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Two-dimensional dielectric photonic crystals (PCs) having periodic air hole cylinders, when designed properly,
exhibit near-zero effective refractive index and the wave impedance is dependent on local observation points. The
incident wave is mostly reflected at the PC-air interface due to large impedance mismatch. We show, analytically
and numerically, that even in the near-zero effective refractive index case the reflection can be suppressed by
utilizing an antireflection structure consisting of a PC with the same lattice constant but a different radius for the
periodic air hole cylinders. The antireflection PC must be truncated at properly selected cross sections in order
to possess the same impedance at cross sections with the host PC and with the air structure. An analytical model
combined with the plane-wave expansion method captures the antireflection behavior obtained by the full wave
simulations.
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I. INTRODUCTION

Electromagnetic wave propagation in material media is
macroscopically characterized by the permittivity and per-
meability of the medium. Metamaterials with extreme pa-
rameters, particularly, epsilon-near-zero (ENZ) media, have
offered unprecedented electromagnetic properties [1]. Those
include tunneling of electromagnetic energy through an
arbitrarily shaped ultranarrow channel [2–8], electric field
levitation [9], transporting an image through a subwavelength
hole [10], and boosting nonlinear effects [11]. Moreover, ENZ
metamaterials have inspired concepts of nanocircuit boards
and elements [12–14] and microwave, optical, and thermal
devices [15–19]. Significant experimental works have verified
some of the unique features in those frequency ranges [20–27].

Photonic crystals (PCs) allow one to engineer the effective
refractive index with a wide range of values, including negative
and near-zero values, and therefore exhibit such intriguing
properties [28–32]. The wave impedance in PCs is dependent
on local observation points [33–35]. Consequently, much
effort has been devoted over the past decades to suppress
the reflection at the PC-air interface for positive and negative
effective refractive indices; gratings [36–38], periodic holes
and rods [39–42], gradually changed hole diameters [43], and
projected air holes [44] are among the various techniques that
have been considered. The development of antireflection for
near-zero effective refractive index PCs is challenging method
due to large impedance mismatch, and to the best of our
knowledge, there has been no report on efficient antireflection
structures for such cases of near-zero effective refractive index.

In this paper, we show that even in the near-zero effective
refractive index case the reflection can be suppressed by
utilizing an antireflection structure consisting of a PC with
the same lattice constant but a different radius in the air
hole cylinders. Such antireflection PCs have an advantage of
adjustable impedance by varying the hole radius. Truncating
the antireflection PC at properly selected cross sections enables
the same impedance at interfaces with the host PC and
with the air structure; therefore, antireflection behavior can be
obtained.

This paper is organized as follows. In Sec. II, we present
a brief overview of the effective refractive index and the
transverse impedance of PCs. We introduce an antireflection
structure in Sec. III and validate the effectiveness of the
antireflection behavior with numerical results in Sec. IV. The
paper is then concluded in Sec. V.

II. EFFECTIVE REFRACTIVE INDEX AND TRANSVERSE
IMPEDANCE IN INFINITE PCs

It is important to appreciate the behavior of electromagnetic
waves propagating in a near-zero effective refractive index
PC in order to consider an antireflection structure. In this
section, we briefly review the effective refractive index and
the transverse impedance in an infinite two-dimensional PC
case.

