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Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating
the case of Casimir force coupling
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The natural transition from the radiative regime to the conductive regime of heat transfer between two identical
isotropic nonmagnetic dielectric solid materials is questioned by investigating the possibility of induced phonon
transfer in vacuum. We describe the process in a general way assuming a certain phonon coupling mechanism
between the two identical solids, then we particularly illustrate the case of coupling through the Casimir force.
We analyze how this mechanism of heat transfer compares and competes with the near field thermal radiation
using a local model of the dielectric function. We show that the former mechanism can be very effective and even
surpass the latter mechanism depending on the nature of the solid dielectric materials, the distance gap between
them, as well as the operating temperature regime.
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I. INTRODUCTION

Understanding and controlling heat transfer at very short
length scales has become very crucial and challenging in
the last decade due to the continuous development in nan-
otechnology and the rapid evolution in the synthesis and
fabrication of different materials at a nanometer scale [1,2]. At
these scales, two heat transfer mechanisms become dominant,
namely near field thermal radiation (mediated by photons)
and interface conduction (mediated by phonons) between
two solid materials. The study of these two heat transfer
mechanisms has seen a tremendous development in the last
decade [1–4]. In addition to the purely fundamental aspect
of the phenomena, the interest was mainly motivated due to
the increasing application potential in different technological
domains. The study of radiation heat transfer between two
solid materials is particularly important in the exploitation of
renewable energy sources, such as in photovoltaics and ther-
mophotovoltaics [5,6]. Moreover, several conceptual thermal
devices, such as thermal rectifiers/diodes, thermal transistors,
and thermal memories, have been suggested and theorized,
which in principle makes it possible to control heat and process
information via phonons and photons [7–13].

In classical radiation theory, the radiation heat transfer
between two solids is maximal when both solids behave
as black bodies [14]. The situation changes radically when
the separation distance between the two solids becomes
comparable to or smaller than the dominant wavelength of the
thermal radiation, called the Wien length (λT = �c/KBT ),
where T is the absolute temperature, c is the speed of
light in vacuum, � is the reduced Planck constant, and
KB is Boltzmann constant. Other very interesting physical
effects emerge such as heat transfer through tunneling of the
electromagnetic (EM) evanescent waves. Due to the inclusion
of these effects, radiation heat transfer between two solid
materials increases enormously and becomes even orders
of magnitude higher than the black body limit [3,4]. In
addition, as the separation distance gets shorter and shorter
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for the two materials to mutually touch, a conductive heat
transfer starts to take place through the new interface. Thus, a
natural transition from the radiative regime to the conductive
regime of heat transfer will occur as the separation distance
between the two solid materials tends to zero. This transition
is therefore intimately linked to the notion of the interface
thermal resistance depending on the nature of the two solid
materials (metal or dielectric) [15].

The necessary occurrence of such a transition regime in
heat transfer between two solid materials has raised a very
fundamental question regarding the possibility of phonon
tunneling through the separation gap between the two solids
when the latter become very close to each other. When the gap
is filled with nothing (vacuum), speaking of phonon tunneling
can be very misleading. In fact, this terminology will be more
respected if one considers phonons (acoustic or optic waves)
that make the surface vibrates. In fact, these waves could tunnel
if the amplitude of their displacement is on the same order or
higher than the gap distance. On the other hand, a bulk acoustic
or optic phonon (elementary vibration inside a matter) cannot
propagate in vacuum. Therefore, it will be more meaningful
to speak of induced phonon transfer; elementary vibrations
in one solid material will induce elementary vibrations in
the other material and vice versa when the two are brought
very close to each other so that a certain phonon coupling
mechanism is established. There have been few papers tackling
the question of imagining different coupling mechanisms
for the occurrence of this phonon induction phenomenon
by differentiating particularly the case of piezoelectric and
nonpiezoelectric crystals [14–20].

