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First-principles analysis of a homochiral cycloidal magnetic structure in a monolayer Cr on W(110)
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Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
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The magnetic structure of a Cr monolayer on a W(110) substrate is investigated by means of first-principles
calculations based on noncollinear spin density functional theory (DFT). As magnetic ground state we find a
long-period homochiral left-rotating spin spiral on top of an atomic-scale antiferromagnetic order of nearest-
neighbor atoms. The rotation angle of the magnetic moment changes inhomogeneously from atom to atom across
the spiral. We predict a propagation direction along the crystallographic [001] direction with a period length of
|λ| = 14.3 nm, which is in excellent agreement with a modulation of the local antiferromagnetic contrast observed
in spin-polarized scanning tunneling microscope experiments by Santos et al. [New J. Phys. 10, 013005 (2008)].
We identify the Dzyaloshinskii-Moriya interaction as the origin of the homochiral magnetic structure, competing
with the Heisenberg-type exchange interaction and magnetocrystalline anisotropy energy. From DFT calculations
we extract parameters for a micromagnetic model and thereby determine a considerable inhomogeneity of the
spin spiral, increasing the period length by 6% compared to homogeneous spin spirals. The results are compared
to the behavior of a Mn and Fe monolayer and Fe double layer on a W(110) substrate.
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I. INTRODUCTION

The observation of a new magnetic phase in an atomic
monolayer of Mn on a W(110) substrate [1], whose magnetic
ground state is a frozen cycloid of unique rotational sense,
has opened a completely new vista of thin-film magnetism.
The occurrence of such a homochiral magnetic structure gives
evidence of a sizable antisymmetric exchange interaction,
known as the Dzyaloshinskii-Moriya interaction (DMI) [2,3],
an interaction that has so far been largely overlooked in
the field of low-dimensional metallic magnets [4,5]. The
DMI is a relativistic effect and spin-orbit coupling (SOC) is
crucial for its occurrence. It arises due to the propagation
of electrons in an inversion-asymmetric environment. The
observation of the chiral magnetic order in the Mn monolayer
gives evidence that the DMI is of a size enabling a com-
petition with other important magnetic interactions such as
the Heisenberg exchange or the magnetocrystalline anisotropy
energy and gives rise to spiraling magnetic ground-state
structures.

In fact, after the investigation of Mn on W(110), a few
additional magnetic thin-film systems deposited on heavy-
element substrates exhibiting a chiral magnetic order have
been investigated, e.g., Mn on W(100) [6], a Mn double layer
on W(110) [7], Fe on Ir(111) [8], and a Pd-Fe double layer
on Ir(111) [9,10], but also past systems were reinvestigated.
One example is the analysis of domain walls in stripes of
Fe double layers on W(110), for which Kubetzka et al.
reported in Ref. [11] the surprising observation of dense
stripe domains with a defined sense of magnetic rotation. In
the light of the Mn/W(110) experiments, Heide et al. [12]
explained these experiments in terms of a right-rotating chiral
Néel-type domain wall, whose sense of rotation in the wall,
the orientation of the wall relative to the lattice, and the
type of wall were determined by the DMI. This theoretical
analysis was confirmed experimentally using spin-polarized
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scanning tunneling microscopy (SP-STM) performed in a
triple axes vector magnet [13]. Moreover, a chiral asymmetry
of the magnon dispersion due to the DMI was predicted by
first-principles calculations for an Fe monolayer on W(110)
[14] and measured in an Fe double layer on W(110) [15].

The observation of a large DMI and the formation of chiral
magnetic structures are particularly influential for the field
of spintronics: (i) Chiral domain walls are much more stable
against Walker breakdown and provide in conjunction with
the current-induced domain-wall motion a new opportunity
for the realization of the racetrack memory [16–18]. (ii) The
DMI is a basic ingredient for the formation of topological
solitons in magnets, so-called magnetic skyrmions, that are
currently being explored in thin-film systems [8–10] as a
possible new magnetic particle for information technology
[19]. (iii) Electrons propagating along such winding magnetic
structures accumulate Berry phases that translate into transport
properties, e.g., the topological Hall effect [20,21] arising from
large emergent electrical and magnetic fields or give rise to
additional spin torques [22] enabling new design principles
for magnetic devices.

In this paper we return to a Cr monolayer on W(110)
that has been investigated by Santos et al. [23]. Combining
SP-STM experiments with ab initio calculations has shown
that Cr exhibits a checkerboard-type arrangement of magnetic
moments coupling antiferromagnetically between nearest-
neighbor atoms. Further experiments revealed on top of
this atomic-scale antiferromagnetic c(2 × 2) structure a long-
period modulation along the [001] direction with periodically
repeated lines of blurred magnetic contrast every 7.7 ± 0.5 nm.
This magnetic structure was not further resolved, either
theoretically or experimentally, but it recalls similar findings
observed for Mn/W(110)[1] whose magnetic ground state was
identified as a homochiral left-rotating cycloidal spin spiral
along the [11̄0] direction with an experimental period length
of 12 nm and thus vanishing SP-STM contrast every 6 nm.
This difference in modulation direction is somewhat at odds
with the conventional working hypothesis accepted by a wide
community that the DMI is determined by the element with
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strong spin-orbit interaction at the interface, and thus W(110)
should be the key to the same modulation direction and the
same rotational sense for both systems, which are so similar.
On the other hand, unlike Mn, Cr is also known to form a
frozen sinusoidal spin-density wave as bulk solid [24] and on
the (110) surface [23].

The aim of this paper is to resolve the ground-state magnetic
structure of a Cr monolayer on W(110) using a multiscale
approach. We first perform density functional theory (DFT)
total-energy calculations of noncollinear magnetic states that
are described by flat homogeneous spin spirals. The cal-
culations are carried out employing the generalized Bloch
theorem [25], which allows for the calculation of the magnetic
structure for an arbitrary spin-spiral vector q on the basis of the
chemical, i.e., p(1 × 1), unit cell. This procedure is very time
saving but works only as long as the spin-orbit interaction
is neglected. One value of homogeneous spin spirals lies in
the observation that they are also solutions of the classical
Heisenberg model for periodic lattices, which is typically the
interaction with the largest energy scale in any spin model.
From the comparison of the total-energy calculations to the
Heisenberg model one can conclude that for the case of
Cr on W(110), the Heisenberg model catches all essential
exchange-caused spin interactions and leads to the conclusion
that, unlike Fe/Ir(111) [8] or a Mn double layer on W(110)
[7], higher-order spin interactions such as the biquadratic or
four-spin interaction are not required to model the magnetic
structure. The spin-orbit interaction is then added in terms of
perturbation theory in order to calculate the magnetocrystalline
anisotropy energy and the DMI.

The competition of the DMI with the exchange interaction
leads to a long-period magnetic superstructure that can be
inhomogeneous and since the generalized Bloch theorem is
not applicable due to the presence of the spin-orbit interaction,
a direct minimization of the total energy through an ab
initio method is not attainable due to the large number of
atoms involved in such a spiral. Therefore, it is convenient
to derive from the spinmodel a micromagnetic model. Its
solution is a spiraling magnetization density with an energy
that depends on the pitch of the spiral. The energy as a function
of the pitch can then be compared to the total energy of
ab initio calculations and permits thus the determination of
the parameters entering the model from first principles. With
these parameters we determine from the micromagnetic model
details of the magnetic structure.

We find that the magnetic ground state of a monolayer Cr on
W(110) has many similarities to the magnetic structure of Mn
on W(110) [1]. For both we find a long-period homochiral
left-rotating spin spiral driven by the DMI on top of a
checkerboard-type c(2 × 2) antiferromagnetic arrangement of
magnetic moments between nearest-neighbor atoms. The local
antiferromagnetic structure is determined by the exchange
interaction. Unlike the Mn system, the wave vector of the
spiral in the Cr system is parallel to the crystallographic [001]
direction of the surface and not along the [11̄0] direction. In a
SP-STM experiment, a spin spiral along the [001] direction
results in a modulation of the magnetic contrast precisely
along the measured direction, and thus our findings explain
the long-period modulation in Cr/W(110) found by Santos
et al. [23]. Moreover, our calculations predict a period length of

14.3 nm, which is in excellent agreement to the experimentally
observed value of 15.4 ± 1 nm1. In contrast to Mn/W(110),
we find a substantial inhomogeneity of the spin spiral, which
increases the period length by 6% as compared to the value of
a homogeneous spin-spiral model.