We consider a typical two-dimensional PC that has the
hexagonal arrangement of periodic air hole cylinders with the
excitation of the transverse magnetic (TM) wave (electric field
is parallel to the air hole cylinders), as shown in Fig. 1(a).
The PC has a refractive index of nd = 3.48 for the dielectric
material and a lattice constant of a = 600 nm for air hole
cylinders. The PC exhibits near-zero effective refractive index
as a small negative value near the edge of the second band in the
dispersion characteristic. The plane-wave expansion method
is widely used for the analysis of PCs in which Maxwell’s
equations are exactly solved by expanding the electromagnetic
fields with a plane-wave basis set [45]. Consequently, the
vector nature of the electromagnetic fields is fully taken
into account. We calculate the equifrequency contours in the
two-dimensional wave vectors in the PC of Fig. 1 by using
the plane-wave expansion method and then present the results
as the angular variation of the effective refractive indices [28]
for clear demonstration of the behavior in this article. The
angular variation of the effective refractive indices at a design
wavelength of λ0,a = 1555.35 nm is plotted in Fig. 1(b) with
variation of the radius of air hole cylinders. We note that
small absolute values of effective refractive indices provide
an omnidirectional nature, consistent with [28]. Consequently,
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FIG. 1. (Color online) (a) Geometry of a two-dimensional pho-
tonic crystal having periodic air hole cylinders (a = 600 nm,
nd = 3.48). Two cross sections described in Eqs. (2a) and (2b)
are indicted by the blue dotted lines. (b) Angular variation of
effective refractive indices for different values of the radius of the air
cylinders at λ0,a = 1555.35 nm. The inset shows the equifrequency
contours (pink dashed line: 264 nm, blue solid line: 269 nm, green
dotted-dashed line: 275 nm; black dotted line: 285 nm). (c) Variation
of effective refractive indices as a function of normalized wavelength
for radii of rh = 264 mm (pink dashed line) and rar = 269 mm (blue
solid line).

we can assume isotropic media in an analytic model as long
as we use such small effective refractive indices. The two radii
rh = 264 nm (pink dashed line) and rar = 269 nm (blue solid
line) of air hole cylinders are used for the host PC and the
antireflection PC, respectively. On the other hand, ripples are
seen in the angular variation in Fig. 1(b) as the absolute value
of the effective refractive index increases.

The variation of the two effective refractive indices as a
function of wavelength is shown in Fig. 1(c). The horizontal
axis is the normalized wavelength (with respect to the design
wavelength λ0,a for the analytical results throughout the paper
for comparison with numerical results). Small absolute value
of the effective refractive index of the host PC (pink dashed
line) is more sensitive to the wavelength variation than that
of the antireflection PC (blue solid line), since the operation
point for the small refractive index is close to the band edge in
the dispersion characteristic.

Since the wave impedance is dependent on the local
observation points (i.e., local cross section for the observation
plane), we must elucidate the impedance behavior quantita-
tively. The transverse impedance of the cross section parallel
with the x-z plane, is defined as the ratio of the averaged
electric field to the averaged transverse magnetic field and is
given by [34]

Z (y) = ∫x0+a
x0

Ez (x,y) dx

∫x0+a
x0

Hx (x,y) dx
, (1)

where the electric field Ez(x,y) and the magnetic field
component Hx(x,y) are calculated using the plane-wave
expansion method. The phase velocity of the propagating wave
is antiparallel to the group velocity of the power flow in a
negative refractive index medium. We consider the power flow
in the positive y direction together with the negative sign of
the y component of the wave vector. The impedance in Eq. (1)
has a positive real part [46]. In addition, the impedance in
Eq. (1) has a periodicity of (

√
3/2)a along the y axis. Thus, we

select two typical cross sections, Am − A′
m and Bm − B ′

m, as
depicted in Fig. 1(a). The cross section Bm − B ′

m contains the
central positions of air hole cylinders while the cross section
Am − A′

m is shifted from the cross section Bm − B ′
m by a half

periodicity along the y axis. The two cross sections Am − A′
m

and Bm − B ′
m are positioned at

yA,m = [
√

3(2m − 1)/4]a, (2a)

yB,m = (
√

3/2)ma, (2b)

where m is an integer. It should be mentioned that selecting
the cross section Am − A′

m allows one to arrange air hole
cylinders in the same lattice constant when we consider the
interface of two PC media having different radii of air hole
cylinders for the two PC media. We calculate the variation of
the transverse impedance as a function of wavelength based
on Eq. (1) in the case of the TM wave excitation along the y

axis. We see that the antireflection PC has different values at
the two different cross sections yA,m (blue solid line) and yB,m