Indeed, the purpose of our present paper is to investigate
the possibility of such induced phonon transfer by considering
a general phonon coupling mechanism between two solid
materials. Then we will illustrate our approach assuming
coupling through the Casimir force [21,22]. This will be a
generalization of the approach recently presented by Budaev
and Bogy [19,20]. As a matter of fact, the Casimir force is the
most famous mechanical effect of vacuum fluctuations. The
investigation of this force has seen rapidly growing activity
in the last two decades due to its potential influence on the
working of nanosystems and nanoscale structures such as
micromachining devices and microelectromechanical systems
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FIG. 1. (Color online) Schematic illustration of the studied
structure.

(MEMS) [23]. The Casimir force depends on the gap distance
between the two solids as well as on their optical properties,
hence a local change of this distance due to any displacement
of one side of the gap in the acoustic wave causes an excess
pressure on the opposite side of the gap [16].

II. THEORY

A schematic of the structure under study is illustrated
in Fig. 1. For the sake of simplicity, and without loss
of generality, we will consider two identical nonmagnetic
isotropic semi-infinite parallel plane solid materials both in
a thermal equilibrium state at different temperatures to be put
in vacuum and separated by a gap distance d. The situation
corresponds to a point junction case, through which the
transport of phonons may be regarded as ballistic [24]. Each
solid material is characterized by (i) an atomic mass m, (ii) a
spring constant k corresponding to a harmonic potential, and
(iii) a dielectric permittivity function ε. The two solids are then
connected via a certain phonon coupling mechanism described
by a harmonic potential and represented by a spring coupling
constant kCoupling.

The calculation of the phonon heat flux density through
the interface can be carried out using either the scattering
boundary method (SBM) [24] or nonequilibrium Green’s
function nethod [25,26]. Within the harmonic approximation,
the two methods have been shown to be equivalent and give
the same results [24]. Besides, the SBM has the advantage
of simplicity and can provide very closed-form analytical
expressions for the phonon transmission function [24]. Thus,
we choose herein to use the SBM to work out our analysis.

Using a Landauer formalism, one can show that the
phononic thermal conductance through the interface takes the
expression [25,26]:

σPh(T ,ωC,kCoupling)

= 1

2π

∫ ωC

0
τ3D

(
ω2,ω2

C,k,kCoupling
)
CPh(ω,T )dω, (1)

where ωC = 2
√

k/m is the cutoff frequency in the
phonon dispersion relation inside each material, CPh(ω,T ) =
�ω[∂n0(ω,T )/∂T ] represents the specific heat per normal
phonon mode, and n0(ω,T ) = [exp(�ω/KBT ) − 1]−1 is the
Planck equilibrium phonon distribution function.

The key step for the calculation of σPh(T ) is the determi-
nation of the frequency dependent transmission function for
the three-dimensional (3D) configuration we are considering
τ3D(ω2,ω2

C,k,kCoupling). The latter gathers all the information
about the nature of the phonon transport mechanisms. Ac-
cording to the SBM, the one-dimensional (1D) configuration
transmission function in the case of two identical solid
harmonic chains can be written as [24]

τ1D

(
ω2,ω2

C,k,kCoupling
)

= k2
Coupling

(
ω2

C − ω2
)

k(k − 2kCoupling)ω2 + k2
Couplingω

2
C

. (2)

As explained by Mingo [26], in the case of a real 3D
surface configuration, we can split the problem into multiple
independent problems, each one corresponding to a different
wave vector parallel to the surface. Because of the isotropy of
the solid materials and the parallel momentum conservation
relative to the phonon dispersion, each of these problems is
completely decoupled from the rest and can be described by
an effective 1D system. Therefore, within the framework of the
linear acoustic Debye theory, to go from a 1D configuration to
a 3D configuration, one uses the relation [26]

τ3D

(
ω2,ω2

C,k,kCoupling
)

= 1

2π

∫ ω/v

0
τ1D

(
ω2 − v2q2,ω2

C,k,kCoupling
)
qdq, (3)

where q is the parallel wave vector and v represents an average
sound velocity that takes into account both longitudinal
and transverse acoustic phonon polarizations 3/v2 = 1/v2