The paper is organized as follows: In Sec. II, the magnetic
models are introduced in the form relevant to the Cr/W(110)
system. The closest link to the ab initio results is provided
by the classical spin model (Sec. II A). The Dzyaloshinskii-
Moriya interaction is introduced in a formulation consistent
with a classical spin model, which allows for a transparent
analysis of possible magnetic structures by pure symme-
try arguments. In Sec. II B, solutions of a micromagnetic
model which minimize the energy containing the DMI are
discussed, including their inhomogeneity and the criterion
for energetic stability. Section III describes the computational
procedures taken within the DFT, from which our results for
the Cr/W(110) system (Sec. IV) are derived. In Sec. V, the
predicted ground state is discussed and compared to both the
experimental findings [23] as well as the magnetic thin films
of a monolayer Mn [1], a monolayer Fe [26], and a double
layer Fe [12] on a W(110) substrate. A summary is provided
in Sec. VI.

II. MAGNETIC MODELS

A. Spin model

The magnetic order and the thermodynamic properties of
itinerant magnets can be frequently described by a classical
atomistic spin model with parameters determined from first-
principles [27]. This holds true in particular if the d electrons
are fairly localized at the atomic site i, if the local magnetic
moments are significantly large and their modulus shows
only a minor dependence on the relative orientation of the
magnetic moments, and if long-range exchange parameters
encompassing the pair interaction between distant sites are
taken into account. Then we can work with constant, localized
magnetic moments, which are represented by a classical vector.
Typically we work with unit vectors {Si} (i = 1, . . . ,N ),
usually called the “spin.” Expanding the energy of a spin
system up to second order in Si and keeping only the dominant
terms leads to two-site interactions and an on-site term; the spin
model can then be written as [28,29]

E =
∑
i<j

[Jij Si · Sj + Dij · (Si × Sj )] +
∑

i

ST
i Ki Si , (1)

where Jij is the exchange integral, Dij is the Dzyaloshinskii
vector, and Ki is the on-site anisotropy term. The first term
yields the classical isotropic Heisenberg model, the second
term is the antisymmetric exchange or Dzyaloshinskii-Moriya
interaction [2,3], and the third term is the magnetocrystalline
anisotropy energy (MAE).

The general solution of the Heisenberg model for a periodic
lattice is a homogeneous spin spiral, which means that the

1In an experimental STM image, vanishing magnetic contrast occurs
at the nodes of a sinusoidal modulation and thus twice per period.
This means that twice the experimental value of 7.7 ± 0.5 nm must
be compared to the computed period length of 14.3 nm.
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FIG. 1. (Color online) Spin spirals with antiferromagnetic short-
range order propagating with wave vector q along x̂, which is assumed
to be a high-symmetry direction and thus parallel to a mirror plane
(shaded planes) of the bulk lattice. We distinguish three pairs of spirals
by the direction of their rotation axis C (indicated by a blue arrow)
relative to the propagation direction and surface normal: one helical
(C ‖ q) (left pair) and two cycloidal (C ⊥ q) spin spirals. The two
spirals of each pair differ in their rotational sense, the left spiral being
left handed. Only spirals with C ‖ ŷ experience an influence of the
DM interaction (see text).

angle ϕ between two neighboring spins is constant, or linear
combinations of those spirals that are symmetry related.
The angle ϕo describing the spin spiral with wave vector
qo that minimizes the Heisenberg energy depends on the
set of exchange constants {Jij }. This model contains two
special solutions of collinearly aligned spins between nearest-
neighbor atoms, namely, the ferromagnetic (ϕ = 0) and the
antiferromagnetic (ϕ = π ) phases. However, the Heisenberg
model depends only on |ϕ| and thus two solutions to a given
set

{
Jij

}
can be found minimizing the energy and representing

two spin spirals differing just in their rotational sense.
More generally, for a spiral the rotation axis of the

magnetization of all atoms is the same and the spin spiral
can be considered as mapping of the sites i, with 1 � i � N ,
to a unit circle in spin space S1, where N is the number of
atoms in a spiral, i.e., the number of atoms in the spiral times
the lattice constant defines the pitch of the spiral, Na = λ. If
the mapping is (counter)clockwise, which means the winding
number of the circle is positive (negative), we speak of a
right- (left-) rotating spiral with respect to the rotation axis.
At this point it is convenient to introduce the vector chirality
C = Cĉ = Si × Si+1. The direction of the vector chirality ĉ
acts as rotation axis. If ĉ can be restricted to the positive domain
(x � 0, y � 0, z � 0) of the lattice coordinates, chosen such
that x̂ is aligned parallel to the propagation vector q (see Fig. 1),
then it makes sense to speak about a right- (left-) rotating spiral
if the value of the vector chirality C or angle of rotation ϕ is
positive (negative), C > 0, ϕ > 0 (C < 0, ϕ < 0).

In contrast to the Heisenberg model, the DMI is sensitive
to the rotational direction (because Si × Sj = −Sj × Si),
lifting this degeneracy and preferring a definite rotational
sense, depending on the sign of the Dzyaloshinskii-Moriya
interaction denoted by D, of D = DD̂ along the direction of

the Dzyaloshinskii vector D̂. The alignment of D with respect
to the crystal lattice might be restricted due to symmetries,
as outlined in Refs. [3] and [30]. For the case of spiraling
magnetic structures propagating along a high-symmetry line
of a bcc(110) surface, Dij must be perpendicular to the surface
normal and to the propagation direction q̂ of the spiral. This can
be understood from Fig. 1: If the rotation axis C is parallel to q
(left pair in Fig. 1) or out of plane (right pair), the two spirals of
different rotational sense are mirror images of each other with
respect to a mirror plane of the lattice (shaded). Thus, the two
spirals of different rotational sense of both pairs are of the same
energy and as a consequence, the component of Dij parallel
to C must vanish. However, for C perpendicular to both, the
surface normal and q̂ (the pair of spirals in the middle of
Fig. 1), the mirror plane connecting the two spirals of different
rotational sense is parallel to the surface. This mirror symmetry
is broken by the presence of the substrate. In this case we can
conclude that the direction D̂ must be perpendicular to both the
surface normal and q̂. From these considerations it is clear that
the DM interaction favors cycloidal spin spirals with a certain
rotational sense, depending on the sign of D. This effect can
be expected to be sizable for systems with substrates of heavy
elements of the periodic table (large atomic number Z) having
a large spin-orbit interaction and simultaneously breaking the
inversion symmetry. According to our sign convention of the
Hamiltonian (1), if D < 0 (D > 0) the energy can be lowered
by a right- (left-) rotating spiral.

B. Micromagnetic model

In the previous section, we introduced the DMI in the
language of a generalized Heisenberg model with localized
magnetic moments on lattice sites. However, when the mag-
netic structure is slowly varying, meaning that the length scale
on which the magnetization changes is large compared to the
underlying atomic spacing, a continuum theory is beneficial,
providing analytical solutions. Since we are interested in spiral
solutions we restrict ourselves to a one-dimensional (1D)
micromagnetic model. Following Ref. [31] a quasi-1D model
is a good approximation not only for chains or narrow stripes,
but also for monolayer systems with a sufficiently anisotropic
spin stiffness. In the 1D model, the magnetization is treated
as a continuous vector field m(x) (with |m| = 1) instead
of localized spins, and the Hamiltonian translates into an
energy functional of the magnetization density and its spatial
derivative (ṁ = dm/dx) [32]

E[m] = 1

λ

∫ λ

0
dx

[
A

4π2
(ṁ)2 + D

2π
· (m × ṁ) + mTKm

]
,

(2)

where A is the spin stiffness corresponding to an effective
isotropic exchange parameter originating from the set {Jij }
for a 1D magnetic superstructure along the x direction, D
is the (effective) Dzyaloshinskii-Moriya vector, and K is the
anisotropy tensor of orthorhombic symmetry consistent with
the Cr/W(110) system. A and D or more accurately Ax and
Dx depend on the direction of the 1D superstructure. λ is the
period length of the magnetic structure. The applicability of the
micromagnetic model implies that the exchange interactions
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Jij and Dij decay sufficiently fast to justify the local character
of Eq. (2).

