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Geometrically induced transitions between semimetal and semiconductor in graphene
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How the long-range ordering and local defect configurations modify the electronic structure of graphene
remains an outstanding problem in nanoscience, which precludes the practical method of patterning graphene
from being widely adopted for making graphene-based electronic and optoelectronic devices, because a small
variation in supercell geometry could change the patterned graphene from a semimetal to a semiconductor, or
vice versa. Based on the effective Hamiltonian formalism, here we reveal that a semimetal-to-semiconductor
transition can be induced geometrically without breaking the sublattice symmetry. For the same patterning
periodicity, however, breaking the sublattice symmetry increases the gap, while phase cancellation can lead to
a semiconductor-to-semimetal transition in non-Bravais lattices. Our theory predicts the analytic relationship
between long-range defect ordering and band-gap opening/closure in graphene, which is in excellent agreement
with our numerical ab initio calculations of graphene nanomeshes, partially hydrogen passivated and boron-
nitride-doped graphene.
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I. INTRODUCTION

While graphene [1,2] possesses exceptional charge car-
rier mobilities [3], it lacks the sizable band gap necessary
for meaningful on-off ratios in field-effect transistors or
for practical optoelectronics. The pursuit of semiconducting
graphene-based materials remains a high priority in current
research. Recently, field-effect transistors based on graphene
nanomeshes (GNMs), in which periodic holes are punctuated,
have been fabricated [4]. Similarly, band-gap opening in
graphene has also been induced by patterned hydrogen (H)
adsorption [5] or boron nitride (BN) doping [6–8]. An
alternative scheme is “self-doping,” where extended defects,
such as pentagons and heptagons, are introduced to alter the
properties of graphene [9].

An outstanding problem is how such periodic patternings
modify the electronic structure of graphene; in particular, what
are the exact effects of the long-range ordering and local
defects on the Dirac points (K and K′) where π and π∗ bands
touch? Previous experimental [4,5,8,10,11] and theoretical
[12–26] studies have revealed that the electronic band structure
of graphene is sensitive to patterning: a small variation in the
supercell periodicity could change the patterned graphene from
a semimetal to a semiconductor, or vice versa. However, the
underlying mechanisms and basic rules remain unclear, since
most of these theoretical efforts are largely computation driven
and empirical, relying heavily on first-principles computations
of special cases and thus lacking analytic understanding from
fundamental considerations.

Here we propose a theory based on the effective Hamil-
tonian for the tight-binding model of graphene to reveal
the analytic relation between defect geometry and band-gap
opening/closure. We show that, without breaking the sub-
lattice symmetry, the semimetal-to-semiconductor transition
can occur if the periodic defects induce scattering between
two sublattices at the Dirac points, while such scattering
could be annihilated by phase cancellation if defects form
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non-Bravais lattices in certain arrangements. In addition,
breaking the sublattice symmetry always increases band gaps,
and such symmetry breaking and restoring can also be induced
geometrically. We then carry out first-principles electronic
structure calculations for three types of patterned graphene
including GNMs and partially H-passivated and BN-doped
graphene. The numerical results confirm our analytic theory
and find the band-gap scaling rules in these defected graphene
structures as well.

II. THEORETICAL RESULTS

Two carbon (C) atoms in the unit cell of graphene form
two sublattices, and the famous electronic band structure of
graphene is well described by the two-dimensional tight-
binding model Hamiltonian [2,27] including only nearest-
neighbor hopping:

H0(k) =
(

E0 λf (k)
λf ∗(k) E0

)
. (1)

Here E0 and λ are the on-site energy and hopping parameter,
respectively, and

f (k) = eikxa + 2e−ikxa/2 cos

(√
3

2
kya

)
, (2)

with a the C-C distance. The eigenvalues for this effective
Hamiltonian are E = E0 + sλ|f (k)|, where s = ±1, and the
eigenstates are

〈r|s,k〉 = 1√
2
eik·r

(
1

seiθ(k)