L +
2/v2

T .
Equation (3) can be worked out analytically; hence, the

transmission function in the 3D configuration of two identical
solid materials is given by

τ3D

(
ω2,ω2

C,k,kCoupling
)

= k2
Couplingω

2
C

4πk2(k − 2kCoupling)2v2

×
{

(k − kCoupling)2 log

[
1 + k(k − 2kCoupling)

k2
Coupling

(
ω

ωC

)2]

− k(k − 2kCoupling)

(
ω

ωC

)2}
. (4)

One can easily show that for a fixed k and kCoupling, this
function is a monotonic increasing function of ω over the
interval [0, ωC]. On the other hand, for a fixed frequency ω, τ3D

manifests a maximum at kCoupling = k. Actually, one can prove
in the general case of 3D point junction between two dissimilar
solid materials that the maximum transmission function occurs
at exactly kCoupling = 2k1k2/ (k1 + k2), where k1, k2 denote the
spring constants of the two solid materials, respectively.

One should note also that because of the integration over
q in the expression of τ3D , the values of the latter might be
higher than 1. In that regard, τ3D cannot be considered as a
transmission coefficient in a proper physical sense; however,
by keeping this in mind, we continue to address it as such in
the rest of this paper.
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The combination of Eqs. (1) and (4) allows obtaining the
final expression of the phononic thermal conductance σPh

through the point junction between two identical isotropic
semi-infinite parallel plane solid materials coupled via a certain
phonon coupling mechanism.

III. RESULTS AND DISCUSSION

A. General phonon coupling mechanism

We start this section by discussing some general features of
the transmission function τ3D(ω2,ω2

C,k,kCoupling). The derived
expression of the latter function as given by Eq. (4) for
the present geometrical configuration of a point junction
between two identical isotropic semi-infinite parallel plane
solid media, a separation distance d apart, is an exact general
expression within the framework of the SBM regardless of
the nature of the spring coupling constant in between. This
expression captures very well the physics of phonon induced
transport through the point junction and leads to the correct
asymptotic behaviors when kCoupling → 0 and kCoupling →
+∞. In the first case, which corresponds to weak coupling,
σPh

(
T ,ωC,kCoupling → 0

) → 0, while in the second case cor-
responding to strong coupling, σPh saturates at a value given by

σ Sat
Ph (T ,ωC,kCoupling → +∞)

= 1

8π2v2

∫ ωC

0

[
ω2 − ω4

2ω2
C

]
CPh (ω,T ) dω. (5)

Equation (5) is exactly what one obtains for σPh using
the phonon radiation model [15]. In the low temperature
regime, one can replace ωC by infinity, and the integral can be
calculated exactly. This leads to the well-known T 3 power law
in analogy to the black body photon radiation [15]:

σPh(T → 0) = 4SB
PhT

3,
(6)

SB
Ph = π2K4

B

120�3v2
,

where SB
Ph represents the phonon Stefan-Boltzmann constant

[15].
At the maximum value of τ3D , obtained when kCoupling = k,

σPh reaches its maximum value too. The latter is given by

σ Max
Ph (T ,ωC,kCoupling = k) = 1

8π2v2

∫ ωC

0
ω2CPh(ω,T )dω.

(7)

The maximum value of σPh is attained when all phonon modes
from one side can be transferred to the other side with respect
to the principle of detailed balance [15]. In fact, this is well
understood using the 1D configuration where it is easy to see
that the transmission coefficient [Eq. (2)] for kCoupling = k is
equal to one over the whole allowed phonon frequency range.
This coefficient decreases, however, if kCoupling �= k. The
generalization to the 3D configuration regarding the behavior
with respect to kCoupling retains the same conclusions.

By comparing Eqs. (5) and (7), one can see that the
difference between the maximum and saturation values tends
to disappear in the low temperature regime. In this regime,
the maximum and saturation values merge to one single value,
which is obtained not at kCoupling = k, but at half this value,
i.e., kCoupling = k/2. Actually, one can straightforwardly show
that

σPh(T ,ωC,kCoupling = k/2) = σPh(T ,ωC,kCoupling → +∞).