In the case of the bcc(110) surface, we choose our
coordinate system such that the anisotropy tensor is diagonal,
i.e.,

K = diag(K1,K2,K3). (3)

We further chose D = Dê3 (ê3 = ŷ in Fig. 1) and define the
directions ê1 and ê2 such that K2 > K1, i.e., ê1 or ê3 is the
easy axis. Finally we note that, in a micromagnetic model
for ultrathin films, the magnetostatic dipole-dipole interaction,
which is a nonlocal contribution to the energy of the system,
can be included in the local form of the anisotropy tensor
(K = Ksoc + Kdip). This is possible because the dipole-dipole
interaction between two magnetic moments decays on a length
scale of a few nanometers, which is sufficiently smaller than
the length scales involved in the micromagnetic model so that
it can be considered as local [12,33].

The model Eq. (2) comprises a rich phase diagram [31].
Depending on the model parameters A, D, and K, four
magnetic phases can be distinguished: a phase with collinear
magnetization perpendicular or parallel to D, respectively, a
phase with noncollinear magnetization confined to a plane
perpendicular to D, and a truly three-dimensional magnetic
structure. The type of spin spirals crucially depends on the
direction of the easy axis (i.e., the direction of lowest energy).
The truly three-dimensional ground state exists only for
systems with a small difference in the anisotropy energies
between two directions (easy-plane anisotropy), of which one
must be the direction of D. However, the corresponding section
of the phase space is rather small and we restrict our further
analysis to magnetization densities which are not truly three
dimensional, but confined to a plane perpendicular to D or
ê3 = ŷ, respectively. In other words, the rotation axis is parallel
to D and the ground-state energy of the system can be lowered
by the DMI. For such a magnetic structure, the magnetization
direction has only one degree of freedom and thus can be
described by a single angle ϕ = ϕ(x), i.e.,

m(x) = cos(ϕ) ê1 + sin(ϕ) ê2, (4)

and the energy functional Eq. (2) can be (up to a constant term)
written as

Ẽ[ϕ] = 1

X̃

∫ X̃

0
dx̃

[(
dϕ

dx̃

)2

+ D̃
dϕ

dx̃
+ sin2 ϕ

]
(5)

with reduced parameters

D̃ = D√
AK

, Ẽ = E

K
, K = K2 − K1,

(6)

x̃ = 2π x√
A/K

, X̃ = 2π λ√
A/K

,

which is dependent on one effective parameter D̃. The
magnetization profile [34]

ϕ0(x̃) = (− sgn D̃) am((x̃ − X̃/4)/ε,ε) (7)

minimizes the total energy, and the ground-state energy can be
written as

Ẽmin := Ẽ[ϕ0] = 1 − 1

ε2
. (8)
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FIG. 2. (Color online) Left: Profiles of inhomogeneous spin spi-
rals with different inhomogeneities κ = 0.1, 0.3, 0.5, and 0.8 (from
left to right). The symbols denote the period length. Right: The
period length diverges as κ ↗ 1, indicating a second-order phase
transition. X̃hs = 4π

√
AK/|D| would be the optimal period length if

the magnetic structure was constrained to be a homogeneous spiral.
The values of κ = 0.3 and 0.5 are obtained for the monolayers of Mn
and Cr on W(110) (cf. Table IV).

am(x,ε) is the Jacobi elliptic amplitude function and ε

corresponds to the inhomogeneity of the spiral. The latter and
the reduced period length X̃ are determined via the complete
elliptic integrals of the first and second kinds, K(ε) and E(ε),
respectively,2

E(ε)/ε = π |D̃|/4 and X̃ = 4ε K(ε). (9)

Thus, the inhomogeneity parameter ε is defined implicitly
and depends on the model parameter D̃. Therefore, it is
convenient to introduce another dimensionless measure for
the inhomogeneity, i.e.,

κ =
(

ε

E(ε)

)2

=
(

4

π

1

D̃

)2

=
(

4

π

)2
AK

D2
, 0 � κ < 1.

(10)

For the parameter set κ ∈ [0,1[ a periodic spin spiral takes the
lowest energy. The spiral is homogeneous for infinitesimally
small positive κ (κ ↘ 0), meaning that the slope of the profile,
dϕ0/dx̃, is constant, and becomes maximally inhomogeneous
for κ ↗ 1. In the latter case, the magnetization rotates slowly
when it points in the direction of the easy axis ê1 [e.g., regions
with ϕ = 0 and ϕ = π ; cf. Eq. (4)] and rotates very fast over
the harder axis ê2 (e.g., ϕ = π/2 and ϕ = 3π/2, respectively).
This represents two collinearly magnetized domains of oppo-
site orientations with a domain wall in between and explains
the chiral domain walls found in the stripes of Fe double layers
on the stepped W(110) surface [12]. Profiles of spin spirals
according to Eq. (7) are shown in Fig. 2. Additionally, the
pitch λ of an inhomogeneous spiral relative to the pitch of a
spin spiral constraint to a homogeneous rotation is shown,
which diverges as κ ↗ 1 (D ↘ 4

π

√
AK) and undergoes a

second-order phase transition into the collinear phase with
magnetization perpendicular to D for κ > 1 [31,34,35].

2The complete elliptic integrals of the first and second
kinds are defined as K(ε) = ∫ π/2

0 dφ 1√
1−ε2 sin2 φ

and E(ε) =∫ π/2
0 dφ

√
1 − ε2 sin2 φ
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We finally elaborate on a simplified micomagnetic model
constrained to homogeneous spin spirals, for which the angle
of rotation ϕhs = (2π/λ)x increases linearly as a function of x,
and thus dϕ/dx = const. The energy functional Eq. (5) turns
into a function of the period length λ = 2π (dϕ/dx)−1,

E(λ) = A/λ2 + D /λ + K/2. (11)

This energy becomes minimal for a period length λhs =
−2A/D and takes the value

Ehs = K

2

(
1 − 1

2

D2

AK

)
. (12)

In this model constrained to homogeneous spin spirals, the
ground state will be noncollinear only if Ehs < 0, which
translates to the condition D2 > 2AK . Inhomogeneous spirals
become stable against the collinear state for a 10% smaller D,
D2 � 16/π2AK [cf. Eq. (10)].

III. COMPUTATIONAL METHODOLOGY

We investigate the magnetic structure from first principles
based on noncollinear spin-density functional theory. The
short-ranged magnetic structure is investigated by total-energy
calculations between different collinear magnetic states in
the c(2 × 2) unit cell. The DMI and the MAE are direct
consequences of the spin-orbit interaction, and thus require
relativistic calculations, while the relativistic calculation al-
ters the exchange parameter only slightly. The long-period
magnetic ground state is then determined on the basis of the
micromagnetic model (5) with model parameters A, D, and
K , which we determine from first principles. According to
Eq. (11), the model parameters A and D can be obtained
by parabolic and linear fits of the total-energy results for
homogeneous spin spirals with different period lengths λ.
For the antisymmetric contribution, spin-spiral calculations
including spin-orbit coupling must be performed [26]. The
magnetic anisotropy tensor K is obtained from relativistic
collinear DFT calculations by carrying out self-consistent
calculations or employing the force theorem. The contribution
of the dipole-dipole interaction to the magnetic anisotropy
tensor can be neglected in the case of a Cr monolayer, because
it is of minor importance for this antiferromagnet. The exact
details of the choice and application of the methods and their
limits are discussed in detail below.

All calculations make use of the noncollinear formulation of
the full-potential linearized augmented plane-wave (FLAPW)
method [36] and the relativistic extension [26] in the two-
dimensional slab geometry [37,38] describing a film perfectly
embedded into two semi-infinite vacua, all implemented in the
FLEUR code [39].

A. Magnetocrystalline anisotropy energy and force theorem

Spin-orbit coupling can be derived as a correction term to
the ordinary Schrödinger equation from a 1/c expansion of the
fully relativistic Dirac equation. In a spherical potential, the
spin-orbit operator takes the formHso = ξ (r) σ · L, where ξ ∼
r−1dV/dr . Thus, spin-orbit coupling is largest in the vicinity
of the nucleus, where the potential has the 1/r singularity and
is indeed nearly spherically symmetric. Thus, we can safely

approximate the presence of the SOC operator to the muffin-tin
spheres, i.e.,

Hso =
∑

μ

ξ (rμ) σ · Lμ, (13)

where rμ = r − Rμ and |rμ| < R
μ

MT. Rμ is the center and R
μ

MT
is the radius of the μth muffin-tin sphere in the unit cell, and
μ runs over all atoms in the unit cell.