)
, (3)

where eiθ(k) = f (k)/|f (k)|.
All types of periodic patterning mentioned above can be

universally modeled by applying a periodic external potential
U (r) = U (r + Ri), with Ri (i = 1,2) the supercell lattice
vectors for the patterned graphene. The scattering amplitude
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between two states is [28–31]

〈s,k|U (r)|s ′,k′〉 =
∑

G

1

2
(1 + ss ′ei[θ(k′)−θ(k)])U (G)δk′,k−G,

(4)
where G and U (G) are the reciprocal lattice vector and
the Fourier component of the external periodic potential,
respectively.

Equation (4) suggests that a semimetal-to-semiconductor
transition can occur if the scattering between two degenerate
states at Dirac points K and K′ is nonzero, i.e., when
U (G) �= 0 at G = K − K′. Because of the periodicity in the
reciprocal space of the pristine graphene, the above condition
is equivalent to U (K) �= 0 [and U (K′) �= 0], which induces
band-gap opening without breaking the sublattice symmetry.
Considering the usual case in which the defected sites are only
a small portion of all C atoms, we propose a simple periodic
model potential based on the Dirac δ function,

U (r) =
α,β=+∞∑
α,β=−∞

gδ(r − αR1 − βR2), (5)

with integers α and β. U (K) �= 0 only when the reciprocal
lattice vectors G for the periodically modified graphene, with
lattice vectors R1 = n1a1 + m1a2 and R2 = n2a1 + m2a2,
contain Dirac points of the pristine graphene. Here a1 and
a2 are primitive lattice vectors of the pristine graphene, and
n1, m1, n2, and m2 are four integers. It is straightforward to
show [32] that U (K) �= 0 is satisfied only when

n1 − m1 = 3p and n2 − m2 = 3q (6)

for integers p and q, which is the same condition for a
semimetallic carbon nanotube with chirality index (n1, m1)
or (n2, m2) at the tight-binding level of theory.

Therefore there are two approaches to open up a band gap
in graphene by applying periodic defects. The first is sublattice
symmetry breaking, e.g., BN doping, so that the two diagonal
matrix elements in the effective Hamiltonian [Eq. (1)] are
different and the degeneracy at the Dirac points is lifted. This
has been extensively studied. The second is the intervalley
scattering between two Dirac points K and K′ induced geo-
metrically without breaking the sublattice symmetry, which
can be realized in GNMs and partial H doping. The second
mechanism remains under exploration, and previous works
[28–31] concluded that this mechanism could not open up
a band gap since smooth external potentials were used to
describe periodic defects, which is not true in general. Here we
employed the δ-function potential and derived the analytical
relations between the long-range ordering and the transition
between semimetal and semiconductor.

Next we extend our theory for graphene sheets whose
defects form non-Bravais lattices, e.g., a honeycomb structure.
In this case, there are more than one (M > 1) defects in a
supercell, which are centered at τ 1, τ 2, . . . , τM , and it can be
shown that

U non-Brav(k) = S(k)UBrav(k), (7)

where U non-Brav(k) is the external potential for a non-Bravais
lattice, UBrav(k) for the corresponding Bravais lattice, and the

defect structure factor S(k) = ∑M
j=1 exp(ik · τ j ). Thus even

if the lattice vectors of a non-Bravais structure satisfy the
band-gap opening condition [Eq. (6)], a zero structure factor
at the Dirac point,

0 = S(K) =
M∑

j=1

exp(iK · τ j ), (8)

leads to band-gap closure due to phase cancellation.

III. AB INITIO SIMULATION RESULTS

We employ first-principles electronic structure calculations
based on the density functional theory (DFT) to verify our
analytic theory. Although DFT often severely underestimates
band gaps, it accurately predicts a zero gap at the Dirac
points for graphene and yields qualitatively correct electronic
band structures for graphene [33] and graphene nanoribbons
[34,35]. The spin-polarized calculations within the generalized
gradient approximation [36] are carried out using the SIESTA

code [37] based on atomic orbitals. Specifically, we use a
triple-ζ polarized basis set for C and double-ζ polarized basis
sets for B, N, and H, whose accuracy and convergence have
been well examined by comparison against calculations using
the plane-wave VASP code [38]. All graphene structures in this
work are relaxed until all atomic forces are less than 0.02 eV/Å
and the maximum stress is below 0.2 GPa.