(8)

In the high temperature regime, the general expression
of the phononic thermal conductance σPh can be simplified
while using the high temperature expression of CPh(ω,T ) �
KB , where all phonon modes will be in a highly thermally
excited state. In this case, after inserting the expression of
τ3D(ω2,ω2

C,k,kCoupling), as given by Eq. (4) into Eq. (1), the
integration over ω in the latter can be performed analytically,
and we obtain a closed-form expression of σPh(T ,ωC,kCoupling):

σPh(T ,ωC,kCoupling) = KBω3
C

8π2v2

κ2

(2κ − 1)2

{
2κ − 1

3
+ (κ − 1)2

[2κArcCoth
[

κ√
2κ−1

]
√

2κ − 1
+ log[(κ − 1)2] − 2 (log κ + 1)

]}
, (9)

where κ = kCoupling/k.
In the following, we analyze the case of a specific phonon

coupling mechanism between the two identical isotropic
semi-infinite parallel plane solid media: coupling through
the dispersion force of Casimir in vacuum. In this case we
note kCoupling = kCasimir. We compare the phononic thermal
conductance due to this coupling mechanism to the near
field radiative heat transfer (NFRHT) coefficient due to the
contribution of the evanescent waves of the p-polarized EM
field within the framework of a local dielectric permittivity
function theory.

B. Near field radiative heat transfer

Assuming a local dielectric permittivity function where the
latter depends only on the frequency of the EM field, previous

investigations of the NFRHT for the same geometrical config-
uration as above have shown that for separation distances d

much smaller than the dominant thermal wavelength λT and
independently of the material nature (metallic or dielectric),
the contributions of s and p polarizations of the evanescent
EM waves to the NFRHT coefficient manifest, individually, the
same behavior with regard to the separation distance d between
the two solid materials. As mentioned in the Introduction, the
contribution of the evanescent waves increases the NFRHT to
become orders of magnitude higher than the black body limit.
While the contribution of the s polarization saturates as d gets
shorter, the contribution of the p polarization, on the other
hand, keeps increasing with decreasing d and tends to follow
a d−2 law for a very small d regime [3,4]. We shall note here
that, while the contribution of the p polarization dominates
the NFRHT coefficient for dielectrics, it is the s polarization
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contribution that dominates for metals due to the presence of
magnetic effects. In our analysis, we will consider only the
case of dielectrics. Therefore, one can write for the NFRHT
coefficient,

hEvanp
r (d,T ) �

∫ ∞

0
h

p

Evan(d,T ,ω)dω, (10)

where h
p

Evan represents the contribution of the p-polarized
evanescent EM waves to the spectral NFRHT coefficient,
the expression of which can further be simplified assuming
the electrostatic limit to be valid in the small d regime. One
can show that, in this case, h

Evanp
r (d,T ) takes a closed-form

expression using the polylogarithm function of second order
[27]:

hEvanp
r (d,T ) = δG(T )

d2
, δG(T ) = 3

2π3
g0

∫ ∞

0
h0(u)

Im2[rP (u)]

Im
[
r2
P (u)

] Im
{
Li2

[
r2
P (u)

]}
du. (11)

In Eq. (11), g0 = πK2
BT /6� is the quantum of ther-

mal conductance, h0(u) = u2eu/(eu − 1)2 and rP (u) =
[ε(u) − 1]/[ε(u) + 1] represents the Fresnel reflection co-
efficient of the p-polarized evanescent EM wave in the
electrostatic limit [27].