(green dashed-dotted line) described in Eqs. (2a) and (2b),
as shown in Fig. 2(a), where the impedance is normalized
with respect to the free space impedance Z0. The host PC
at yA,m has smaller impedance that goes to zero with the
decrease of the wavelength in the wavelength range shown
in the figure (pink dashed line). To consider an antireflection
structure for the host PC in air, the impedance Zh of the host
PC and the impedance Zar of the antireflection structure need
to meet the well-known antireflection condition Z2

ar ≈ Zh,
which is discussed in detail in Sec. III. Consequently, the
square of the normalized impedance of the antireflection PC at
yA,m (blue solid line) is plotted in Fig. 2(b) with the enlarged
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FIG. 2. (Color online) (a) Variation of locally dependent trans-
verse normalized impedances as a function of normalized wavelength
in the case of the TM wave propagating along the y axis [blue solid
line: rar = 269 mm at yA,m described in Eq. (2a); green dashed-dotted
line: rar = 269 mm at yB,m in Eq. (2b); pink dashed line: rh =
264 mm at yA,m]. (b) Comparison of the normalized impedance of
the host PC (pink dashed line and green dashed-dotted line) and the
square of the normalized impedance of the antireflection PC (blue
solid line and black dotted line) at yA,m. The TM wave propagates
parallel to the y axis (blue solid line and pink dashed line) and
oblique to the y axis (black dotted line and green dashed-dotted line),
corresponding to the case with an incident angle of θin = 3◦ of the
TM wave impinged on an antireflection structure.

scale of the vertical axis, and we see that it crosses the host
PC normalized impedance (pink dashed line). Moreover, an
oblique propagation case is investigated and is plotted in
the same figure. The cross point exists at almost the same
normalized impedance with a redshift of 0.000 7 λ0,a , where
angles to the y axis are set at 54º for the host PC and 9.1º
for the antireflection PC, respectively. These angles, together
with their effective refractive indices, are characterized by the
Snell’s law and correspond to a 3º angle of the incident wave
impinged on an antireflection structure. This indicates that a
properly designed antireflection structure may work for some
angular ranges of the incident wave with a slight redshift.
Note that in such a near-zero effective refractive index case, a
small incident angle provides a large refraction angle, obeying
Snell’s law.

III. ANTIREFLECTION STRUCTURE

Based on the behaviors of the locally dependent impedance
as well as the extremely small absolute value of the effective
refractive index exhibiting isotropic nature, we present an an-
tireflection structure, as shown in Fig. 3(a). The antireflection
structure consists of the PC that has the same lattice constant
as the host PC but a different radius of air hole cylinders. This
structure allows one to have the cross section at yA,m0+Mar

based on Eq. (2a) for the host PC and the antireflection PC, as
well as the feasibility of adjusting the impedance by varying
the air-cylinder radius, where Mar is the number of the rows
of air hole cylinders of the antireflection PC along the y

axis. Selecting another cross section of the antireflection PC
at yA,m0 with the air structure enables the same impedance
of the antireflection PC at both cross sections; therefore,
antireflection behavior can be obtained. In a periodicity of
a = 600 nm along the x axis around operation wavelength
of λ0,a , the zeroth-order diffraction is the propagating wave,
while other higher orders are evanescent waves for reflection
and transmission in the diffraction phenomenon at the PC-air
interface. We only consider the propagating wave due to
the negligibly small effect between the cross sections via
evanescent wave coupling.

We introduce an effective medium theory for analytical
models while taking into account the local dependence of the
transverse impedance in Eq. (1) and utilize a general analysis
of the following multilayers. Since the effective refractive
indices of the host PC and antireflection PC are isotropic,
as evident in Fig. 1(b), here we consider an N -layer structure
composed of isotropic media stacked along the y axis for an
obliquely incident plane wave with the exp(-iωt) convention.
The reflection coefficient at the interface between media j and

FIG. 3. (Color online) (a) Numerical model of an antireflection
PC. The antireflection PC has Mar = 7 rows of air hole cylinders along
the y axis. (b) Analytical model. The length of the antireflection PC is
Lar = (Mar/2)

√
3a − �L, where �L = 0.03

√
3a is an adjustment

amount for fitting analytical results to numerical results.