In order to calculate the MAE or K, respectively, we
calculate the total energy for magnetic moments aligned
collinearly (i.e., antiferromagnetically for Cr) along all three
high-symmetry directions of the system, i.e., along [110],
[001], and [110]. Instead of performing self-consistent rela-
tivistic calculations for all three directions, it is a reasonable
approach to calculate the charge and magnetization density,
n0 and m0 = m0 m̂0, respectively, self-consistently with spin-
orbit coupling but only along one direction, e.g., ê1, and then
solving the secular equation only once for each remaining
magnetization direction êk (k = 2,3). The force theorem works
reliably if the charge and magnetization density change little
after rotation of the quantization axis, i.e., if δn = n0(êk) −
n0(ê1) and δm = m0(êk) − m0(ê1) are small. In W the strength
of SOC is fairly large and it influences the electronic structure
considerably. This makes it important to include SOC in the
self-consistent calculation of (n0,m0), but the difference in the
magnetization directions m0 can be regarded as a perturbation
(cf. Sec. IV A).

According to Andersen’s force theorem (FT) [40–42], the
change in total energy δE due to this perturbation can be
approximated by a summation over all occupied (occ.) states
(ν being the band index, and k the Bloch vector),

EMAE = δE ≈
occ.∑
kν

εFT
kν (êk) −

occ.∑
kν

ε0
kν(ê1), (14)

which is equal to the magnetocrystalline anisotropy energy
measured with respect to the direction ê1. {εFT

kν } and {ε0
kν} are

the spectra of the perturbed and unperturbed Hamiltonians,
both constructed from the unperturbed electron density and
the selected magnetization direction,

(H0 + δH)[n0,m0,ê1]ψFT
kν = εFT

kν (êk)ψFT
kν , (15)

H0[n0,m0,ê1]ψ0
kν = ε0

kν(ê1)ψ0
kν . (16)

In this way we can constructKsoc from the same self-consistent
charge density by solving the secular equation (15) only three
times.

Additionally, the form of the SOC operator allows the SOC
contributions to be switched on or off for certain atoms by
including or neglecting them in the sum presented in Eq. (13).
Starting from a converged density (n0,m0,ê1), we repeat the
force theorem step Eq. (14) for all three directions êk but
include the SOC contribution only in a chosen atom μ. In this
manner we can estimate the contributions of atom μ to the
anisotropy constants, and by successively repeating it for all
atoms in the unit cell, we obtain a layer-resolved analysis of
the MAE. However, this decomposition is not exact, in the
sense that the sum over all those contributions does not add
to the value when SOC is considered in all atoms at the
same time, but it allows for qualitative statements about
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ZIMMERMANN, HEIDE, BIHLMAYER, AND BLÜGEL PHYSICAL REVIEW B 90, 115427 (2014)

the importance of certain layers for the total MAE. Such a
layer-resolved analysis, e.g., indicates that a large contribution
originates from the W interface layer next to the Cr (see
Sec. IV A), but also a significant one can appear on the vacuum
side of the film (i.e., the side opposite to the Cr monolayer).
The artificially introduced surface, which would not be present
in a semi-infinite crystal, causes a lower coordination number
of the atoms. As a result, the spin and orbital moments, as well
as the MAE and DMI are increased.

B. Spin stiffness and generalized Bloch theorem

To obtain the spin stiffness A along a certain direction,
we calculate homogeneous spin spirals with wave vector q
along this direction. The spin stiffness stands for the exchange
interaction caused by the Coulomb interaction between elec-
trons and the Pauli principle. Since the Coulomb interaction
is of much larger energy scale than the spin-orbit interaction,
A can be calculated to a good approximation by means of
the scalar-relativistic approximation, i.e., neglecting spin-orbit
coupling. Then, we can choose an arbitrary orientation of
the rotation axis of the spin spiral relative to the lattice
coordinates. For convenience we chose the ẑ direction; thus
the spin spiral rotates in the plane spanned by ê1 = x̂ and
ê2 = ŷ. The rotation angle ϕ of the direction of the spin
moment within each muffin-tin sphere varies from atom to
atom as ϕ(τμ + Rn) = ϕ(τμ) + q · Rn, where τμ denotes the
position of the μth basis atom within the unit cell, and Rn is a
lattice vector. The use of the generalized Bloch theorem [25]
allows us to perform calculations for incommensurable spin
spirals using the chemical unit cell, because the eigenstates
of a Schrödinger-type Hamiltonian with this type of magnetic
symmetry can be decomposed into a q-dependent phase factor
[corresponding to a spin rotation of angle α = q · r around the
ẑ axis by means of a matrix U(α)] and an ordinary Bloch func-
tion with lattice-periodic Bloch factors uσ

kν(r) = uσ
kν(r + Rn),

ψkν(r|q) = e−iσz q·r/2eik·r
(

u
↑
kν(r)

u
↓
kν(r)

)
, (17)

where σz is the 2 × 2 Pauli matrix, and the first exponential
function on the right-hand side corresponds to the spin-rotation
matrix U(q · r).

The resulting energy dispersion, i.e., the DFT total energy
ESS of the spin spiral state for a given wave vector q, is sym-
metric around the ferromagnetic (FM) and antiferromagnetic
(AFM) states, and the spin stiffness A of Eq. (11) can be
obtained by a quadratic fit of the total energy ESS(q) ∝ A |q|2
around the FM or ESS(q) ∝ A |q − qAFM|2 around the AFM
state.

For small changes δq around a fixed wave vector q0 the
change of the total energy δESS = ESS(q0 + δq) − ESS(q0)
can be calculated by again employing the force theorem. The
deviation in the spin-spiral vector, δq, results in a perturbation
to the Hamiltonian that depends on the self-consistent electron
and magnetization density (n0,m0) obtained for the fixed wave
vector q0. In our case this allows the calculation of the spin
stiffness by performing self-consistent scalar-relativistic cal-
culations only for the antiferromagnetic state q0 = qAFM and
subsequent diagonalizations of the Kohn-Sham Hamiltonian
once for each q.

C. DMI from first-order perturbation theory

In leading order the antisymmetric Dzyaloshinskii-Moriya
interaction depends linearly on the spin-orbit coupling strength
ξ . Since the spin-orbit coupling is small relative to the kinetic
energy or the different potential energies of the Hamiltonian,
as described in Ref. [26], first-order perturbation theory is a
convenient way to calculate the DMI to a good approximation.
Thus, we calculate the matrix elements

δεkν(q) = 〈Ugψkν(q)|Hso|Ugψkν(q)〉 (18)

of the operator Eq. (13) with the states |ψkν(q)〉 from Eq. (17).
However, in the derivation of Eq. (17) explicit use was made of
the fact that the nonrelativistic Hamiltonian is invariant under
a global spin rotation, and thus the rotation axis C of the spin
spiral was chosen along the z axis. The spin-orbit coupling
breaks this invariance and the states ψkν(q) require a rotation
by a global spin rotation Ug, which brings C into the desired
direction.

Summing up all energy shifts from occupied states yields
the DMI energy in first-order perturbation theory,

EDMI(q) =
∑
kν

nkν(q)δεkν(q), (19)

nkν(q) being the occupation numbers that correspond to state
|ψkν(q)〉. We can extract D by a linear fit EDMI(q) ∝ Dq.

Each Kohn-Sham orbital exhibits the symmetry
δεkν(−q) = −δεkν(q), and because the occupation numbers
of the states do not depend on the sign of q, the sum also
inherits this antisymmetry and only spin spirals of one
rotational sense have to be calculated. In a spin spiral, the
angle between the magnetization and the crystal lattice varies
from atom to atom along the spin-spiral vector. Thus, due to
the spin-orbit interaction each atom contributes differently
to the spin-orbit-induced energy although the atoms are
chemically equivalent. Therefore, the summation in Eq. (13)
is to be understood over all atoms in the magnetic supercell.
For first-order perturbation theory, however, one can still
restrict the integration contained in Eq. (18) to the chemical
unit cell as is shown in the Appendix. This makes the
scheme computationally very efficient. Moreover, the site
decomposition of the SOC operator in Eq. (13) allows us to
obtain a layer-resolved DMI energy E

μ

DMI(q), where μ labels
the atom in the unit cell.