C. Coupling through the Casimir force

According to Lifshitz [28] and Schwinger et al. [29]
theories of the Casimir force, in the framework of the
continuum and local approximations of the matter, the Casimir
force is temperature dependent in general. But, as affirmed
by many studies, the explicit thermal corrections, even in the
high temperature regime, can be neglected when the separation
distance d is very small in comparison to the dominant thermal
wavelength λT [30]. Since this is the d regime that interests
us in our study, we will therefore use the zero-temperature
expression of the Casimir force in the small separation regime.
According to Lifshitz, the Casimir force per unit area takes a
very compact expression in this regime, independently of the
nature of the materials under study [28,31]:

FCasimir(d,T = 0)

= �

16π2d3

∫ ∞

0

⎧⎨
⎩

∫ ∞

0

x2

[
ε(iy)+1
ε(iy)−1

]2
ex − 1

dx

⎫⎬
⎭ dy, (12)

= �

8π2d3

∫ ∞

0
Li3

[
r2
P (iy)

]
dy

where Li3 is the polylogarithm function of order 3 and rp

is Fresnel reflection coefficient of the p-polarized EM wave
in the electrostatic limit as introduced in the expression of
h

Evanp
r (d,T ) in Eq. (11). One should note here that there still

is an implicit temperature dependence of the Casimir force
through rp.

The Casimir spring coupling constant is defined as the
absolute value of the derivative of the Casimir force per unit
area with respect to the separation distance d, multiplied by
the lattice constant squared. Thus, we get

kCasimir(d) =
∣∣∣∣∂FCasimir

∂d

∣∣∣∣ a2 = 3�a2

8π2d4

∫ ∞

0
Li3

[
r2
P (iy)

]
dy,

(13)

where a denotes the lattice constant of the solid medium.
To illustrate our results, we consider two dielectrics (Si and

SiC) as typical materials. In addition, SiC is taken to be in

a cubic crystallographic configuration (3C-SiC). We consider
the temperature to range from 300 K to 800 K. The needed
physical and geometrical properties of the two materials are
given in Table I.

Si is assumed to be highly n-doped with a doping level
ranging from 1018cm−3 to 1021cm−3. The dielectric permittiv-
ity function of Si is described using the Drude model, while
that of SiC is described using the Lorentz-Drude model [3,4]:

εDrude(ω) = εb − ω2
p

ω2 + iωγ
(a),

(14)

εLorentz-Drude(ω) = εb

{
ω2

LO − ω2 + iγ ω

ω2
TO − ω2 + iγ ω

}
(b),

where εb is the high frequency dielectric constant that accounts
for the bound electron contribution from the bulk, ωp is the
plasma frequency, ωLO and ωTO are the longitudinal and
transverse optical phonon frequencies, respectively, and γ

denotes the damping factor. For Si, ωp and γ are functions of
temperature and doping concentration. They are, respectively,
given by [11]

ω2
p(N ) = Ne2

m∗ε0
,

γ (N,T ) = e

m∗μe(N,T )
,

(15)

μe(N,T ) = 88T −0.57
n + 7.4 × 108T −2.33

1 + (0.88/1.26) 10−17NT −2.546
n

,

Tn = T/300,

TABLE I. Physical and geometrical properties of the different
materials.

Lattice Atomic Longitudinal Transverse Spring
constant mass sound velocity sound constant

Material (Å) (×10−26kg) (m/s) velocity (m/s) (N/m)

Si 5.431a,b 4.66a,b 8430b 5640b 6.16d

3C-SiC 4.36b 3.33c 9500b 4100b 4.04d

aReference [32].
bReference [33].
cCalculated as mSiC = (mSi + mC)/2 where the mass of a single atom
of Carbone is mC ≈ 2 × 10−26kg.
dCalculated using the long wavelength approximation for the 1D
atomic harmonic chain dynamics as k = mv2/a2 (Ref. [32]).
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FIG. 2. (Color online) Room temperature behavior of the
Casimir spring coupling constant for both highly n-doped Si (N =
1021 cm−3) and 3C-SiC as a function of the gap distance.

where e is the electron elementary charge, m∗ = 0.27m0 is
the electron effective mass, m0 is the electron rest mass, N

denotes the doping concentration, μe is the electron mobility,
and ε0 represents the vacuum permittivity. We note here that
m∗ is assumed to be temperature independent.