A. Defects forming Bravais structures

Figure 1 shows the crystal and electronic band structures
for two supercells with partial H passivation, holes (GNMs),
and BN-doped regions forming Bravais lattices. The effect
of supercell lattice symmetry on electronic properties is
compared across the three rows of panels, while the effect
of different types of defects is compared among columns.
The supercells in the left column have (n1,m1,n2,m2) =
(6,−6,4,4) so that n1 − m1 and n2 − m2 are both divisible by
3, satisfying the condition of Eq. (6), while the supercells in
the right column have (n1,m1,n2,m2) = (7,−7,4,4), therefore
n1 − m1 = 14, not divisible by 3. Our theory predicts that
the partially H-passivated graphene and GNM shown in the
left column in Fig. 1 are semiconductors, while those on
the right [Figs. 1(b) and 1(d)] are semimetals, consistent
with first-principles results. Our theory also indicates that
BN-doped graphene is always semiconducting, but the long-
range ordering could increase Eg if the lattice parameters
(n1,m1,n2,m2) satisfy Eq. (6), agreeing well with calculated
electronic band structures shown in Figs. 1(e) and 1(f), with
Eg = 0.78 and 0.39 eV, respectively.

In addition, as expected, electronic band structures in the
left three panels are very similar, different mainly in values
of band gap, with 0.55, 0.56, and 0.78 eV for the partially
H-passivated graphene, GNM, and BN-doped graphene shown
in Figs. 1(a), 1(c), and 1(e), respectively. Electronic band
structures across the right column are also very similar, except
that in Fig. 1(f) for the BN-doped graphene there is an energy
gap at a point between 	 and M2, at which the band gap closes
in Figs. 1(b) and 1(d) for H-passivated graphene and GNM.
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FIG. 1. (Color online) Crystal (left) and electronic band (right) structures for (a) H-passivated graphene, (c) GNM, and (e) BN-doped
graphene with supercell lattice parameters (n1,m1,n2,m2) = (6,−6,4,4). (b, d, f) The corresponding structures with (n1,m1,n2,m2) =
(7, −7,4,4). Here C, H, B, and N atoms are denoted by gold, blue, green, and red circles, respectively. The black rectangle in each panel
indicates the supercell of defected graphene.

These three types of defected graphene structures with other
shapes of supercells, such as hexagonal and parallelogram,
show the same trends for electronic band structures.

Tables I and II summarize the calculated Eg for H-
passivated and BN-doped graphene sheets with various super-
cell symmetries, in addition to the rectangular unit cells shown
in Fig. 1. Results for GNM structures (not shown) are very
similar to those for H-passivated graphene, as demonstrated
in Figs. 1(a)–1(d) and in Fig. 2(a). Here armchair indicates
that both supercell vectors are along the armchair direction
so that (n1,m1,n2,m2) = (2n,−n,m,m), with n and m two
integers, while zigzag indicates that both supercell vectors are
along the zigzag direction so that (n1,m1,n2,m2) = (n,0,0,m).
Rectangular corresponds to rectangular supercells with one
lattice vector along the zigzag direction while the other
vector is along the armchair direction, with (n1,m1,n2,m2) =
(n,−n,m,m), while chiral rectangular and chiral hexagonal
correspond to rectangular and hexagonal supercells with lattice
vectors along arbitrary directions. These numerical results
in Tables I and II have qualitatively verified our analytical
modeling on the semimetal-to-semiconductor transition in
periodically defected graphene.