D. Computational details

The calculations make use of two different approximations
to the unknown exchange-correlation functionals in DFT. One
is the generalized gradient approximation (GGA) Perdew-
Burke-Ernzerhof functional [43] used for the structural opti-
mization and the other one a local density approximation [44]
for the determination of the energetics between the different
magnetic structures. Also two different structural models are
taken for the two types of calculations: For the structural
optimization the Cr film on the W(110) substrate is modeled
by a slab of seven layers of W covered with a Cr monolayer on
both sides, and seven layers of W covered with a Cr monolayer
on only one side are chosen for the analysis of the magnetic
states. The muffin-tin radii were chosen to 2.3 a.u. for Cr and
2.5 a.u. for W. The APW basis functions are expanded up
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FIG. 3. (Color online) Left: Arrangement of atoms in Cr/W(110).
Big circles represent Cr atoms with magnetic moments pointing up
and down, respectively, and small circles indicate the positions of the
W atoms of the first layer of the substrate. The dashed line represents
the magnetic c(2 × 2) unit cell in a collinear calculation, and a1 =
1
2 (

√
2a,a) and a2 = 1

2 (
√

2a, − a) indicate the p(1 × 1) unit cell of
the chemical lattice. Right: Reciprocal lattice vectors b1 and b2 for
the chemical unit cell. The cross and circle represents those q vectors
associated with the FM and AFM state, respectively.

to a wave vector of kmax = 3.8 a.u.−1 and in the muffin-tin
spheres basis functions including spherical harmonics up to
�max = 8 were taken. The full two-dimensional Brillouin zone
corresponding to the p(1 × 1) unit cell was sampled by 4608 k
points for the calculation of the DM vector, and up to 10 368 k
points were used for the calculation of the spin stiffness. The
MAE was calculated with up to 2304 k points in the full
Brillouin zone corresponding to the c(2 × 2) unit cell (cf.,
Sec. IV A), respectively. All calculations of the bcc-structured
W substrate are carried out with the GGA bulk lattice constant,
a = 6.03 a.u., and the Cr-W distance relaxed to 3.90 a.u. This
corresponds to an inwards relaxation of 8.6%, consistent with
experimental (8.0% ± 0.7%) and computational (8.5%) find-
ings in Ref. [23]. The structural relaxation was done assuming
an antiferromagnetic ground state and neglecting SOC.

Most of the calculations are carried out in the two-
dimensional chemical p(1 × 1) unit cell, which comprises
only one surface atom, or one atom per layer, respectively (see
Fig. 3). Also the antiferromagnetic state can be described in the
chemical unit cell as long as spin-orbit coupling is neglected,
by making use of the generalized Bloch theorem and choosing
qAFM = (b1 + b2)/2. b1 and b2 are the reciprocal lattice vec-
tors (see Fig. 3). For the calculation of the structural relaxation,
the short-range magnetic order and the MAE, however, a
c(2 × 2) supercell comprising two surface atoms was used.

By choosing a deviation δq from qAFM, we induce a
spin spiral with antiferromagnetic short-range order of period
length λ = 2π/|δq|. To be more precise, δq = q ′(b1 + b2)
induces a spiral propagating along the [110] direction with
the pitch λ = a/(

√
2q ′) and δq = q ′(b1 − b2) induces a spiral

along [001] with λ = a/(2q ′), where a is the lattice constant
of W. Thus, the period length of the AFM (q ′ = 0) is defined
to be infinite in the notion of the magnetic supercell. The
sign of q ′ determines the rotational sense of the spiral,
sgn(q ′) = sgn(λ) < 0 being a left-handed spin spiral.

IV. RESULTS

Total-energy calculations of Cr/W(110) neglecting SOC
prove that the checkerboard-type AFM state (see Fig. 3) is

preferred over the FM one by 200 meV per Cr atom, in
accordance with Ref. [23]. This is a large energy scale, and
therefore all subsequent calculations take the AFM state as
starting point. The magnetic moment of Cr is then 2.41μB

and the induced W moments at the interface are 0.2μB.
They couple antiferromagnetically to the nearest-neighbor Cr
atoms. As a result, the induced W atoms are also arranged
in a checkerboard c(2 × 2) antiferromagnetic order. Even if
the induced W moments tended to couple ferromagnetically
among each other, the corresponding interaction energy would
be much smaller compared to the interaction energy between
the W and Cr moments due to the smallness of the W moments.
Since the W moments are induced only by Cr and the W-W
interaction is negligible, it is sufficient to work with an effective
spin model in which only the Cr moments enter [27].

A. Magnetic anisotropy

The magnetic anisotropy energy has two origins, namely,
the spin-orbit coupling of the electrons and the shape
anisotropy, which results from the magnetostatic dipole-
dipole interaction between the atomic magnetic moments of
a sample. However, the latter is small in 2D systems and
basically negligible due to the antiferromagnetic alignment
of neighboring magnetic moments for Cr on W(110). Thus,
the dipolar interaction will be neglected in the following.
The contribution from SOC is obtained by electronic struc-
ture calculations: Three approaches were used, namely, (I)
self-consistent calculations including the SOC operator for
magnetic moments pointing into different directions and (II)
using the magnetic force theorem, i.e., Eq. (15), as described
in Sec. III A. For the force theorem, the secular equation was
constructed from the converged charge density (n0,m0) with
the magnetization pointing in the [001] or [110] direction
[labeled (IIa) or (IIb) in Table I], respectively. Additionally,
we repeat the calculations of approach (IIa), but for a film
thickness increased by one more W layer [approach (IIIa)].
All approaches are evaluated for the antiferromagnetic state
in the c(2 × 2) unit cell with two atoms per layer using the
collinear version of the FLAPW code. Please note that the
corresponding Brillouin zone is smaller by a factor of 2 as
compared to calculations in the p(1 × 1) unit cell (Fig. 3), and
correspondingly for a given number of k points, the k-point
mesh is twice as dense as in a calculation with only one atom
per layer in the unit cell.

We determined the [110] direction (out of plane) to be the
easy axis and the in-plane [11̄0] direction to be the hard axis.
The approaches need up to 2304 k points to yield converged

TABLE I. Values for the magnetocrystalline anisotropy energy
(MAE) with respect to the easy axis (determined to be out of plane,
i.e., along [110]), in meV per magnetic atom. See text for a description
of the approaches.

K soc
[001] K soc

[11̄0]

Approach (I) 0.86 1.28
Approach (IIa) 0.92 1.18
Approach (IIb) 0.93 1.20
Approach (IIIa) 1.06 1.21
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FIG. 4. (Color online) Approximate layer-resolved contributions
to the MAE for a monolayer of Cr on seven layers of W(110), where
the same unperturbed density as in approach (IIa) was taken. The W
layer on the vacuum side of the film is not included.

results. The values (see Table I) between approaches (I) and
(II) agree within 15%. For the approach (II), the values for
the MAE are independent of the direction of m0 [compare
(IIa) and (IIb)]. Different film thicknesses [a Cr monolayer
on seven or eight W layers; compare (IIa) and (IIIa)] also
yield consistent results. Analyzing these values in detail, one
notices a somewhat larger deviation of 0.14 meV for Ksoc

[001].
This discrepancy is presumably caused by changing the film
thickness from an even (one Cr on seven W layers) to an odd
(one Cr on eight W layers) number of layers, which results in
a different nodal structure of the quantum well states along the
finite [110] direction and different atoms contribute somewhat
differently to the MAE. We estimate the final anisotropy
constants to be Ksoc

[001] = 0.9 meV and Ksoc
[11̄0] = 1.2 meV with

uncertainties of about 0.1 meV.
In order to confirm that there are no significant contributions

from additional W layers, we calculated the layer-resolved
contributions of the MAE by means of the force theorem.
As Fig. 4 clearly shows, the main contributions to the MAE
originate from the W interface layer and decay quickly for W
layers which are more distant from the magnetic Cr monolayer.
Therefore, no significant changes of the MAE are expected
if more W layers are added to the film. The sum of the
layer-resolved contributions add up to K

appr
[110]

= 0.9 meV and

K
appr
[001] = 0.3 meV. They reproduce the fact that Ksoc

[110]
is larger

than Ksoc
[001] and are in good agreement with the values in Table I

considering the approximations made in the calculation of the
layer-resolved contributions.

In Table II, we list the spin and orbital magnetic moments
of the first five layers in the AFM state of the thin film

TABLE II. Spin (μS) and orbital (μL) magnetic moments for the
first five layers. The orbital moments are given for different directions
of the magnetization m.