115412-3



HIDEO IIZUKA AND NADER ENGHETA PHYSICAL REVIEW B 90, 115412 (2014)

j+1 is expressed with the transverse impedances as

rj,j+1 (y) = Zj+1 (y) − Zj (y)

Zj+1 (y) + Zj (y)
. (3)

The electric fields in the N th layer, E+
N and E−

N , are written
in terms of those in the first layer, E+

1 and E−
1 , as [47][

E+
N

E−
N

]
=

[
A1,N B1,N

C1,N D1,N

] [
E+

1
E−

1

]

= [MN−1] [MN−2] · · · [M2] [M1]

[
E+

1
E−

1

]
, (4a)

where

[Mj ] = 1

tj+1,j

[
tj,j+1tj+1,j − rj,j+1rj+1,j rj+1,j

−rj,j+1 1

]

×
[

exp(iϕj ) 0
0 exp(−iϕj )

]
, (4b)

ϕj = kjLj cos(θj ). (4c)

The superscripts “+” and “−” denote the propagation direction
of the electromagnetic wave along the y axis. tj,j+1 is the
transmission coefficient at the interface between the media j

and j + 1. kj and θj are the wave number and the propagation
angle from the y axis in the j th layer, and Lj is the length of
the j th layer. The initial phase factor equals zero, ϕ1 = 0. The
reflection coefficient of the total N -layer structure is calculated
as −C1,N/D1,N . Assuming lossless and reciprocal media in
our model, we use Aj,j+1 = tj,j+1tj+1,j − rj,j+1rj+1,j = 1
in Eq. (4b). In the three-layer structure such as our
antireflection PC in Fig. 3(b), the reflection coefficient
[N = 3 in Eqs. (4a)–(4c)] is expressed with a well-known
form, r13 = [r12 + r23exp(i2ϕ2)]/[1 − r21r23exp(i2ϕ2)].
Consequently, our antireflection structure needs to
meet the well-known condition Z2

2 = Z1Z3 and
L2 = [(2u − 1) /4] λ2/cos (θ2) (u is an integer), based
on r13 = 0. Labels 1, 2, and 3 represent the air media,
the antireflection PC, and the host PC, respectively. The
minimum length of the antireflection structure is generally
a quarter wavelength, which provides the widest bandwidth
around the operating wavelength. But the desired effective
refractive index cannot be engineered in a quarter-wavelength
structure and reflection cannot be suppressed for the near-zero
effective refractive index case. Here, instead, the length of the
antireflection is set at three-quarters of wavelengths so that
the antireflection layer has enough periodicity and possesses
the refractive index of Figs. 1(b) and 1(c), which is obtained
under the assumption of infinite PCs.

IV. RESULTS

The reflection response of our antireflection structure is
numerically and analytically investigated, and the effective-
ness of the antireflection behavior and the validity of the
analytical model are discussed. The numerical model and its
analytical model are shown in Figs. 4(a) and 4(b). The host
PC has antireflection PCs at both ends. The interfaces of the
antireflection PC with the host PC and with the air structure
meet the Am − A′

m condition in Eq. (2a), and the regions of the
antireflection PC and the host PC are defined between each of

FIG. 4. (Color online) (a) Numerical model of the host PC having
the antireflection PCs at both sides. The host and antireflection PCs
have Mh = 55 rows and Mar = 7 rows of air hole cylinders along the
y axis. (b) The analytical model has lengths of Lar = (Mar/2)

√
3a −

�L for the antireflection PC and Lh = (Mh/2)
√

3a + 2�L for the
host PC, where �L = 0.03

√
3a is an adjustment amount for fitting

analytical results to numerical results. Snapshots of the electric field
distributions are shown in (c) for θin = 0◦ and λ0,n = 1557.1 nm and
in (d) for θin = 3◦ and 1.000 7 λ0,n.

the A − A′ lines. In the numerical model, the host PC and the
antireflection PC have the same lattice constant of a = 600 nm
of periodic air hole cylinders and have radii of rh = 264 nm
and rar = 269 nm, as mentioned in Sec. II. The antireflection
PC has Mar = 7 rows of air hole cylinders along the y axis, as
depicted in the schematic illustration of Fig. 3(a), so that the
length of the antireflection PC along the y axis is three-quarters
of the wavelengths, whereas the host PC has Mh = 55 rows
of cylinders so that each of the antireflection PCs is separated
enough for an accurate evaluation.

