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Irradiated graphene as a tunable Floquet topological insulator
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In the presence of a circularly polarized mid-infrared radiation graphene develops dynamical band gaps in its
quasienergy band structure and becomes a Floquet insulator. Here, we analyze how topologically protected edge
states arise inside these gaps in the presence of an edge. Our results show that the gap appearing at ��/2, where
�� is the photon energy, is bridged by two chiral edge states whose propagation direction is set by the direction
of the polarization of the radiation field. Therefore, both the propagation direction and the energy window where
the states appear can be controlled externally. We present both analytical and numerical calculations that fully
characterize these states. This is complemented by simple topological arguments that account for them and by
numerical calculations for the case of the semi-infinite sample, thereby eliminating finite-size effects.
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I. INTRODUCTION

Graphene is an extraordinary material with unusual electri-
cal [1,2], mechanical, thermal [3] and optical properties [4].
However, probably one of the most desirable but still missing
properties is the presence of topologically protected states such
as those found in topological insulators (TIs) [5–7]. Although
one of the pioneering works that propelled the whole field of
TIs was based on Dirac fermions in graphene [5], the spin-orbit
coupling turns out to be too weak for a topological phase to
be observed. Since the number of known materials behaving
as TIs is limited, bringing these properties to carbon-based
materials [8] with the addition of a full-fledged tunability may
enormously expand their prospects.

Manipulating the electronic structure of matter by coupling
electrons and photons into entangled states has been a subject
of intense activity for many years. In the present context,
harnessing light-matter interaction [9,10] may offer a wealth
of novel phenomena [11–14], such as Floquet-Majorana
modes [15–18], or may allow the manipulation of Dirac
points [19,20]. Furthermore, time-dependent driving may
provide for unexpected ways of turning a normal material
into a special topological insulator [21–24], also called a
Floquet topological insulator (FTI) [22,25–27]. The interest
in these novel nonequilibrium phases of topological order is
increasing [28–31] not only in condensed matter [32–34] and
cold atoms [35–37] but also from a more general point of view
as a new classification may be needed [27,38,39].

First, one would need to open up a gap in the material’s bulk,
and then one should check for the presence of topological edge
states. Laser-induced bandgaps were predicted to occur for
Dirac fermions under a circularly polarized laser [21,40–43]
in a feasible range of parameters [mid-infrared range (MIR)]
that is polarization tunable [44,45]. Two recent experiments
have added new thrill to this area from different perspectives:
The first is the realization of a FTI in a hexagonal lattice crafted
in a photonic crystal [46]; the second one is the observation
of a polarization-tunable band structure at the surface of a
topological insulator through angle-resolved photoemission
spectroscopy (ARPES) [47]. This last experiment showed the
emergence of the dynamical gaps by using circularly polarized
light in the MIR.

Here, we extend on our recent proposal for achieving
Floquet chiral edge states in graphene through laser illumi-
nation [48]. Previously, we showed that a carefully tuned
circularly polarized laser may introduce a bulk dynamical
band gap at half the photon energy [44] (a scheme of the
bulk dispersion is shown in Fig. 1) while keeping propagating
states through the edges of a zigzag ribbon [48]. Interestingly,
these Floquet edge states turn out to be chiral. Many important
fundamental and technical aspects, however, remained. The
search for Floquet topological states may benefit from more
accurate and diverse experimental proposals [49]. Here, we
provide a detailed analytical derivation which is complemented
by a simple discussion of the topological character of the bulk
bands. The topological analysis provides hints for predicting
the fate of these states when disorder is included. Moreover,
the role of different types of ribbon terminations and the
band structure of a semi-infinite sample are also addressed
numerically. The latter eliminates finite-size effects and allows
direct verification of the strengths and limits of the topological
analysis.

II. IRRADIATED GRAPHENE: BULK PROPERTIES

In the presence of electromagnetic radiation, the electronic
states of bulk graphene close to the Dirac point are described
by the following time-dependent Hamiltonian:

Ĥ(t) = vF σ ·
[

p + e

c
A(t)

]
, (1)

where vF � 106 m/s denotes the Fermi velocity, σ = (σx,σy)
are the Pauli matrices describing the pseudospin degree of
freedom, e is the absolute value of the electron charge, c

is the speed of light, and A(t) = Re{A0e
i�t } is the vector

potential of the electromagnetic field (incident perpendicular
to the graphene sheet). We consider the circularly polarized
case, where A0 = A0(x̂ + i ŷ), and assume that the laser spot
is much larger than the system size in order to neglect any
spatial dependence. The choice of circular rather than linear
polarization is a subtle but important one: In contrast to
linear polarization, circular polarization breaks time-reversal
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FIG. 1. (Color online) (a) Scheme of a bulk graphene sheet
being illuminated by a laser (perpendicular to the graphene plane).
(b) Scheme showing how the Dirac cone is being modified by the
laser. The opening of dynamical gaps at ±��/2 is evident. The bands
shown in this scheme are weighted on the m = 0 Floquet channel;
that is, these bands are the ones contributing to the dc density of
states.

symmetry and allows for nontrivial topological properties
[21,27] and Floquet chiral edge states [48].

A. Floquet theory

For what follows, it is instructive to briefly introduce the
basic ideas of the Floquet formalism [50,51] used to deal with
time-dependent periodic Hamiltonians (for more extensive
general reviews we refer to Refs. [52,53]; in the context
of graphene a shorter account of this technique is given in
Ref. [8]).

Floquet theorem guarantees the existence of a set of solu-
tions of the time-dependent Schrödinger equation of the form
|ψα(t)〉 = exp(−iεαt/�)|φα(t)〉, where |φα(t)〉 has the same
time periodicity as the Hamiltonian, |φα(t + T )〉 = |φα(t)〉,
with T = 2π/� [50,52,54]. The Floquet states |φα〉 are the
solutions of the equation

ĤF |φα(t)〉 = εα|φα(t)〉 , (2)

where ĤF = Ĥ − i� ∂
∂t

is the Floquet Hamiltonian and εα is
the quasienergy.