1 (Cr) 2 (W) 3 (W) 4 (W) 5 (W)

μS (units of μB) 2.42 0.21 0.04 0.01 0.01
μL (units of 10−2μB)

m ‖ [110] −1.0 −0.5 −1.0 −0.1 0.0
m ‖ [001] −2.4 −1.6 −0.3 −0.3 −0.3
m ‖ [110] −2.0 −0.8 −0.1 0.0 −0.1

as calculated self-consistently including SOC. The spin and
orbital moments of all atoms couple antiferromagnetically,
consistent with Hund’s third rule for less than half filled d

shells. The largest orbital moments we find for Cr, but the
orbital moments of W are of the same magnitude and not
one or two orders of magnitude smaller as in the case of
the spin moments. Since spin-orbit coupling is crucial for the
development of an orbital moment, the value of μL depends on
the magnetization direction m. In contrast, the spin moments
can be calculated neglecting spin-orbit coupling, since they are
determined by the exchange interaction, which is much larger
than SOC. Thus, including SOC in the calculation of μS leaves
the results practically unchanged. From simple arguments, the
ratio between the orbital and spin moments can be estimated to
be μL/μS ∝ ξ ∝ Z2, with the spin-orbit strength ξ and atomic
number Z. Taking the values of Table II, indeed, the ratios
for the two atom types yield (μ@W1

L /μ@W1
S )/(μ@Cr

L /μ@Cr
S ) ≈

8 ± 5, which yields the same order of magnitude as the simple
estimation by Z2

W/Z2
Cr = 9.5.

B. Spin stiffness

In order to extract the spin-stiffness constant A by a
quadratic fit to the dispersion relation [cf. Eq. (11)], we
calculate homogeneous spin spirals with various period lengths
λ employing the force theorem and neglecting SOC. In this
way, we have to perform self-consistent calculations only for
the antiferromagnetic state (q ′ = 0).

The dispersion relations for spin spirals along the [001]
direction for different k-point sets are shown in Fig. 5. The left
panel shows the results obtained for 10 368 k points in the full
two-dimensional Brillouin zone (symbols) and a linear fit in
λ−2 resulting in A[001] = 135 meV nm2 (solid line). Relative
to this linear behavior of the energy in λ−2, a small oscillatory
deviation is observed. Zooming into the region of interest
as indicated by the arrow representing the experimentally
observed modulation of magnetic contrast reveals a curved
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FIG. 5. (Color online) Energy dispersion ESS for spin spirals
along the [001] direction. Note that λ−2 is used as the scale of the
abscissa. The arrow indicates the pitch corresponding to experiment.
Left panel: Calculated energies over a large interval of q ∼ λ−1

with 10 368 k points in the full zone. The linear behavior in λ−2

is modulated by a small oscillation. Right panel: Zoomed region. The
shape of the curve is independent of the number of k points.
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function, whose shape is independent of the number of k
points. Fitting a linear curve in λ−2 to the small-q data (the first
three points in the right panel of Fig. 5) results in an enhanced
spin stiffness of A′

[001] ≈ 235 meV nm2. For spin spirals

along [110] similar features were obtained (not shown) with
A[110] = 112 meV nm2 and A′

[110]
≈ 75 meV nm2. However,

we assume that these oscillations are unphysical, and they are
effectively averaged out by choosing as spin-stiffness constants
A[001] and A[110] for further considerations.

C. DM interaction

To determine the Dzyaloshinskii-Moriya interaction, we
calculate the energy of spin spirals with spin-orbit interaction
for various period lengths. We first calculate in the p(1 ×
1) unit cell the magnetization and charge density for the
antiferromagnetic state in the scalar-relativistic approximation
(SRA) self-consistently. Next, for a spin spiral with various
wave vectors q we find the Kohn-Sham eigenstates in the
SRA, constructing the DFT Hamiltonian from the same AFM
charge and magnetization density (force theorem). Finally,
for each q we calculate the changes due to SOC to the
Kohn-Sham eigenvalues in first-order perturbation theory.
Following the procedure described in Sec. III C, we obtain
a layer-resolved analysis of the DMI energies, as shown in
the left panel of Fig. 6 for spirals along the [001] direction.
We extract the layer-resolved parameters Dμ through a linear
fit (Eμ

DMI = Dμλ−1) to the energies for long-period lengths
(λ � 4 nm, i.e., the points to the left of the dotted line in the left
panel of Fig. 6) and show in the upper right panel the resulting
distribution of the layer-resolved Dμ to the total DMI strength
D = ∑

μ Dμ summarized in Table III. For comparison, films
with seven to nine W layers are shown.

The total DMI strength D and all its layer-resolved
contributions Dμ are positive. That means that for Cr/W(110)
the DMI favors a left-rotating spiral. The first three W
layers contribute about 80% to the total DMI strength, the
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FIG. 6. (Color online) Left panel: Layer-resolved DMI energy
for spin spirals along the [001] direction for various period lengths and
linear fits to obtain the parameter Dμ. Upper right: The distribution
of the DMI among the layers of films consisting of seven, eight, and
nine W layers. The layers are labeled as shown in the lower right
panel for a film with seven W layers. The error bars in the upper right
panel represent uncertainties of the fits.

TABLE III. Total DMI strength D for spin spirals along a high-
symmetry direction for films of different thicknesses.

(meV nm) q̂ ‖ [001] q̂ ‖ [110]

1Cr/7W 19.9 8.5
1Cr/8W 19.3 8.5
1Cr/9W 19.0 8.8

W interface layer yielding the major contribution. This is
explained by the induced magnetic spin and orbital moments
due to hybridization with the Cr layer and the large spin-orbit
coupling strength ξ of W, which enter Eq. (13). However,
following this argument, the spin and orbital moments do not
enter linearly in Dμ, as can be concluded by comparing the
values of the magnetic moments for W (cf. Table II) with the
distribution in Fig. 6: the magnetic moments decay much faster
with increasing distance from the Cr-covered surface than the
DMI. In Ref. [45] a minimal model is developed for the DMI
which shows that the DMI depends on the hybridization of
spin-orbit-active orbitals on the W site with spin-dependent
orbitals on the Cr site, and this is a more nonlocal effect.

Spin spirals along the [110] direction have a smaller DMI
strength D[110] (cf. Table III) and the contributions decay more
slowly from the surface with increasing distance. Interestingly,
in this case the Cr layer does not contribute significantly to the
DMI (not shown).

Comparing the layer distribution for films of different
thicknesses, it is observed that the distribution changes on
choosing a different number of substrate layers, but the sum
over all significant contributions (i.e., the first five layers
for [001] and seven layers for [110]) is nearly constant
(cf. Table III). Obviously, the DMI converges faster with
respect to the layer thickness compared to the MAE
(cf. Sec. IV A). This can be understood from a perturbation-
theory expansion considering the spin-orbit operator as a per-
turbation. As shown in Ref. [45], the DMI originates from band
transitions near the Fermi energy and scales as 1/(εo − εu),
where εo and εu are the unperturbed band energies of occupied
and unoccupied states. The MAE has a very similar expansion,
but the leading-order term is of second order, leading to a
MAE proportional to 1/(εo − εu)2. Thus, the contributions to
the DMI originate from a larger energy interval around the
Fermi energy compared to the MAE, making it more stable
against the small variations in the electronic structure at the
Fermi level when more layers are added to the film.

Our approach consists of two basic assumptions, namely,
that (a) the force theorem can be applied for the calculations of
the spin-spiral energy starting from the charge density of the
antiferromagnetic state in the p(1 × 1) unit cell ignoring the
spin-orbit interaction and (b) the results depend only weakly
on the approximation that SOC is neglected in the calculation
of the AFM initial charge density. To investigate the former
assumption, we calculated a self-consistent charge density
(excluding SOC) for each q vector and treated only the SOC
as a perturbation. The changes with respect to the reference
calculation (see the full and checkerboard bars in Fig. 7)
show that the magnetic force theorem is a very reasonable
approach. To test the latter assumption, we included SOC
in the self-consistent calculation of the AFM initial charge
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FIG. 7. (Color online) Effects of different approximations for the
initial Kohn-Sham states applied in Eq. (18) on the layer-resolved
contribution to the DMI: Excluding SOC in the self-consistent
calculation and employing the magnetic force theorem (FT) for the
spin spirals (black, filled), excluding SOC but carrying out self-
consistent calculations for the spin spirals (orange, checkerboard),
and including SOC with m0 along the [001] and [110] directions and
employing the force theorem (blue, striped diagonally top right and
green, top left, respectively).

and magnetization density with a magnetization density m0

pointing along one of the high-symmetry orientations êk ,
and calculated the DMI via the force theorem following
the procedure as explained at the beginning of this section.
Note that these calculations require the explicit use of the
antiferromagnetic c(2 × 2) unit cell containing two surface Cr
atoms. The layer-resolved contribution to the DMI is slightly
enhanced in the W layers, but the result does not depend on
the direction of the initial magnetization m0.