Quantitatively, Eg in these semiconducting graphene struc-
tures is roughly proportional to the defect percentage (x, when
x � 15%): Eg ≈ Cx, with C a constant, as demonstrated

TABLE I. Calculated band gaps (Eg , in eV) of graphene sheets
partially passivated with H. Here Nd and Ntot are the numbers of
defected (passivated by H) and total carbon atoms in one supercell,
respectively.

Cell type n1 m1 n2 m2 Eg Nd Ntot Defect %

Armchair 10 −5 5 5 0.48 12 150 8.0
14 −7 8 8 0.14 6 336 1.8
8 −4 5 5 0.59 12 120 10.0

Zigzag 6 0 0 6 0.71 6 72 8.3
6 0 0 6 1.05 12 72 16.7
6 0 0 7 0.00 12 84 14.3
7 0 0 7 0.00 12 98 12.2

Chiral hexagonal 3 5 8 3 0.00 6 62 9.7
5 4 9 −5 0.00 6 122 4.9
7 1 8 −7 0.49 6 114 5.3

Chiral rectangular 6 2 −7 5 0.00 12 88 13.6
6 3 −4 5 0.63 6 84 7.1
6 4 −7 8 0.00 6 152 3.9

Rectangular 5 −5 5 5 0.00 6 100 6.0
6 −6 4 4 0.55 6 96 6.3
7 −7 4 4 0.00 6 112 5.4

Parallelogram 6 1 −3 9 0.00 6 114 5.3
6 2 −3 9 0.00 6 120 5.0
6 3 −2 7 0.54 6 96 6.3
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TABLE II. Calculated band gaps (Eg , in eV) of graphene sheets
doped with BN. Here Nd is the number of defected (replaced by B
or N) carbon atoms, while Ntot indicates the total number of atoms
(including C, B, and N) in one supercell.

Cell type n1 m1 n2 m2 Eg Nd Ntot Defect %

Armchair 10 −5 5 5 0.34 12 150 8.0
14 −7 8 8 0.08 6 336 1.8
8 −4 5 5 0.42 12 120 10.0

Zigzag 6 0 0 6 0.69 12 72 16.7
6 0 0 7 0.41 12 84 14.3
7 0 0 7 0.36 12 98 12.2

Chiral hexagonal 3 5 8 −3 0.16 6 98 6.1
3 5 8 −3 0.48 12 98 12.2
5 4 9 −5 0.13 6 122 4.9
5 4 9 −5 0.38 12 122 9.8
7 1 8 −7 0.25 6 114 5.3
7 1 8 −7 0.68 12 114 10.5

Chiral rectangular 6 2 −7 5 0.42 12 104 11.5
6 3 −4 5 0.33 6 84 7.1
6 4 −7 8 0.31 12 152 7.9

Rectangular 5 −5 5 5 0.53 12 100 12.0
6 −6 4 4 0.78 12 96 12.5
7 −7 4 4 0.39 12 112 10.7

Parallelogram 6 1 −3 9 0.42 12 114 10.5
6 2 −3 9 0.39 12 120 10.0
6 3 −2 7 0.75 12 96 12.5

in Fig. 2. Here Fig. 2(a) shows that Eg in a semiconduct-
ing GNM is slightly larger than that in a corresponding
H-passivated graphene with the same supercell and defected
areas. Figure 2(a) also emphasizes the sensitive dependence of
Eg on lattice parameters, which can dramatically switch these
defected graphenes between semiconductor and semimetal by
small changes. However, Fig. 2(b) indicates that in a BN-doped
graphene, for the same level of doping, Eg is considerably en-
hanced if its lattice parameters (n1,m1,n2,m2) satisfy Eq. (6).
Linear fitting to Fig. 2(a) obtains C = 0.091 eV/% and 0.087
eV/% for GNM and H-passivated graphene, respectively, and
C = 0.057eV/% (red line) and 0.036eV/% (green line) in
Fig. 2(b) for BN-doped graphene. These values suggest that
in BN-doped graphene the imbalance between two sublattices
contributes more to Eg than the supercell symmetry does,
and the effect on Eg from the latter is much weaker than
that in GNMs or H-passivated graphene, because apparently
removing pz orbitals or passivating pz orbitals of C atoms
causes much more dramatic changes on the graphene lattice
than B/N substitution. We note that in semiconducting GNMs
and H-passivated graphene Eg values have much better linear
relations to defect percentages than those for BN-doped
graphene. This might also be due to the less severe perturbation
induced by BN doping compared to H passivation or vacancy,
complicating Eg as a function of the BN doping percentage.