Using the fact that the Floquet eigenfunctions are periodic
in time, it is customary to introduce an extended R ⊗ T space,
where R is the usual Hilbert space and T is the space of
periodic functions with period T . In this space, also called

Floquet or Sambe space [51], we can define the inner product

〈〈φα(t)|φβ(t)〉〉 = 1

T

∫ T

0
〈φα(t)|φβ(t)〉 dt , (3)

from which it is easy to show that ĤF is a Hermitian operator.
This implies that 〈〈φα|φβ〉〉 = δαβ for any pair of eigenvectors.
However, it is important to note that while |φ(n)

α 〉 = ein�t |φα〉,
which is also a solution of Eq. (2) with quasienergy ε(n)

α =
εα + n�ω for an arbitrary integer n, and |φα〉 are orthogonal
in R ⊗ T (for n �= 0),

〈〈φα(t)|φ(n)
α (t)〉〉 = δn0 , (4)

they correspond to the same physical state. Namely,

|ψα(t)〉 = e−iεα t/�|φα(t)〉 = e−iε(n)
α t/�|φ(n)

α 〉. (5)

Therefore, all nonequivalent physical states are restricted to a
quasienergy window of �� around any given quasienergy εα

[the so-called Floquet zone (FZ)]. Of course, we can still use
an “extended FZ” picture as in the more usual case of Bloch
band states; we use that picture in the following sections as it
is better suited to a physical interpretation of the results.

The Floquet eigenfunctions, when restricted to a given FZ,
satisfy the following orthogonality and closure relations in R
for a fixed time t :

〈φα(t)|φβ(t)〉 = δαβ , (6)

∑
α

|φα(t)〉〈φα(t)| = I . (7)

A convenient basis of R ⊗ T can be built from the product
of an arbitrary basis of R (the eigenfunctions of the time-
independent part of the Hamiltonian, for instance) and the set
of orthonormal functions eim�t , with m = 0,±1,±2, . . . , that
span T . Then,

|φα(t)〉 =
∞∑

m=−∞
|uα

m〉 eim�t , (8)

or, in vector notation in R ⊗ T ,

|φα〉 = {. . . ,|uα
1 〉,|uα

0 〉,|uα
−1〉, . . .}T . (9)

Written in this basis, ĤF is a time-independent infinite matrix
operator H̃∞

F with Floquet replicas shifted by a diagonal term
m�� and coupled by the radiation field with the condition for
pure harmonic potentials, 
m = ±1,

H̃∞
F =

⎛
⎜⎜⎜⎜⎜⎜⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋰

⋯ vF p · σ + 2��I vF e
2c

A0σ− 0 0 ⋯

⋯
vF e
2c

A0σ+ vF p · σ + ��I vF e
2c

A0σ− 0 ⋯

⋯ 0 vF e
2c

A0σ+ vF p · σ vF e
2c

A0σ− ⋯

⋯ 0 0 vF e
2c

A0σ+ vF p · σ − ��I ⋯

⋰ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Here, σ± = (σx ± iσy). Thus, Eq. (2) becomes a time-
independent eigenvalue problem.

Since we are interested in the Floquet spectrum around
the dynamical gap, that is, ε ∼ ��/2, we restrict the Floquet
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Hamiltonian to the m = 0 and m = 1 subspaces (or replicas)
for the analytical calculations; the numerical results can retain
a larger number (NFR) of replicas. As we will show, this restric-
tion is enough to get the main features of the energy dispersion
and the Floquet states. The reduced Floquet Hamiltonian
describing states close to the K point of graphene’s Brillouin
zone then corresponds to the central blocks of Eq. (10),

H̃F =
(

vF p · σ + ��I vF e
2c

A0σ−
vF e
2c

A0σ+ vF p · σ

)
. (11)

In the notation of Eq. (9), the Floquet equation H̃F |φ〉 = ε|φ〉
involves finding a four-component wave function

φ(r) = {[u1A(r),u1B(r)],[u0A(r),u0B(r)]}T, (12)

where each component umi(r) refers to the m = 0,1 subspace
and the i = A,B of the lattice site; we include the square
brackets in the notation to emphasize the spinor character of
the wave function of each replica.

B. The bulk states

The Floquet states in a bulk graphene sheet have been
discussed in several works for both linear [55] and circular
polarization [21]. They are the starting point for our study of
the formation of laser-induced band gaps and the emergence
of nontrivial topological properties, and for the sake of
completeness, we present here a simple derivation.

Due to the translational invariance the wave function takes
the form

φkα(r) = eik·r{[ukα
1A,ukα

1B

]
,
[
ukα

0A,ukα
0B

]}T
, (13)

where the index α denotes the four solutions of the Floquet
Hamiltonian

H̃F =

⎛
⎜⎜⎜⎝

��
2 �vF k− 0 0

�vF k+ ��
2

vF e
c

A0 0

0 vF e
c

A0 −��
2 �vF k−

0 0 �vF k+ −��
2

⎞
⎟⎟⎟⎠ + ��

2
I, (14)

with energies εkα and k± = kx ± iky . For A0 = 0 the
Hamiltonian H̃F has four eigenenergies: ±�vF k and �� ±
�vF k. Two of these eigenstates, �� − �vF k and �vF k, become
degenerate at k = k0 = �/2vF , where the quasienergy value
is ��/2. A finite amplitude A0 of the radiation mixes these
two states, generating an anticrossing and opening a gap [56].
By introducing Eq. (13) into the Floquet equation, one can find
the ukα

mi coefficients. In this case, however, it is convenient to
further reduce the problem by solving the eigenvalue equation
in the subspace of the two degenerate branches. The Floquet
quasienergies of these branches near the degeneracy point are
then given by

εk± = ��

2
(1 + μ±), μ± = ±

√(
1 − k

k0

)2

+ η2, (15)

where

η = evF A0

c��
(16)

is the dimensionless parameter controlling the transition from
the weak- to the strong-coupling regime; we will always

FIG. 2. (Color online) Scheme of the Floquet bands with m =
−1,0,1 as used for the calculation of the number of chiral edge states
hosted within each gap. The column on the right indicates the number

N of chiral edges states at each crossing of the m = 0 replica.

consider the case η 	 1 so the perturbative approach remains
valid (the strong-coupling regime was considered recently
for a linearly polarized laser [57]). The dynamical gap is
η�� = evF A0/c. The resulting dispersion of the Floquet
quasienergies is shown in Fig. 2.