V. DISCUSSION

Table IV summarizes the three parameters A, D, and K

for the system Cr/W(110) as extracted from the ab initio
calculations. Employing the micromagnetic model for inho-

mogeneous spin spirals, Eq. (5), we find that the dimensionless
inhomogeneity parameter κ = 16/π2 AK/D2 defined in (10),
which is essential in the criterion for the energetic stability
of a spin-spiral state, κ ∈ [0,1[, is smaller than 1 (κ = 0.5 <

1) and a left-rotating cycloidal spin spiral along the [001]
direction with a period length of 14.3 nm [corresponding to 45
chemical p(1 × 1) unit cells in this direction] is energetically
stable and is the magnetic ground state. In contrast, for
spin spirals along the [110] direction, κ is larger than 1
(κ = 3.0 > 1) and a periodic spiral is not stable. This is due to
a large anisotropy of D, being about twice as large for spin
spirals along [001] compared to the ones along the [110]
direction, whereas A and K depend only weakly on the
propagation direction q̂. Moreover, D enters quadratically in
the criterion for the formation of a spin-spiral ground state.
This quadratic dependence also appears in the energy gain
over the AFM state for homogeneous spirals, and the strong
D for q ‖ [001] pushes this energy gain to about 0.3 meV per
surface atom over the AFM state. In contrast, a spin spiral
along the [110] direction is energetically unfavorable by 0.4
meV compared to the AFM.

The inhomogeneity of the ground-state spin spiral along the
[001] direction is considerable, as can be seen by comparing
the period lengths. It is about 6% larger than the corresponding
homogeneous spiral.

The uncertainty in K has only a minor influence on the
profile and the period length of the spiral, as can be seen in
Fig. 8. There is a significant influence of the method chosen to
obtain the spin stiffness A, as discussed in Sec. IV B. Were we
to use the unphysically larger value A′ in the micromagnetic
model, κ would increase to a value of 0.9, accompanied by a
strong increase of the spiral period (cf. Fig. 2).

A. Comparison to the experiment

Our results can explain the modulation of magnetic contrast
along the [001] direction as found in the SP-STM experiment
by Santos et al. [23] in terms of spin spirals, which are driven
by the DMI: (i) We have an excellent agreement with the
experimentally observed propagation direction of the spin spi-
ral, and (ii) the modulation length of 7.7 ± 0.5 nm (compared

TABLE IV. Model parameters A, D and K (spin stiffness, DMI, and MAE, respectively) as well as the direction of the easy axis, êeasy, as
extracted from ab initio calculations, and the resulting inhomogeneity parameter κ and period length λ of spin spirals along a chosen direction
of the wave vector q̂ for different 3d ultra thin films deposited on a W(110) substrate. The model parameters for a Mn monolayer and Fe
double layer (Fe-DL) are taken from Refs. [1] and [12], respectively, and the parameters (except D, see the text) for the Fe monolayer (Fe-ML)
are taken from Ref. [46]. For films with p(1 × 1) FM short-range order, the values for K include also the contribution from the dipole-dipole
interaction. For comparison also the period length λhs and energy Ehs (with respect to the collinear state) are given, where the model is restricted
to homogeneous spin spirals. A negative sign of the period length indicates a left-rotational sense. The asterisk denotes that the easy axis is
parallel to the Dzyaloshinskii-Moriya vector, and the micromagnetic model (2) needs to be extended as explained in Ref. [31].

Short-range A D K λ λhs Ehs

3d order êeasy q̂ (meV nm2) (meV nm) (meV) κ (nm) (nm) (meV)

Cr AFM [110] [001] 135 19.9 0.9 ± 0.1 0.5 −14.3 −13.5 −0.3
[110] 112 8.5 1.2 ± 0.1 3.0 ∞ ∞ 0.4

Mn AFM [110] [110] 94.2 23.8 1.2 0.3 −8.0 −7.9 −0.9
Fe-ML FM [110] [001] 51 −2.6 ∗ ∗ ∞ ∞ 2.5

[110] 131 7.4 2.5 9.7 ∞ ∞ 1.0
Fe-DL FM [110] [001] 165 −3.6 0.1 2.1 ∞ ∞ 0.03

[110] 143 3.1 0.2 4.8 ∞ ∞ 0.08
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FIG. 8. Profile of the predicted inhomogeneous spin spiral
along [001] with A = 135 meV nm2, D = 19.9 meV nm and K =
(0.8, 0.9, and 1.0) meV, resulting in κ = 0.45 (dotted line), 0.50
(solid), and 0.55 (dashed). The period length and the profile are not
very sensitive to the uncertainty in K .

to our findings of |λ|/2 = 7.2 nm), giving confidence in our
theoretically determined parameter set A,D,K . A sketch of
the spiral is shown in Fig. 9.

B. Comparison to other thin-film systems on W(110) substrates

In order to get a better understanding of the intricate
behavior of the DMI in competition with the spin stiffness
and MAE through a systematic analysis, we compare our
findings to other 3d transition-metal thin-film systems on
W(110) substrates (cf. Table IV). We find that the Cr/W(110)
system is closest to Mn/W(110) [1]. Both systems exhibit a
short-range antiferromagnetic order and produce a high DMI
with the same sign which creates a spin-spiral ground state of
the same rotational sense and comparable pitch. However, the
propagation direction is different, along [110] for Mn/W(110)
and along [001] for Cr/W(110). Although both systems are so
similar, the question arises: Why are the propagation directions
of the spin-spiral ground states different? It turns out that
the direction of the easy axis has a crucial influence on the
energy of the spin spiral: For Mn/W(110), the easy axis lies

FIG. 9. (Color online) Upper figure: Predicted left-rotating mag-
netic spin-spiral ground state of the Cr monolayer on W(110) shown
for roughly 1/4 of the period length. The arrows represent the
magnetization direction of the Cr atoms (the W substrate atoms are not
shown, but assumed to be below the Cr layer). The color represents the
out-of-plane component of the magnetization direction, ranging from
red (mz = +1) via brown (mz = 0) to green (mz = −1). Lower figure:
The mirror image shows a right-rotating spiral that is energetically
unfavorable and not found in nature.

in plane along the [110] direction. A possible flat spin spiral
along the [001] direction would rotate in a plane spanned by
the [001] and [110] directions, and thus would exclude the
easy axis. Therefore, a large anisotropy energy needs to be
overcome to rotate the magnetic moments away from the easy
axis into the rotational plane. For the case of Mn/W(110),
these costs cannot be fully compensated by a gain in energy
through the DMI. Thus, in Mn/W(110) the direction of the
easy axis prohibits a spiral formation in the [001] direction.
In contrast, in Cr/W(110) the energy gain due to DMI is of
similar magnitude as compared to Mn/W(110), but the easy
axis points out of plane, and thus the rotational plane of a spin
spiral includes the easy axis, irrespective of the propagation
direction of the spin spiral. As explained above, for Cr/W(110)
the DMI strength for spin spirals in the [001] direction is about
twice as large as in the [110] direction, and thus determines
the propagation direction of the spiral.

According to the theoretical values presented in Table IV,
in the Fe monolayer (Fe-ML) and double layer (Fe-DL) on
W(110), the DMI is too weak to compete against the MAE
and spin stiffness, and the ground states of both remain ferro-
magnetic, but the DMI influences the dynamical properties
in terms of the excitation spectra of magnons [14,15]. In
addition, for the Fe-DL Heide et al. [12] could explain by the
micromagnetic model that the DMI is strong enough to change
the domain-wall structure from a Bloch wall to a Néel-type
domain wall, and to determine the orientation of the wall and
the right-rotating sense of the magnetization in the wall. These
walls are normal to the [001] direction, i.e., the magnetization
has the same propagation direction as for Cr/W(110), but the
rotational sense is opposite. However, spin spirals can occur
in stripes of Fe double layers of finite width [47].