Over the temperature interval considered [300–800 K], ωLO

and ωTO of SiC change by less than 2%; hence, they are
taken to be constants, ωLO = 1.826 × 1014rad s−1and ωTO =
1.495 × 1014rad s−1. On the other hand, the damping factor
γ increases linearly with temperature γ (T ) = 1.885 × 1011 ×
[4.8329 + 0.0183(T − 300)] rad s−1 [27].

Because of the smallness of the thermal expansion co-
efficient (∼10−5 K−1) for both materials, we can neglect
the temperature dependence of the intrinsic spring coupling
constant k. In addition, we can easily check that the equivalent
Debye-like temperatures (θD

C = �ωC/KB) corresponding to
the phonon cutoff frequencies of the two materials (�176 K
for Si) and (�168 K for 3C-SiC) are almost half the room
temperature (300 K). Hence, we have all the conditions to use
the closed-form high temperature expression of the phononic
thermal conductance σPh as given by Eq. (9), in which kCoupling

is replaced by kCasimir and κ ≡ kCasimir(d)/k.
In Fig. 2, we report the variation of the Casimir spring

coupling constant kCasimir for both highly n-doped Si and 3C-
SiC as a function of the gap distance d at room temperature.
For the numerical calculation of kCasimir, the integration in
the angular frequency domain is taken to vary from zero to
10KBT/� in a similar way as for the numerical calculation of
the NFRHT coefficient h

Evanp
r (d,T ), since this integration is

governed by the Planck spectrum emission band. As a matter
of fact, the amplitude of the Planck spectrum falls down to less
than 5% of its maximal value at ω = 10KBT/�.

Numerical simulations have shown the effect of tem-
perature and doping concentration to be negligible over
the studied interval [300–800 K]. We pushed down the
gap distance d to the picometer range, which rigorously
speaking has no physical sense. The reason is nevertheless,
threefold: (i) to show the huge sensitivity of kCasimir to d,
(ii) to point out the value of d at which kCasimir = k, and

FIG. 3. (Color online) Behavior of the phononic thermal conduc-
tance and the NFRHT coefficient as functions of the gap distance
through a point junction between two identical isotropic semi-infinite
parallel plane solid media of 3C-SiC.

(iii) to show that the phononic thermal conductance σPh(d,T )
saturates mathematically as d → 0. As one can see in Fig. 2,
Casimir spring coupling constants of both materials take very
close values as functions of d. Moreover, for both materials,
kCasimir = k lies at distances d ∼ 1 Å, much smaller than the
lattice constant.

Figures 3 and 4(a)–4(d) illustrate a comparison between the
calculated σPh(d,T ) and the NFRHT coefficient h

Evanp
r (d,T )

through a point junction between two identical isotropic semi-
infinite parallel plane solid media of 3C-SiC and highly n-
doped Si, respectively. For both materials, σPh(d,T ) turns out
to be less sensitive to temperature T and doping concentration
N for the values considered above of highly n-doped Si. On
the other hand, h

Evanp
r (d,T ) is sensitive to both T and N for

Si and to T for SiC. In addition, in the case of highly n-doped
Si, the sensitivity of h

Evanp
r (d,T ) to T proves to be dependent

on N . Thus, only the room temperature σPh(d,T = 300 K) is
represented for both dielectrics.

Starting from Eq. (9), one can straightforwardly check
that σPh(d,T = 300 K) reaches a maximum value of σ Max

Ph =
KBω3

C/24π2v2 at κ = kCasimir/k = 1 and tends to a saturation
value of σ Sat

Ph = 7KBω3
C/240π2v2 when κ = kCasimir/k →

+∞, which corresponds to d → 0. Therefore, the ra-
tio between the maximum and the saturation values of
σPh(d,T = 300 K) is exactly R = σ Max

Ph /σ Sat
Ph = 10/7.