B. Defects forming non-Bravais structures

Next we consider defects forming non-Bravais structures.
As illustrated in Fig. 3, the H-passivated graphene sheets
in the upper two panels share the same chiral hexagonal

FIG. 2. (Color online) Band gap (Eg) as a function of defect
percentage for (a) partially H-passivated graphene and GNMs and
(b) BN-doped graphene.

lattice with parameters (n1,m1,n2,m2) = (7,1,8,−7). Their
electronic band structures are similar, except that Eg for the
non-Bravais structure is larger. Since n1 − m1 and n2 − m2

are both divisible by 3, the Bravais structure [Fig. 3(a)] is
semiconducting with Eg = 0.50 eV, while the non-Bravais
structure [Fig. 3(b)] with two passivated areas has a larger gap,
0.84 eV. This is because τ 2 − τ 1 = 2a1 + 2a2, and S(K) =
eiK·τ 1 [1 + eiK·(τ 2−τ 1)] = eiK·τ 1 (1 + ei4π ), leading to |S(K)| =
2 > 1; consequently, constructive interference enlarges the
band gap.

One cannot create a non-Bravais graphene lattice with two
identical defects per unit cell whose structure factor vanishes
at the Dirac point. This is because for an arbitrary relative
displacement τ 2 − τ 1 = pa1 + qa2, with p and q two in-
tegers, K · (τ 2 − τ 1) = 2qπ + 4

3 (p − q)π �= (2n + 1)π , with
n an integer, thus S(K ) = 1 + eiK·(τ 2−τ 1) �= 0. However, it is
possible when there are more than two identical defects per
unit cell, e.g., the triangular arrangement shown in Fig. 3(d). In
this H-passivated graphene, defects are displaced along zigzag
directions in a supercell by vectors of τ 2 − τ 1 = 5a1 and
τ 3 − τ 1 = 5a2, so that 1 + eiK·(τ 2−τ 1) + eiK·(τ 3−τ 1) = 0. Even
though the corresponding Bravais structure (not shown) is
semiconducting with Eg = 0.34 eV, this non-Bravais structure
is a semimetal. In contrast, the non-Bravais structure plotted
in Fig. 3(c), in which three defects in a supercell are displaced
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FIG. 3. (Color online) Crystal (left) and electronic band (right) structures of defected graphene sheets, which have (7,1,8,−7) supercells in
(a) and (b) and (9,0,0,9) supercells in (c)–(h). Except for (a), defects in these graphene structures form non-Bravais lattices. (a–d) H-passivated
graphene; (e, f) GNMs; (g, h) BN-doped graphene. Supercells in these graphene structures are indicated by black rhombuses.

along armchair directions, specifically, τ 2 − τ 1 = 2a1 + 2a2

and τ 3 − τ 1 = 2a1 − 2a2, leading to |S(K)| = √
3 and the

enlarged band gap of 0.83 eV.
Figure 3(e) suggests that a constructive interference with

|S(K)| = √
3 in the GNM leads to an enhanced Eg = 0.91 eV,

compared with Eg = 0.36 eV for the corresponding Bravais
GNM, whereas a destructive interference with S(K) = 0 in
the non-Bravais GNM plotted in Fig. 3(f) leads to a 0 gap.
Thus our calculations have demonstrated a transition from
semiconductor to semimetal upon rearrangement of the defects
in H-passivated graphene and GNMs, as predicted in Eq. (8).

