. Eq. (3) in [51]]:

dE/dk‖ = 2〈ψ |p̂‖|ψ〉 + β〈ψ |σ · [∇V × τ ‖]|ψ〉, (5)

where τ ‖ = k‖/k‖ and p̂‖ = p̂ · τ ‖. In the RB model, the wave
function is ψ(r) = u(y) exp(ik‖ · r‖), so the first (nonrelativis-
tic) term vanishes at k‖ = 0, and the splitting is solely due to
the relativistic term of Eq. (5). This is not the case in real
crystals: here it is the nonrelativistic term that gives the major
contribution to the slope at �̄. This is illustrated in Fig. 2
by the examples of three well-studied hexagonal surfaces:
the classical case of Au(111), the surface alloy Bi/Ag(111)
exhibiting giant splitting, and the topological insulator Bi2Se3.
In the upper row of Fig. 2 the numerical derivative of the
eigenenergy dE(k‖)/dk‖ (total velocity) is compared with the
nonrelativistic (classical) velocity vc = 2〈ψ |p̂‖|ψ〉.

The wave functions ψ were calculated with the Hamiltonian
of Eq. (2) with the linear augmented plane-wave method
in a repeated slab geometry. The density functional theory
calculations [52] were performed for symmetric slabs (19
layers for noble metals [53], 9 layers for Bi/Ag(111) [54],
and 25 layers for Bi2Se3 [55]), and a small perturbation at
one of the surfaces was introduced afterward to disentangle
the surface states at the opposite surfaces. Relativistic effects
are treated within the second-variational two-component
Koelling-Harmon approximation [56,57]. The potential gra-
dient is taken into account only in the muffin-tin spheres,
where the spin-orbit term takes the form β[V ′

r (r)/r] σ · L̂.

Its contribution to the group velocity is then given by the
expectation value vr = 〈ψ |β σ · [r × τ ‖] V ′

r (r)/r|ψ〉.
The velocities calculated by this formula are shown in the

middle row of Fig. 2. The main message is that at �̄ the
spin-orbit part is an order of magnitude smaller than the full
velocity (circles in the upper row). This result is corroborated
by the calculation of the classical velocity vc (solid lines in the
upper row), which is seen to be very close to the full velocity
(found by numerical differentiation). Clearly, the splitting
here follows a strikingly different scenario from the one of
the standard Rashba model: crucial is the influence of the
relativistic term on the wave function, which then gives rise to
the strong splitting through the purely nonrelativistic velocity
operator. In other words, a perturbation theory based on non- or
scalar-relativistic wave functions, which in the Rashba model

TABLE I. Group velocity at �̄ for the surface states at some (111)
surfaces. Values obtained by numerical differentiation (upper row)
are compared to nonrelativistic and spin-orbit parts obtained from
the wave functions. Identity Eq. (5) is satisfied only with a certain
accuracy due to the variational character of the wave functions [58].

Cu Ag Au Ag2Bi Bi2Se3

dE(k‖)/dk‖ 0.02 0.01 0.10 0.32 0.26
Nonrelativistic vc 0.02 0.02 0.12 0.32 0.29
Relativistic vr 0.002 0.006 0.014 0.022 0.010
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FIG. 3. (Color online) In-plane distribution of the k‖ projection
of the classical current density j (r‖) (in units of Ry a.u.) for the surface
state at Bi/Ag(111) with k‖ along the horizontal axis. (a) Relativistic
j (r‖) map for k‖ = 10−4Å−1 for the inner-circle surface state, i.e., for
the one with the smaller k‖ at a given E, hence the negative group
velocity. (b) Scalar relativistic map for k‖ = 10−3Å−1.

is exact at �̄, is here manifestly inapplicable. The parameter
αR that can be derived by fitting experimental or ab initio
energies to Eq. (1) is, thus, not the measure of either the
normal or in-plane gradient (or the respective charge-density
asymmetry). Moreover, the true Rashba parameters in the three
crystals (see the middle row of Fig. 2) differ much less than
the full slope at �̄ (upper row). The dependence of the velocity
ingredients on the atomic number can be inferred from Table I,
which lists also Cu and Ag. In the series Cu, Ag, Au, the
relativistic term vr steadily grows, and it is reasonably large
for Bi based crystals—fully consistent with the Rashba model.
However, there is no apparent correlation between vr and the
ultimate effect.