From the above figures, we see that the NFRHT dominates
the heat transfer in the case of 3C-SiC except around the dis-
tance at which σPh(d,T = 300 K) reaches a maximum where
induced phonon transfer through Casimir force (IPTTCF)
becomes a nonnegligible fraction of the total heat transfer
process. In the case of highly n-doped Si, we first notice that
for a fixed temperature T , the NFRHT coefficient manifests a
maximal value at an optimal doping level Nopt. This behavior
for highly n-doped Si has already been studied and discussed
previously [34]. The interplay between IPTTCF and NFRHT
depends primarily on the doping level N , then secondarily
on T . The IPTTCF starts to dominate the heat transfer as the

115433-5
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FIG. 4. (Color online) Behavior of the phononic thermal conductance and the NFRHT coefficient as functions of the gap distance through
a point junction between two identical isotropic semi-infinite parallel plane solid media of highly n-doped Si at different doping levels.

doping level increases. One can see that for N = 1021 cm−3,
the transition distance lies around the lattice constant at
room temperature and tends to decrease by increasing the
ambient temperature. As one increases the value of N , the
dielectric material electrical behavior approaches the one of
a semimetallic material. It is known, on the other hand, that
metals manifest the highest Casimir force values [21,22] and
the lowest NFRHT coefficient values [3,4].

It is worth noting here the difference between the approach
of Budaev and Bogy [19,20] and the approach presented
herein. Budaev and Bogy found a transition distance for Si
at room temperature of �5 nm, almost 10 times higher than
the one we found above. This value appears to be a large
separation distance though. We believe the reason for this
huge disagreement lies mainly in the very heuristic treatment
followed by Budaev and Bogy, particularly the use of a grossly
approximated formula of different quantities involved in the
estimation of the heat transfer fluxes, which have led to an
overestimation of the effect of IPTTCF.

The transition distance below which IPTTCF dominates
NFRHT is of the order or smaller than the lattice constant.
This makes the domain of validity of our herein presented
approach undoubtedly narrow. It however and certainly shows

that IPTTCF constitutes a plausible and potential mechanism
to capture and describe the natural transition from the radiative
regime to the conductive regime of heat transfer. The IPTTCF
mechanism would even be enhanced if combined to other
potential coupling mechanisms such as charge-charge electro-
static interaction or piezoelectricity that was recently analyzed
by Prunnila and Meltaus [18]. These different mechanisms
could simply be included by attributing adequate expressions
for the spring coupling constant kCoupling.

For gap distances of the order or less than the lattice constant
(d � a), the microscopic variation and the discrete character
of the matter will take over the continuum approximation.
Thus, one expects other additional effects to come into play
and even to be more dominant, mainly nonlocal effects of
the dielectric permittivity function [35,36] as well as quantum
electronic coupling effects [37], especially at distances of the
order or smaller than the interatomic distance which for Si is
about 0.24 nm at room temperature.

IV. SUMMARY

Induced phonon transfer in vacuum constitutes a potential
mechanism to describe the natural transition from the radiative
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regime to the conductive regime of heat transfer at the
point junction interface between two identical solid dielectric
materials when the distance gap between the latter becomes
very small so that they can mutually touch. We specifically
studied how this induced phonon transfer could be mediated
by the Casimir force in the framework of a local dielectric
permittivity function theory. We showed that this transfer could
become dominant when the distance gap becomes of the order
or smaller than the lattice constant of the dielectric material.
At these distances, however, one expects other additional
effects to come into play and even to be more dominant,
mainly nonlocal effects of the dielectric permittivity function
as well as quantum electronic coupling effects, particularly at

distances of the order or smaller than the interatomic distances.
Hence, a full and complete study of the natural transition
from the radiative regime to the conductive regime of heat
transport will certainly necessitate taking into account all
these effects in a more elaborate and sophisticated theory
that includes all possible coupling mechanisms depending
on the materials nature (metallic or dielectric, similar or
dissimilar) and their surface states. This theory will go beyond
the fluctuational electrodynamics theory based on which the
derived expressions for the Casimir force and the NFRHT
coefficient were used in the present study. This study will also
bring to light key information about the fundamental behavior
of the solid-solid interface thermal resistance.
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