Finally, we discuss non-Bravais lattices with BN-doped
areas. Figure 3(g) indicates that a constructive interfer-
ence with |S(K)| = √

3 drastically increases the band gap
(Eg = 0.48 eV), compared with that of only 0.17 eV in
the corresponding Bravais structure. However, a destructive
interference with 0 S(K) does not lead to a 0 gap at the 	 point
[Fig. 3(h)], although its band gap is reduced to 0.27 eV. This
is due to the imbalance between A and B sublattices, so that
Eg �= 0. Compared with the corresponding Bravais structure,
the non-Bravais BN-doped graphene with S(K) = 0 [Fig. 3(g)]
has a larger gap, because of the increase in imbalance between
A and B sublattices.

To induce a transition from semiconductor to semimetal
for BN-doped graphene, one can geometrically restore the
sublattice balance by switching B and N atoms between doped
regions. Figure 4(b) shows a (6,1,−3,9) lattice with 0 gap,
compared with the structure plotted in Fig. 4(a), which has
the same (6,1,−3,9) lattice but is a semiconductor with Eg =
0.50 eV. Figures 4(c) and 4(d) show the (6,3,−2,7) lattices,
which satisfy the gap-opening rule of Eq. (6). In Fig. 4(a),
S(K) �= 0, leading to the relatively large band gap of 0.80 eV,
whereas in Fig. 4(d) switching B and N atoms between defects
to restore A- and B-sublattice balance significantly reduces Eg ,
to merely 0.12 eV, and further arranging identical doping sites
to ensure S(K) = 0 can eventually induce the semiconductor-
to-semimetal transition.

IV. SUMMARY

In summary, we find that the degeneracy at the Dirac
points is lifted and a sizable band gap appears when reciprocal
lattice vectors of such a defected graphene overlap with Dirac
points of the pristine graphene. Previous works have shown
the absence of backscattering and band gaps in graphene and
metallic carbon nanotubes under external potentials that vary
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FIG. 4. (Color online) Crystal (left) and electronic band (right) structures of BN-doped graphene with supercell lattice parameters of
(6,1, −3,9) in (a) and (b) and (6,3, −2,7) in (c) and (d). (a, c) Four doped areas in a supercell are identical, while (b, d) in a supercell two of
the four BN-doped areas are different from the other two, so that an overall balance between A and B sublattices is reached. In all panels the
supercell is indicated by a black rhomboid.

slowly on the order of the C-C bond length [28–30]. However,
for dopants, adsorbed atoms, and vacancies the corresponding
effective potentials vary considerably on this length scale,
leading to the appearance of the intervalley scattering between
K and K′ [28–30]. The symmetry breaking between two
sublattices is also a contributing factor to the band gap,
which has been studied before. Here our theory includes both
sublattice asymmetry and intervalley scattering. For multiple
defects in a supercell forming a non-Bravais structure, the
magnitude of the structure factor at the Dirac point determines
the strength of long-range ordering-induced nondegeneracy at
the Dirac point. Thus arranging defect positions in non-Bravais
structures could cause a transition from semiconductor to
semimetal if a destructive interference leads to a complete
phase cancellation and the sublattice symmetry is retained.

Our ab initio electronic structure calculations on a variety
of partially H-passivated graphene, GNMs, and BN-doped
graphene demonstrate the validity of our analytic analyses.
Specifically, the sublattice symmetry in H-passivated graphene
and GNMs we studied is maintained, therefore the supercell

symmetry and the structure factor at the Dirac point can
be controlled geometrically to induce transitions between
semimetal and semiconductor. On the other hand, the balance
between two sublattices in BN-doped graphene sheets must
be restored to induce such transitions, in addition to lattice
symmetry considerations. The present modeling not only
offers a fundamental understanding of how the local defect
configurations and long-range ordering modify the electronic
properties of complex and realistic graphene structures so that
precise tuning for various applications is possible, but also
can be employed to investigate the magnetism induced by
patterning graphene.
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