Finally, the time-dependent solutions of the Schrödinger
equation are

ψk±(r,t) = e−iεk±t/�eik·r 1√
2A

[
− sin (ϕ±

k /2)

(
eiθk

−1

)
ei�t

+ cos (ϕ±
k /2)

(
eiθk

1

)]
. (17)

Here,A is the area of the graphene sheet, θk is the angle formed
by k and the x axis, and

tan ϕ±
k = η

k0

k − k0
. (18)

The instantaneous expectation values of the velocity operator,
v = vF σ , evaluated in these states are

〈v‖〉k± = vF cos ϕ±
k = vF

k0 − k

k0 μ±
,

〈v⊥〉k± = vF sin ϕ±
k sin �t = −vF

η

μ±
sin �t, (19)

with v‖ and v⊥ being the velocity components parallel and
perpendicular to the wave vector k, respectively. The time-
averaged velocity is

〈〈v‖〉〉k± = vF cos ϕ±
k ,

〈〈v⊥〉〉k± = 0. (20)

One can verify that 〈〈v〉〉k± = (1/�)∇kεk± as expected from the
Hellmann-Feynman theorem [51]. The eigenstates in Eq. (17)
then propagate (on average) in the direction of the wave vector
k. One can also verify that 〈σz〉k± = sin ϕ±

k cos �t , so that the
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pseudospin is precessing around the k̂ axis with frequency �,

〈σ 〉k± = cos ϕ±
k k̂ + sin ϕ±

k (sin �t ẑ × k̂ + cos �t ẑ). (21)

The amplitude of the oscillation is maximum at k = k0, where
the states do not propagate (〈〈v‖〉〉k± = 0).

C. Topological character of the Floquet bands

While the description of the topological character of the
energy bands for a time-independent system is a mature field,
discussions of driven systems in this context began much more
recently [21–23,27,58]. Here, we present a simple analysis
highlighting the main features of interest for our discussion of
Floquet chiral edge states. This analysis of the bulk properties
allows us to infer the existence of robust edge states such as
the ones obtained analytically and numerically in the following
sections.

To calculate the number of states inside a given Floquet gap
one needs to look at the Chern numbers of the entire Floquet
spectrum [27]. The Chern number of each Floquet band Cn

gives the difference between the number of chiral states above
and below the band [7,27], while the sum of all the Chern
numbers below a given band gives the number of chiral states
above it. A proper calculation of Cn requires, in principle,
taking into account all replicas, or at least the O(D/��)
replicas that overlap in the region of the gap of interest, where
D is graphene’s bandwidth, since only in that case is the
Floquet spectrum actually gapped. The main contribution to Cn

comes from the region in k space where anticrossings between
replicas occur (see the Appendix). While in a time-independent
problem there is no distinction between the contributions
to Cn coming from different regions in k space, we argue
in the following that in Floquet space there is a hierarchy
of contributions and thus a hierarchy of edge states. This
hierarchy is based on the weight of the Floquet band on a
given subspace, say the one with m = 0, which is determined
by the parameter η. The reason for this is that the calculation
of the dc properties of the system, such as the time-averaged
density of states, implies a projection on one replica.

We start by truncating the Floquet Hamiltonian and consider
the Floquet channels with m = −1,0,1. Then, the unperturbed
spectrum projected on a given k direction looks like the one
represented in Fig. 2. Switching on the radiation opens band
gaps at the crossings located at the Dirac point and ±��/2.
To infer the topological properties of these bands one could do
either a numerical calculation of the Chern numbers for the full
band structure (in the tight-binding model) or an approximate
calculation, as outlined below.

For the approximate calculation one needs (see the
Appendix for more details) (i) to isolate each crossing where
a band gap opens, (ii) to obtain an effective Hamiltonian at
each of those points [a 2 × 2 matrix of the form Heff

F (k,ν) =
hν(k) · σ , with ν = ±1 being the valley index], and (iii) to
compute from it the contribution to the Chern number at each
crossing (and sum over the two valleys), assuming that the
associated Berry curvature decays fast enough away from
them (similar to what is done with bilayer graphene where
one defines a valley Chern number [59]).

Let us start analyzing what happens to the Dirac point
(k ∼ 0) in the m = 0 replica (this region is marked with a

rectangle in Fig. 2). A virtual photon process (absorption and
then reemission of one photon and vice versa) originates a
gap [21,44], which is of second order in the electron-photon
coupling. In the large frequency limit, the effective
Hamiltonian has hν(k) = �vF (kx,νky,ν η eA0/�c). This
effective Hamiltonian describes the stroboscopic evolution
of the system at each period T = 2π/�, just as if we had a
time-independent system [23]. The contribution to the Chern
number from each valley is 1/2 (taking the limit η → 0 at
the end of the calculation), and since these contributions
have the same sign, we get a total of 1. Note that to get an
integer number one needs to sum up the contributions from
each valley, just as in Haldane’s model [60] but this time in
Floquet space [32]. Also, it should be kept in mind that this is
a contribution of +1 to the Chern number of the Floquet band
that is right below zero quasienergy. The band just above zero
gets a contribution of −1.

The calculation around ��/2 is more subtle since it
involves a first-order process in η (circle in Fig. 2). We
start by considering the truncated Floquet Hamiltonian of
Eq. (14). As before, to simplify the analysis even more
it is convenient to consider only the subspace of the two
degenerate branches with m = 0 and m = 1. The effective
Floquet Hamiltonian has h(k) = �vF [(k − k0) k̂ − k0η ζ̂ k],
with ζ̂ k = sin θk θ̂ k + cos θk ẑ, which gives a contribution of
−2 (−1 for each valley) to the Chern number of the Floquet
band below ��/2. Adding this to the contribution coming
from the region around k ∼ 0, we get a total contribution to
the Chern number arising from these anticrossings of −3. We
conclude that there should be a difference of 3 in the chirality
of the edge states [7,27] appearing at the dynamical and the
Dirac point gaps. Extending this procedure to all the Floquet
bands in Fig. 2, we conclude that two edge states are expected
to emerge at the dynamical gap (twice those at the smaller gap
at the Dirac cone) with an O(1) weight on the m = 0 subspace.