The numerical simulation of the reflectance in Fig. 4(a) is
performed using the finite-integration-technique-based simu-
lator, CST Microwave Studio [48], at the normal incidence
and the oblique incidence of θin = 3◦, and the results as
a function of the normalized wavelength are shown in
Figs. 5(a) and 5(b), respectively. The wavelength is normalized
by λ0,n = 1557.1 nm for numerical results and by λ0,a for
analytical results. The discrepancy of λ0,n and λ0,a is 0.1%.
For each incident angle, the reflection of the entire structure
is suppressed below −14 dB (blue solid lines, for normal
incidence) around λn(λa) and 1.000 7 λn(λa) (for the oblique
incidence at θin = 3◦). The analytical results of the entire
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FIG. 5. (Color online) Variation of reflectance as a function of
normalized wavelength for incident angles of (a) θin = 0◦ and
(b) θin = 3◦ [blue solid lines: numerical results of the entire structure
of Fig. 4(a); pink dashed lines: analytical results of the entire structure
of Fig. 4(b); black dotted lines: analytical results of the single
antireflection structure of Fig. 3(b)].

structure (pink dashed lines), which are obtained using
Eqs. (4a)–(4c) with the analytical model of Fig. 4(b), agree
with the numerical results in the wavelength range of the
figure. The reflection level and the periodic dips in Figs. 5(a)
and 5(b) relate to the transverse impedance in Eq. (1) [Fig. 2(b)]
and the effective refractive index of the host PC [Fig. 1(c)],
respectively. We verify that our analytical theory predicts the
reflection characteristics accurately. In the analytical results,
the lengths of the antireflection PC and the host PC are slightly
adjusted to Lar = (Mar/2)

√
3a − �L (0.9% reduction with

�L = 0.03
√

3a) and Lh = (Mh/2)
√

3a + 2�L for fitting
with the numerical results. This adjustment may come from the
discrepancy between the effective length of the antireflection
PC in the numerical model of Fig. 4(a) with the defined length
in the analytical model of Fig. 4(b). The same lattice constant
of air hole cylinders in the host PC and the antireflection
PC allows us to define the interface [e.g., yA,m in Fig. 1(a)]
positioned at the middle of the two cross sections (e.g., yB,m-1

and yB,m) containing central positions of the neighboring air
hole cylinders across the interface. It is not surprising that the
interface is effectively shifted by 0.9% of the length of the
antireflection PC, since different radii of air hole cylinders in
each PC medium provide large changes in effective refractive

FIG. 6. (Color online) Snapshots of the electric field distributions
in the infinite PC (a) at θh = 0◦ and λ0,a and (b) at θh = 54◦ and
1.000 7 λ0,a . These electric field distributions correspond to those of
the host PC of the entire PC structure for incident angles of θin = 0◦

[Fig. 4(c)] and 4(b) θin = 3◦ [Fig. 4(d)].

indices and the electromagnetic fields across the interface.
Plotting the analytical response of the intrinsic reflection of
the single antireflection structure (black dotted lines) makes
clear that the multiple dips are generated by multireflection in
the entire structure.

The snapshots of the electric field distributions obtained
from the numerical model of Fig. 4(a) are shown in Figs. 4(c)
and 4(d) for incident angles of θin = 0◦ and θin = 3◦, re-
spectively. The TM wave propagates through the PC model
without reflection in both cases. Due to the constraint in
the computational volume of our numerical simulations and
the display function of the simulator, we only present the
simulations in the area with width of 2a in the x axis.

An extremely long wavelength and large refraction angle in
the host PC are visualized with the electric field distributions
of the infinite PC obtained by the plane-wave expansion
method in [see Figs. 6(a) and 6(b)], since we have confirmed
the agreement between the numerical and analytical results
in the reflection response. The propagation angles to the
y axis and the operating wavelengths are the same as for
the case of the analytical structure that are θh = 0◦ and
λa [Fig. 6(a)] and θh = 54◦ and 1.000 7 λa [Fig. 6(b)],
respectively. In Table I, we summarize the antireflection
behavior for the two incident-angle scenarios. We clearly
verify that the antireflection condition is almost met, Z2

ar ≈ Zh

and Lar ≈ (3/4) λar/cos (θar ), even for small absolute values
of effective refractive indices for the normal and oblique
incidence angles.