In order to understand how the spin-orbit term modifies
the wave function, let us consider the classical current density
j(r) = 2Re ψ(r)∗[−i∇]ψ(r). It is instructive to visualize the
lateral spatial structure of the surface state by plotting the
projection of j in the direction of motion, j = j · τ ‖. After
averaging along the surface normal we obtain a scalar field
j (r‖), which is shown by the color maps in Fig. 3. The average
value of j (r‖) over the two-dimensional unit cell is the classical
velocity vc. (Here j refers only to the periodic part of the Bloch
function: the trivial spatially constant term 2k‖ is dropped.)
Let us compare the current density distribution in relativistic
and scalar relativistic calculations at k‖ → 0. Figure 3 shows
an example for Bi/Ag(111): the relativistic j (r‖) map is for
k‖ = 10−4 Å−1, and the scalar relativistic j (r‖) map is for
10−3 Å−1. The two maps are seen to be identical down to the
tiniest details, with the only difference being the scale: the
relativistic amplitude at the smaller k‖ is everywhere 50 times
the scalar relativistic one at the larger k‖. Generally, with as
well as without spin-orbit coupling, the function j (r‖) retains
its shape up to rather large k‖, and in the scalar relativistic case
its amplitude steadily grows with k‖. In the relativistic case the
shape is the same, but the amplitude is large already at �̄. This
same behavior of the current density is demonstrated also by
noble metals.

The above current-density considerations offer a rather trans-
parent picture of how the spin-orbit interaction affects the
surface state: its principal role is to modify the wave function
in such a way that the function j (r‖) acquires a large amplitude
at �̄ (which in the scalar relativistic case would happen at
large k‖). To put it most concisely, the spin-orbit term shifts
the distribution j (k‖; r‖) along k‖. This relativistic effect is
omitted in the Rashba model because there it is j (r‖) = 0.

IV. CONCLUSIONS

We can conclude that the relativistic splitting of surface
states has the same microscopic nature in all the materials,
regardless of its size or topology (trivial surface states in the
metals or a topologically protected Dirac cone in Bi2Se3).
In particular, Au(111) turns out not to be a paradigm case
of an RB system, which explains the recently encountered
“departure from the Rashba model” in the spin-flip excitations
at Au(111) [59]. Thus, neither the parabolicity of E(k‖) nor the
full in-plane spin polarization of the states is an indication of
the RB scenario. The relativistic wave-function modification
revealed by Figs. 2 and 3 has important implications in a
wide range of scattering and excitation processes: this property
should be taken into account in modeling the inelastic-
scattering and lifetime effects [60] and especially electron and
spin transport by the surface states, which is directly connected
to the current density distribution. Furthermore, the spatial
structure of the wave function reflects itself in angle-resolved
photoemission: the component of the electric field of the
incident light along k‖ emphasizes the relevant feature of the
initial state via the matrix element of the classical velocity
operator 〈	final|p̂‖|ψ〉. According to the present theory the k‖
dependence of the matrix element would be different for the
splitting of the RB type and of the present type.

To summarize, in order to manipulate the spin-orbit splitting
it is necessary to know how it arises. The present study has
established that in crystals built of high-Z atoms the splitting
comes primarily from a relativistic modification of the wave
function that makes the classical current carried by the surface
state finite at �̄. This spin-orbit induced transformation can be
described as a shift of the current density distribution along k‖.
This is by contrast to the Rashba model, in which the spin-orbit
interaction does not modify the in-plane structure of the wave
function. The discovered scenario is followed equally closely
by noble metals, surface alloys, and topological insulators
irrespective of the strength of the effect and topological nature.
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