Notice that the different signs of these contributions to
the Chern number imply that the propagation direction of
the associated edge states is also the opposite. This can also
be appreciated in Fig. 7, where the dispersion weighted on the
m = 0 channel for a semi-infinite graphene sheet is shown; one
distinguishes two states propagating to the left at the dynamical
gap and one to the right close to the Dirac point. Given that
the dynamical gaps are linear in the laser strength, they are the
best candidates for an experimental observation (indeed, the
recent observation at the surface of a topological insulator [47]
highlights the dynamical gaps).

A more careful inspection of Fig. 2 shows that there are also
other crossings taking place at zero energy and at ��: the ones
marked with triangles in Fig. 2. The situation in these cases is
similar: laser-induced band gaps emerge close to those points
and turn out to host Floquet chiral edge states. But this is not
the whole picture as the number of crossing points with zero
energy grows with the number of replicas considered when
truncating the Floquet Hamiltonian; (a similar situation occurs
for energies close to ��/2). Although this may seem irrelevant
since those gaps turn out to be smaller and smaller (higher order
in the radiation strength), an important question is whether
this reduction of the gap in the overall quasienergy spectrum
effectively limits the range where topological properties are
expected and, equally important, if it somehow weakens
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the topological protection. We argue that those ever-smaller
anticrossings do not give a significant contribution to the
time-averaged quantities, provided that the electron-radiation
coupling is small, η 	 1. The main point is that those higher-
order states have a parametrically smaller weight (of order
ηδm) on the m = 0 channel and therefore do not contribute
to the time-averaged density of states; δm is the difference
in the Floquet index of the two coupled replicas that leads
to the high-order gap. Indeed, this can be appreciated (for
the ��/2 gap) in Fig. 8, where we show a very fine detail
close to the dynamical gap; a more detailed discussion is
given in Sec. IV B. We therefore propose to use the m = 0
Floquet-projected Chern number for our purposes.

In the next section we will pursue a different path to
explicitly determine these states, their propagation velocity,
and the decay length.

III. FLOQUET TOPOLOGICAL STATES IN ZIGZAG
EDGES: ANALYTICAL SOLUTION

In this section, we present an analytical solution for the edge
states near the dynamical gap by retaining only the m = 0
and m = 1 subspaces. While some particular cases of this
solution [see Eqs. (30) and (38) below] have been presented
in Ref. [48], here, we discuss the solution for the full range of
parameters and provide more details about its properties, such
as the energy dispersion, velocity, and chirality of the edge
states for both Dirac cones; in particular we analytically prove
that both cones give rise to states with the same chirality. We
also comment on a shortcoming of our solution at the end of
this section.

To obtain analytical expressions for the Floquet edge states
within the dynamical gap, we consider a semi-infinite graphene
sheet with a zigzag termination. Translational invariance along
the edge (y axis) implies that umi(r) ∝ eikyy . Since we are
interested in Floquet states that are localized near the edge, we
look for solutions of the form exp(κx), with κ = ikx + q and
kx ,q ∈ Re. If we take the semi-infinite sheet to be restricted to
the x > 0 region, the physical solution corresponds to q < 0;
we will keep track of both signs, however, for reasons that will
became clear later on.

The boundary condition at the edge of the graphene sheet
requires the wave function to vanish at one of the lattice sites,
say, umB(x = 0) = 0, which, in turn, requires us to combine
solutions with ±kx . After a tedious but straightforward algebra
we find that the solutions have the form

umi(r) = C eikyyeqxQmi(x) , (22)

with

Q1A(x) = −
√

1 + 4η2 − μ2

1 + μ
sin (kxx + θk) ,

Q1B(x) = i
√

1 − μ sin(kxx) ,

Q0A(x) = ±i
√

1 + μ sin(kxx + ϕk) ,

Q0B(x) = ∓
√

1 + μ sin(kxx) , (23)

where C is a normalization constant and

eiϕk = ky − q + ikx

|ky − q + ikx | , eiθk = ky + q + ikx

|ky + q + ikx | . (24)

The exponential decay of the wave function towards the bulk
of the graphene sheet is set by

q = ∓eA0

2�c

√
1 − μ

1 + μ
. (25)

If we recall that the amplitude of the electric field is E0 =
�A0/c, the prefactor in Eq. (25) defines half the inverse of the
characteristic length

ξ = ��

eE0
. (26)

Hence, the spatial profile of the Floquet topological edge
states has a characteristic distance that is independent of
graphene’s microscopic parameters. This is consistent with
the expectation that ξ must be proportional to �vF divided
by the gap, ξ ∼ �vF /(evF A0/c) = �c/eA0. The cancella-
tion of vF is a consequence of the linear dispersion of
graphene.

The oscillating part of the wave function towards the bulk
of the sample is given by

kx =
√

ε2

(�vF )2
− (ky − q)2 = k0

√
1 + μ

1 − μ

√
1 − μ2


2
, (27)

where 
 = η/
√

1 + η2 [��
 is the bulk energy gap when
calculated with the full 4 × 4 matrix of Eq. (14)]. The
corresponding energy dispersion ε(ky) is obtained from the
solution of the following equation:

μ(1 + μ) − η2(1 − μ) ∓ η ky/k0

√
1 − μ2 = 0 , (28)

which gives two solutions inside the dynamical gap with a
real value for kx . We denote these two solutions as φA

K,∓(r) to
emphasize they correspond to a given Dirac cone K and to an
edge that ends in A atoms; recall, however, that for the chosen
x > 0 region the physical solution corresponds to q < 0. The
general solution of Eq. (28) can be written in an analytical
form, but the expression is rather involved to present here.
However, close to the middle of the dynamical gap, one can
approximate the solution as

ε̄ = ε

��
≈ (1 + 2η2)

2(1 + η2)
± η

2(1 + η2)

ky

k0
. (29)

This a linear dispersion, corresponding to massless edge states
with a constant velocity (see below).

For ε = ��/2 the solution has a particularly simple form
since in that case ky = q = −1/2ξ , kx = k0, and the wave
function becomes

ψA
K,−(r,t) = e−iy/2ξ e−x/2ξ (2ξLy)−

1
2

×
[(− cos k0x + 2η sin k0x

i sin k0x

)
ei�t

+
(

i cos k0x

− sin k0x

)]
, (30)
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where we introduced the sample length Ly in the y direction
(assumed to have periodic boundary conditions). Note that the
oscillation in the direction perpendicular to the edge does not
depend on A0 but on the frequency, k0 = �/2vF , and that there
are many periods in the decay length as 2k0ξ = 1/η � 1.