In addition, we calculated the layer-resolved DMI for an Fe-
ML and Fe-DL on W(110) with the computational parameters
taken from Ref. [26], but using a slab of seven W layers and
three (seven) q vectors with λ−1 < 0.03a−1 (λ−1 < 0.1a−1)
for the Fe-ML (Fe-DL). The full Brillouin zone was sampled
by 3600 and 3780 k points for spin spirals along the [110] and
[001] directions, respectively. In the light of the Cr/W(110)
results, where all layer-resolved DMI strengths Dμ had the
same sign irrespective of the spiral direction, the resulting
histograms (Fig. 10) reveal a rather diverse behavior of Dμ

as function of the layer index. Common to all systems studied
here, i.e., the Fe-ML, Fe-DL, Mn on W(110) (not shown here),
and Cr on W(110), is the observation that the W interface
layer (W1) shows the largest contribution to D. This can
simply be attributed to the fact that the spin-polarized states
of the magnetic thin film hybridize and thus spin-polarize W1
most, which experiences in addition the strongest break of
the structure-inversion symmetry and a large SOC strength.
However, the sign might crucially depend on both the type of
the magnetic thin film and the direction of the spin spirals.
For example, in case of the Fe-ML system, we witness a large
negative contribution to D at the W interface layer (W1) for
spin spirals along the [001] direction, while the W1 layer
exhibits a large positive contribution to D for spin spirals in
the [110] direction. For spirals along the [001] direction, the
sign of Dμ for Fe and W atoms at the Fe-W interface is the
same, irrespective of whether one deals with an Fe-ML or
Fe-DL. The values of |Dμ| of the interface atoms Fe1 and
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FIG. 10. (Color online) Layer-resolved DMI strength for spin
spirals in a ferromagnetic Fe monolayer (ML) and double layer (DL)
on W(110).

W1 (see Fig. 10) are smaller in the Fe-DL, presumably due
to a smaller structural asymmetry. Most Dμ in the Fe-ML
system for spin spirals along the [110] direction are of the same
positive sign. This situation is closest to Cr/W(110), where all
layers contribute with the same positive sign to D (see Fig. 6),
but irrespective of whether the frozen spiral propagates along
the [001] or [110] direction. This is different for the Fe-ML
and Fe-DL, where in both cases the Dμ show an oscillatory
behavior as a function of the layer number from the interface.
This shows again that the DMI is a nonlocal effect, and the DMI
in the substrate atoms is greatly influenced by the surface layer.

VI. SUMMARY

We analyzed the magnetic structure of a monolayer Cr on
W(110) by means of density functional theory. We proposed
a minimal atomistic spin model that describes the magnetic
structure of the system. Following symmetry arguments we
developed from the spin model a simple one-dimensional
micromagnetic model and found the model parameters by fits
to ab initio calculations. Within the model, we are able to
explain the experimentally observed modulation of magnetic
contrast in terms of cycloidal spin spirals along the [001]
direction. We predict a chiral magnetic structure, which is
an inhomogeneous spin spiral of left handedness caused by
the spin-orbit-driven Dzyaloshinskii-Moriya interaction. The
propagation direction of the frozen spiral and the period
length of 14.3 nm agree nicely with the experimental values.
Analyzing the layer-resolved distribution of the DMI, we
can address the major contribution to the first W interface
layer originating from the large spin-orbit-coupling strength,
the induced magnetic moment, and the structure-inversion
asymmetry of the interface. However, it would be too simplistic
to conclude that the interface atoms of a substrate with
large spin-orbit interaction and thus the substrate as a whole
determine the chiral properties of the magnetic film. Instead,
the layer distribution of the Dzyaloshinskii-Moriya strength
(e.g., the sign) differs qualitatively when comparing different
thin-film systems on W(110), resulting in e.g., different
strengths of the total DMI for different propagation directions.

This reveals the complex interplay between chemical and
structural factors responsible for the Dzyaloshinskii-Moriya
interaction.

Future systematic DFT studies of relativistic effects in thin-
film systems should help in gaining a deeper understanding
of the direction and the rotational sense of the spin-spiral
ground state on the basis of the electronic structure of these
interface-stabilized two-dimensional chiral magnets. We invite
experimental studies on Cr/W(110) to verify the handedness
and the inhomogeneity in the rotation of the spin-spiral state.
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APPENDIX: MATRIX ELEMENTS OF THE SPIN-ORBIT
OPERATOR FOR SPIN-SPIRAL STATES

According to the generalized Bloch theorem, the Bloch
state

ψkν(r|q) =
(

ei(k−q/2)·ru↑
kν(r)

ei(k+q/2)·ru↓
kν(r)

)
(A1)

is an eigenstate of the scalar-relativistic Hamiltonian for a
homogeneously spiraling magnetic structure [cf. Eq. (17)]
with the functions u

↑
kν and u

↓
kν having the periodicity of the

chemical lattice, i.e. the lattice when magnetism is ignored.
All four components of the spin-orbit operator also exhibit
the periodicity of the chemical lattice, which implies that the
action of those on a Bloch state returns the same exponential
factor, but a different lattice-periodic function ũ,

Hσ ′σ
so ei(k∓q/2)·ruσ

kν(r) = ei(k∓q/2)·rũσ ′σ
kν (r). (A2)

In the following, R denotes the shortest possible lattice vector
in the direction of q and defines a unit-cell volume �R. We
further choose the modulus of q such that q · R = 2π/N ,
with the integer N denoting the length of the magnetic
supercell in units of |R|. The expectation value consists
of four contributions, 〈ψkν |Hso|ψkν〉 = ∑

σ,σ ′ 〈ψσ
kν |Hσσ ′

so |ψσ ′
kν〉

[cf. Eq. (18)]. Integration over the magnetic supercell with
volume �N yields

〈ψ↑
kν |H↑↑

so |ψ↑
kν〉 =

N∑
n=1

∫
�n

dru↑∗
kν(r + nR) ũ

↑↑
kν (r + nR)

= N

∫
�R

dru↑∗
kν(r) ũ

↑↑
kν (r) (A3)

(and a similar expression for 〈ψ↓
kν |H↓↓

so |ψ↓
kν〉). The lattice

periodicity of u and ũ has been employed from the first to the
second line, yielding N identical integrals which are restricted
to the unit cell with volume �R. The matrix elements of the
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spin-flip contribution of the spin-orbit operator vanish,

〈ψ↑
kν |H↑↓

so |ψ↓
kν〉

=
N∑

n=1

einq·R
∫

�n

dreiq·ru↑∗
kν(r + nR) ũ

↑↓
kν (r + nR)

=
[

N∑
n=1

e2π i n/N

] ∫
�R

dreiq·ru↑∗
kν(r) ũ

↑↓
kν (r) = 0, (A4)

(and similarly for 〈ψ↓
kν |H↓↑

so |ψ↑
kν〉) due to the summation over

the exponential factor
∑N

n=1 exp(2πin/N ) = 0. Thus, the total
contribution can be evaluated in the unit cell restricted to �R.
In our case of q along high-symmetry directions of the lattice,
this �R corresponds to the chemical p(1 × 1) unit cell.

Please notice that this holds true only for first-order
perturbation theory. If one goes beyond first-order perturbation
theory, matrix elements of the form 〈ψ↑

k+qν ′ |H↑↓
so |ψ↓

kν〉 also
need to be considered [26].

[1] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze,
G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and
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V. Shah, and H. G. Salunke, Phys. Rev. B 90, 054412 (2014).

[46] M. Heide, Ph.D. thesis, RWTH Aachen, 2006.
[47] S. Meckler, O. Pietzsch, N. Mikuszeit, and R. Wiesendanger,

Phys. Rev. B 85, 024420 (2012).

115427-14

http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.90.054412
http://dx.doi.org/10.1103/PhysRevB.90.054412
http://dx.doi.org/10.1103/PhysRevB.90.054412
http://dx.doi.org/10.1103/PhysRevB.90.054412
http://dx.doi.org/10.1103/PhysRevB.85.024420
http://dx.doi.org/10.1103/PhysRevB.85.024420
http://dx.doi.org/10.1103/PhysRevB.85.024420
http://dx.doi.org/10.1103/PhysRevB.85.024420