For the case of a nanoribbon, we can use this approach
to calculate the edge states on the other side of the sample
provided the width W � ξ . In that case, we look for a solution
such that ũmA(x = W ) = 0. If we define x̃ = x − W < 0, we
then require an exponential decay exp(q̃x̃) < 1. Hence, the
physical solution corresponds to q̃ > 0, which is consistent
with the previous solution; nevertheless, we track both signs
of q̃ as before. Following the same procedure, we obtain

ũmi(r) = C ′ eikyyeq̃x̃Q̃mi(x̃), (31)

with

Q̃1A(x̃) =
√

1 − μ sin(kxx̃) ,

Q̃1B(x̃) = −i
√

1 − μ sin (kxx̃ − θk) ,

Q̃0A(x̃) = ±i
√

1 + μ sin(kxx̃) ,

Q̃0B(x̃) = ∓
√

1 + 4η2 − μ2

1 − μ
sin(kxx̃ − ϕk), (32)

and

q̃ = ± 1

2ξ

√
1 + μ

1 − μ
. (33)

Interesting enough, for a given energy, the decay is different
from the one obtained on the other edge (for a single Dirac
cone); in particular,

qq̃ = − 1

4ξ 2
. (34)

In addition,

kx = k0

√
1 − μ

1 + μ

√
1 − μ2


2
, (35)

while the energy dispersion is obtained from

− μ(1 − μ) − η2(1 + μ) ∓ η ky/k0

√
1 − μ2 = 0. (36)

Note that this solution can be obtained from the previous one
by changing μ → −μ. Following the previous notation, we
denote the corresponding wave function as φB

K,±(r). Near the
middle of the dynamical gap,

ε̄ ≈ 1

2(1 + η2)
∓ η

2(1 + η2)

ky

k0
, (37)

which again corresponds to massless excitations. Figure 3(a)
shows the Floquet quasienergy dispersion for both solutions,
q < 0 (red solid line) and q̃ > 0 (blue dashed line), for η =
0.25, a large value to emphasize the symmetries. The symmetry
of the spectrum around ��/2 is apparent from Fig. 3(a).
The two branches cross at ky/k0 = −η. A comparison with
a numerical solution of a tight-binding model with a larger
number of replicas is presented in the next section (Fig. 4).
The excellent agreement shows that our solution correctly
describes the system for small values of η.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

-1 -0.5 0 0.5 1

ε̄

ky/k0

-1 -0.5 0 0.5 1

ky/k0

ψA
K−

ψB
K+

ψA
K +

ψB
K −

(a) (b)

FIG. 3. (Color online) Quasienergy dispersion of the edge states,
ε̄ = ε/��, for the (a) K and (b) K ′ Dirac cones and η = 0.25. The
vertical and horizontal dashed lines indicate the position of the Dirac
cone and the center of the dynamical gap, respectively. The red solid
line corresponds to the edge states on a given side of a wide W � ξ

ribbon, while the blue dashed line corresponds to the opposite side.
Note that the velocity is positive for the former and negative for the
latter.

For ε = ��/2 we get ky = −q̃ = −1/2ξ , kx = k0, and the
wave function becomes

ψB
K,+(r,t) = e−iy/2ξ ex̃/2ξ 1√

2ξLy

[(
i sin k0x̃

− cos k0x̃

)
ei�t

+
(

sin k0x̃

− cos k0x̃ − 2η sin k0x̃

)]
. (38)

The average velocity of the edge states can be readily
obtained from the relation v = (1/�)∂ε/∂ky or, equivalently,
by explicitly calculating the average value of the velocity

0.35

0.4

0.45

0.5

0.55

0.6

-1 -0.5 0 0.5 1

ε̄

ky/k0

0

0.2

0.4

0.6

0.8

1

FIG. 4. (Color online) Comparison of the tight-binding
quasienergy dispersion (small dots) projected onto the m = 0
subspace (weight given by the color scale), with the analytical
expression (blue open circles) for h� = 0.3γ0 and z = 10−3. The
tight-binding data were obtained by numerically solving the Floquet
equation with NFR = 4 (see main text) and M = 1000 transverse
sites.
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operator vF 〈〈σy〉〉. It is clear from Fig. 3 that the edge states
belonging to opposite sides of a finite sample, φA

K,−(r) and
φB

K,+(r), have opposite velocities. This can be seen explicitly
by examining Eqs. (29) and (37), from which we find that the
velocities are given by

vA
K,− = −vB

K,+ = η

1 + η2
vF (39)

near the middle of the gap.
The edge states coming from the other Dirac cone

K ′ can be obtained from the ones of the K cone if
we write the four-component wave function as φK ′(r) =
{[−ū1B(r),ū1A(r)],[−ū0B(r),ū0A(r)]}T; such rearrangement
is equivalent to applying the operator −iσyτ0 to the usual four-
component wave function. In that case, the form of the Hamil-
tonian for both cones is the same, and the physical solutions are
φA

K ′,−(r) = −iσyτ0φ
B
K,−(r) and φB

K ′,+(r) = −iσyτ0φ
A
K,+(r);

here, the reason we kept both signs in the previous calculation
becomes clear. The corresponding quasienergy dispersion is
shown in Fig. 3(b). This implies that

vA
K ′,− = vB

K,− , vB
K ′,+ = vA

K,+ . (40)

Hence, the velocities of the two edge states on a given side
of the sample, say, φA

K,−(r) and φA
K ′,−(r), have the same sign.

That is, there are two chiral edge states on each side of the
sample.

Before ending this section it is important to mention a subtle
issue regarding the normalization of the wave functions (6).
In the notation of Eq. (8), the normalization condition implies
that

∞∑
m=−∞

〈uα
m|uβ

m+n〉 = δn0δαβ (41)

for any integer n. This relation is satisfied by the eigenvectors
of H̃∞

F but not necessarily by the ones of the truncated Floquet
Hamiltonian H̃F (with any finite number of replicas). This is
the case for the solutions shown in Eqs. (22) and (31), except
for the important case of ε = ��/2 [Eqs. (30) and (38)]. That
is, the solutions in the m = 0 and m = 1 subspaces are not
orthogonal in real space (〈u1|u0〉 �= 0), so the normalization
condition is only satisfied on average and not at all times.
While this is a drawback of our solutions or any other solution
obtained with a finite number of replicas, it could, in principle,
be solved by expanding the solution in powers of the small
parameter η and incorporating the different orders coming
from the different replicas perturbatively. Indeed, if we expand
the solutions (22) and (31) to linear order in η, we can verify
that they are correctly normalized at any time to that order. In
any case, one can always compare the approximate analytical
solutions with the numerical ones with many replicas, in order
to check the validity of the former. We do precisely this in the
following section.

IV. ATOMISTIC DESCRIPTION FOR
LASER-ILLUMINATED GRAPHENE

In this section we obtain numerical results for the
quasienergy spectrum and the Floquet states using a tight-
binding model for laser-illuminated graphene. Our numerical
results compare well with the analytical expressions obtained

in the previous section based on the continuum low-energy
model. Moreover, we also explore the laser-induced edge states
in (i) ribbons with terminations other than zigzag and (ii) a
semi-infinite graphene sheet.

An atomistic model for a graphene sheet illuminated by a
laser field can be obtained by using a tight-binding Hamilto-
nian to describe the electrons near the Fermi energy [61,62],

Hg =
∑

i

εi c
†
i ci −

∑
〈i,j〉

[γij c
†
i cj + H.c.] . (42)

Here, c
†
i and ci are the electronic creation and annihilation

operators at the π orbital on site i, with energy εi , and
γij is the nearest-neighbor carbon-carbon hopping matrix
element, taken to be equal to γ0 = 2.7 eV [63]. The effect
of the laser is described through a time-dependent electric
field E(t) [21,41,42]. We choose a gauge such that E(t) =
−(1/c) ∂ A/∂t , where A is the vector potential. In this way,
the time dependence of the Hamiltonian enters only through
the hopping matrix elements, which acquire a time-dependent
phase [21,45,64],

γij = γ0 exp

(
i
2π

�0

∫ rj

r i

A(t) · d�

)
, (43)

where �0 is the magnetic flux quantum.
By using Floquet theory [53,65–67] as described before,

one can compute the Floquet spectrum. Once again, one ends
up with a time-independent problem in an expanded space.
In this case one can picture it as tight-binding problem in
a multichannel system where each channel represents the
graphene sheet with a different number of photons [8,50,64].
The Floquet Hamiltonian has the same structure as in
Eq. (10), where the Dirac Hamiltonian is replaced by Hg

and the coupling between replicas is changed accordingly.
It is worth mentioning that in the tight-binding method the
time-dependent perturbation is never purely harmonic given
the exponential dependence of Eq. (43) on the radiation
field amplitude. Hence, there is a coupling among all the
replicas [64] and not just those with 
m = ±1; nevertheless,
for η 	 1, only the latter are relevant. The results of the
continuous model are recovered if the dimensionless parameter
z = 2πaccA0/�0 is much smaller than unity [68]. Here, acc

is the carbon-carbon distance. In terms of this parameter, the
relevant magnitudes can be written as η = (3γ0/2��)z and
ξ = acc/z.

A. Comparison between analytical and numerical
results for a finite ribbon

The tight-binding model can be solved for a ribbon of finite
width (M is the number of transverse sites) or for a semi-
infinite sheet. We deal with the former case in this section. To
this end we obtain the Floquet spectrum and the corresponding
wave functions by numerical diagonalization of the Floquet
Hamiltonian on the Bloch basis,

H̃k
gF = H̃uc

gF + V eikyd + V †e−ikyd . (44)

Here, H̃uc
gF is the Floquet Hamiltonian corresponding to one

unit cell (transverse layer), V is the hopping matrix between
unit cells, d is the distance between them, and ky is the Bloch
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FIG. 5. (Color online) Comparison of the squared modulus of a
numerically obtained wave function (symbols) projected onto the
m = 0 subspace with the analytical expression (solid and dashed
lines). The empty circles (empty squares) correspond to the numerical
results for the A sites (B sites), while the analytical expressions are
shown with solid and dashed lines, respectively. These results were
computed for a laser with h� = 0.3γ0 and z = 0.01. The plotted
wave functions correspond to the two branches with ε ∼ 0.15γ0 and
NF = 4.

wave vector along the ribbon. The size of this matrix is M ×
NFR, which imposes a limitation on both size M and number
of Floquet replicas NFR; we typically used M � 2000 and
NFR � 6.

A comparison of the results, which includes the m = 2,1,

0,−1 replicas (NFR = 4), with the analytical solution is shown
in Fig. 4 for a finite-width zigzag ribbon (M = 1000 transverse
sites). The agreement is very good in the entire gap, despite
the fact that the tight-binding calculation shows signatures of
trigonal warping for the chosen energies.

Figure 5 shows a comparison of the wave function for
ε = 0.1503γ0 obtained with the tight-binding method and the
analytical result [Eqs. (30) and (38)] for a 212-nm-wide ribbon;
the other parameters are indicated in the caption. Each panel
corresponds to one of the two branches of a given Dirac cone.
Note that they are located at opposite sides of the ribbon.

Besides zigzag ribbons we have also tested the emergence
of laser-induced edge states for other ribbon terminations.
Figure 6 shows a few typical cases: armchair ribbons [Fig. 6(b)]
and zigzag nanoribbons with Klein edges [69] [Fig. 6(c)] and
cove edges [70] [Fig. 6(d)]. The case of a zigzag ribbon is also
shown for comparison in Fig. 6(a). In all cases laser-induced
edge states bridging the dynamical gap do emerge. In contrast,
the smallness of the gap at the Dirac point and the finite system
size conspire against the formation of the edge states at the
Dirac point, which are hardly developed for the parameters
used in Fig. 6. Moreover, one can observe that the quasienergy
dispersion of the laser-induced edge states close to the Dirac
point is much more sensitive to the edge type. While for zigzag
and zigzag-like edges [Figs. 6(a), 6(c), and 6(d)] the laser
slightly bends the naturally occurring flat bands, for armchair
edges the bands crossing at the Dirac point remain while the

FIG. 6. (Color online) Quasienergy spectrum for different ribbon
terminations: (a) zigzag, (b) armchair, (c) zigzag with Klein edges,
and (d) zigzag with cove edges. The color scale indicates the weight
contributing to the average density of states. In the calculation the
ribbons are illuminated with circularly polarized light with �� =
0.8γ0 and z = 0.04; (a), (c), and (d) have ribbons with W = 31.95 nm,
while (b) has W = 31.48 nm. All calculations include the Floquet
replicas between n = −2 and n = +2. The laser-induced states
bridging the bulk dynamical gap are evident, while those at the Dirac
point are barely developed.

others move away from the Dirac point, thereby forming the
bulk gap.

B. Laser-induced edge states in a semi-infinite graphene sheet

For the semi-infinite case we use the recursive Green’s
function method to obtain the local Floquet-Green’s functions
near the edge of a very wide ribbon (M ≈ 220–225 and, even-
tually, a large NFR). Namely, we calculate G0

jj (ε + i0+,k) =
〈j,0|[(ε + i0+)I − H̃k

gF ]−1|j,0〉, where |j,0〉 represents the
state on the j -transverse site on the m = 0 replica. This
is an extremely efficient method that allows us to obtain,
among other quantities, the time-averaged local spectral
function [21,42]

ρjj (ε,k) = − 1

π
Im

[
G0

jj (ε + i0+,k)
]
. (45)

This way, we can visualize the quasienergy dispersion by
plotting the density of states near the edge,

ρedge(ε,k) =
∑
j<r

ρjj (ε,k) , (46)

where r is chosen to satisfy r � ξ/acc in order to capture the
total weight of the edge states.

Figure 7 present the results for �� = 3γ0 and z = 0.5,
which corresponds to ξ = 2acc (so we took r = 50). Here,
we used very large parameters for the radiation fields that
are unrealistic for graphene but that allow us to make a few
important points: (a) there is only one chiral edge state in each
valley that bridges the dynamical gap as we are looking at
one edge of a semi-infinite sheet; (b) there is a single edge
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FIG. 7. (Color online) Color map of the averaged local density of
states ρedge(ε,k) projected onto several sites near the edge of the semi-
infinite sheet, r = 50, as a function of ky and ε. Here, �� = 3γ0, z =
0.5, a = √

3acc, and NFR = 5. The appearance of edge states bridging
the gaps is apparent. Notice that the two states at the dynamical gap
have chirality opposite the one appearing inside the gap developed at
the Dirac point.

state at the Dirac point with the opposite chirality (∂ε/∂ky is
negative at the dynamical gap and positive at the Dirac point).
The extended dark areas on the plot correspond to the bulk
states; normalization of the color scale is done for presentation
purposes only.

In contrast to the finite-size case, where one has to tune
the parameters of the radiation field so that ξ is several times
smaller than the ribbon width or the edge channels mix and
split [48], the Green’s function method imposes essentially no
limit to the radiation intensity. This is shown in Fig. 8(a),
where we plot ρedge(ε,k) for a realistic mid-infrared field
in graphene: �� = 0.05γ0 (135 meV), z = 2.8 × 10−3. We
included here a large number of replicas, NFR = 16, although
there is essentially no difference in the results if we use, say,
NFR = 6 (not shown). The large energy span allows us to see
both the gap at ��/2 and that at the Dirac point. The latter is
narrower, and the corresponding edge state is less developed.
In particular, near ky = 0, the mixing with the m = ±1 replicas
is strong enough to completely blur it, becoming more clearly
resolved only beyond ky = 2k0, where the above-mentioned
replicas have no states (the mixing with higher-order replicas
is not discernible on this scale). This is yet another indication
of the weakness of the edge state at the Dirac point compared
with the ones that occur at the dynamical gap.

A closer view of the dynamical gap (��/2) is shown
in Fig. 8(b). The absence of finite-size effects allows for a
clear development of the edge states, in agreement with the
analytical results (indicated by the open dots).

At this point it is worth mentioning a subtle point that
is usually overlooked when discussing Floquet edge states:
the effect of the mixing with high-order replicas (m � 2 and
m � −1) on the edge state that occurs inside the first-order
dynamical gap. This effect is barely visible for the realistic
parameters used in Fig. 8, but a close-up allows u to detect
such anomalies: Fig. 8(c) shows the development of a second
generation gap with additional edge states. The appearance of a
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FIG. 8. (Color online) Color map of ρedge(ε,k) for a realistic set of
radiation parameters. The color scale is set for visualization purposes.
(a) Large energy span showing both the dynamical ��/2 gap (
1 ∼
η��) and the Dirac point gap with the corresponding edge states.
(b) Close-up of the ��/2 gap; dots correspond to the analytical
solution. (c) Further close-up near the middle of the first-order gap
showing the emergence of a second-generation gap (
2 ∼ η3

��)
and the corresponding edge states. Note that the energy (momentum)
scale is reduced (enlarged). Inside this gap there are three additional
states; one of them leads to an anticrossing with the first-order edge
state.

hierarchy of “gaps” deserves some clarification. The first-order
gap (
1 ∼ η��) arises from the mixing of the m = 0 and
m = 1 replicas. As we have shown in the previous section,
it contains one edge state (per valley). As the next-order
replicas are included, m = −1 and m = 2, the first-order
gap is partially filled, and a second-generation gap develops
inside it of order 
2 ∼ η3

��. In this case, the first-order
edge state acquires some broadening [Fig. 8(c)] and, related
to this, a parametrically small extended component of the
wave function. In addition, three additional edge states appear
inside the second-generation gap, giving a total of four edge
states. This scheme continues upon adding more and more
replicas, leading to a further reduction of the actual gap of
the Floquet spectrum. While in the continuous Dirac-like
approximation [Eq. (10)] there is never a true gap, there are
always higher-order replicas that contribute to the density
of states at any quasienergy, and thus, close it, in the tight-
binding model there is always a gap since replicas with
δm � O(D/��) do not overlap [27]. Here, D is the bandwidth
of graphene. The actual energy gap in the tight-binding
model, however, is much smaller than the first-order gap of
Eq. (15), roughly ηD/��

��. It is only inside this latter gap that
true topologically protected states exist. Nevertheless, when
η 	 1, the contribution to ρedge(ε,k) decays exponentially
with the number of replicas, so that the average density of
states is dominated by the first-order effect, as shown in
Fig. 8. If we are interested in dc properties, such as dc
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currents, the average density is what matters for identifying the
dominant contributions.

While the high-order edge states are beyond the scope
of the present work since they are not relevant for realistic
implementations in graphene (a detailed analysis will be
presented elsewhere), we would like to briefly mention the
following. The number of edge states N appearing inside
a given gap depends on the number of Floquet replicas
considered in the calculation. The rule is (for a given
valley)

N =
∑

i

|δmi |, (47)

where δmi is the difference of the Floquet indexes of the
pairs of replicas that become degenerated at the dynamical
gap, leading to a high-order gap of order η|δmi |, and i runs
over the replicas retained. For instance, the first generation
gap contains 1 = |1 − 0| edge states, the second one contains
4 = |1 − 0| + |2 − (−1)|, the third contains 9 = |1 − 0| +
|2 − (−1)| + |3 − (−2)|, and so on; we have checked this for
the mentioned generations. This result is valid as long as the
continuum approximation remains a good description of the
band and can be obtained by constructing an effective 2 × 2
Hamiltonian that describes the crossing between each pair of
replicas (see the Appendix). Notice that δmi also corresponds
to the number of photon processes involved. What we would
like to stress is that while this number of edge states is what
a calculation of the Chern number would give, converging
only when O(D/��) replicas are retained, only the first-order
state gives a significant contribution to the averaged density of
states. Hence, caution should be taken when deducing transport
properties from the Chern numbers of the Floquet Hamiltonian
alone.

V. SUMMARY AND CONCLUSIONS

We focused on the emergence of Floquet edge states in
irradiated graphene by using complementary approaches: a
simple analysis of the topological character of the bulk Floquet
bands based on a continuum model, an explicit analytical
solution for the states developing at the dynamical gaps, and
numerical calculations. The topological arguments contain a
discussion of a few novel aspects: (i) the analysis close to the
dynamical gaps which suggests a topological phase which is
different from the one at the gap close to the Dirac point (one
has two chiral edge states bridging the gap, and the other has
just one) and (ii) a discussion of the relevance of different
Floquet replicas for the calculation of Chern numbers, where
we argue that a Floquet-projected calculation (on the m = 0
channel) captures the physics of time-averaged magnitudes
such as the dc density of states.

On the other hand, the analytical solutions provide valuable
information such as the scaling of the decay length of these
Floquet chiral edge states with the system parameters, which
is not easily accessible through either a bulk calculation or
numerical simulations and which could serve as a guide for
experiments. Those results are complemented by numerics for
different ribbon terminations, highlighting the generality of
the physics described for zigzag ribbons. Further insight is
also provided by a numerical calculation for a semi-infinite

graphene sheet. This allows us to discuss subtle issues that are
hard to access when considering a finite width.

All these results highlight the experimental accessibility of
the edge states at the dynamical gap in graphene as opposed
to the one found at the Dirac point. The former offer also
the possibility to tune the transport energy window where they
appear. As for the experimental signature of these Floquet edge
states, one can anticipate [71] the appearance of a Hall-like
voltage in a radiated graphene sample whenever the Fermi
energy of the reservoirs lines up with the dynamical gap.
This voltage should change sign if the circular polarization
is reversed from, say, clockwise to counterclockwise. A
Hall signal should also develop at the Dirac point [23] but,
interestingly enough, with the opposite sign.
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APPENDIX: CHERN NUMBER CALCULATION
OF THE FLOQUET BANDS

In the time-independent case, the topology of a system can
be characterized by the Chern numbers associated with each
of the Bloch bands. Namely,

Cn = i

2π

∮
C
〈unk|∇k|unk〉 · dk

= 1

π
Im

∫
BZ

〈∂ky
unk|∂kx

unk〉 d2k , (A1)

where n is the band index, |unk〉 is the periodic part of the
Bloch eigenfunction, and C is the contour of the Brillouin
zone. Alternatively, the latter expression can be cast in the
following form:

Cn = 1

2π

∫
BZ

�nk · dSk , (A2)

with

�nk = Im
∑
m�=n

〈unk|∇kHk|umk〉 × 〈umk|∇kHk|unk〉
(εnk − εmk)2

. (A3)

The latter expression makes evident that the main contribution
to Cn comes from the points in the Brillouin zone near an
avoided crossing, that is, where the gap between the n band
and the nearest bands is small.

In our case, we can apply the same procedure to the bulk
Floquet Hamiltonian to characterize the topological properties
of the Floquet bands and the corresponding edge states [27].
While a direct calculation using the above expression with
the full tight-binding Hamiltonian is possible, although nu-
merically rather demanding if �� 	 D [recall that O(D/��)
replicas are required to include all anticrossings], we used the
continuous model and some further approximations to gain
some insight.
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The dynamical gap at ��/2 occurs in k space near a
point where, in the absence of radiation, there is a degeneracy
between a pair of replicas at that energy for the same value of
k. Such degeneracies appear at kp = (2p + 1)k0, with p being
an integer number. That is, the m = 0 and m = 1 replicas
become degenerated at k = k0, the m = 2 and the m = −1
replicas become degenerated at k = 3k0, and so on. Since,
as we pointed out above, the Chern number is dominated by
the contribution near the degeneracy points, in order to get the
contribution from a given region it is sufficient to obtain a 2 × 2
effective Hamiltonian valid for k ∼ kp. In that case, by writing
it as Heff

F (k,p) = hp(k) · σ , one can obtain the contribution to
the Chern by calculating [7]

cp = 1

4π

∫
ĥp · (

∂kx
ĥp × ∂ky

ĥp

)
d2k. (A4)

Following this procedure and explicitly calculating hp(k), we
found that the number of edge states N appearing inside the
dynamical gap depends on the number of Floquet replicas, and
it is given by

N =
∑

p

cp =
∑

i

|δmi |, (A5)

where δmi is the difference of the Floquet indexes of the pairs
of replicas that become degenerated at the dynamical gap,
leading to a high-order gap of order η|δmi |, and i runs over
the replicas retained. It is worth emphasizing that N becomes
independent of the number of replicas only when O(D/��)
are included and that |δmi | corresponds to the number of
photons involved in the process that couples the corresponding
replicas.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

[4] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat.
Photonics 4, 611 (2010).

[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[6] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
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