We note from the analytical results that the reflection of the
entire structure (five layers in Table I) is smaller than that of
the intrinsic reflection (three layers in Table I). This indicates
that the reflection response includes a fraction generated by
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TABLE I. Summary of the antireflection behavior. Parameter values of the host PC and the antireflection PC are calculated in the infinite
PC model [Fig. 1(a)]. Reflectances are obtained by the analytical models of the three layers [Fig. 3(b)] and the five layers [Fig. 4(b)]. Values in
parentheses are obtained from the numerical models of the three layers [Fig. 3(a)] and the five layers [Fig. 4(a)].

Host PC Antireflection PC Reflectance

θin λ/λa nh λh θh Zh/Z0
λh

cos(θh) nar λar θar Zar/Z0
(3/4)λar

cos(θar ) Three layers Five layers

0º 1 −0.0374 40
√

3a 0º 0.0185 40
√

3a −0.325 4.6
√

3a 0º 0.137 3.45
√

3a −19.5 dB –27.1 dB (−14.9 dB)

3º 1.0007 −0.0647 23.1
√

3a 54º 0.0188 39.4
√

3a −0.331 4.52
√

3a 9.1º 0.137 3.44
√

3a −15.7 dB –27.3 dB (−16.6 dB)

multiple reflections in the entire structure. In other words, the
reflection level of the entire structure is varied a little from
the intrinsic reflection level when the length of the host PC is
changed. Table I also shows that the wavelength in the host PC
along the y direction, λh/cos(θh), has nearly the same values
for the two incident-angle cases. Thus the two electric field

FIG. 7. (Color online) (a) Variation of reflectance as a function
of normalized wavelength for incident angles of θin = 0◦, 3º, 4º, 5º,
and 6º. Reflectance around the reflection-suppressed wavelength is
presented for each of the incidence angles. The reflection-suppressed
wavelength is redshifted with increasing the incident angle [blue solid
lines: numerical results of the entire structure of Fig. 4(a); pink dashed
lines: analytical results of the entire structure of Fig. 4(b); black
dotted lines: analytical results of the single antireflection structure of
Fig. 3(b)]. (b) Variation of refraction angles (circles) as a function of
normalized wavelength for incident angles (crosses) of θin = 0◦ − 6◦

with a step of 1º.

distributions of Figs. 4(c) and 4(d) seem to be nearly the same
profiles.

In order to better understand the angular and frequency
dependence of the antireflection behavior, we vary the incident
angle from 0º to 6º and plot the reflection characteristics (0º,
3º, 4º, 5º, and 6º for clarity) in Fig. 7(a) and refraction angles
(with a step of 1º) obtained by Snell’s law in Fig. 7(b). We
see that the reflection of the single antireflection structure
[three layers in Fig. 3(b)] stays below −10 dB (black dotted
lines) in the incident-angle range of 0º–6º with the redshift
of the reflection-suppressed wavelength. In addition, we see
the agreement between the numerical (blue solid lines) and
analytical (pink dashed lines) results for the entire structure
[five layers in Figs. 4(a) and 4(b)]. The refraction angle is
varied widely from 0º to 72º (circles) due to the near-zero
effective refractive index of the host medium.

V. CONCLUSIONS

We have presented an antireflection PC for the host PC
having near-zero effective refractive index. The antireflection
PC has the same lattice constant of air hole cylinders as that of
the host PC, but a different radius of air hole cylinders. This
enables us to have the same impedance at interfaces of the
antireflection PC with the host PC and with the air structure
at properly selected cross sections as well as the flexibility
of impedance control by varying the radius of the air hole
cylinders. The length of the antireflection PC is three-quarter
wavelengths (instead of a quarter wavelength) in order to
engineer the desired effective refractive index with enough
periodicity of the air hole cylinders. Numerical results have
shown that our structure sufficiently suppresses the reflection
at normal incidence and within a range of oblique incidence
with slight redshift.

We have developed an analytic theory by introducing an
effective medium theory. Owing to the isotropic nature of the
effective refractive indices near the second band edge in the
dispersion, the antireflection PC and the host PC are modeled
as isotropic and homogeneous layers. In addition, the local
dependence of the impedance at each interface is taken into
account. The analytic theory has captured the antireflection
behavior obtained by numerical simulations.

Our antireflection PC is designed based on a general
antireflection theory by considering the features of near-zero
effective refractive index and is different from other antire-
flection structures determined by geometrical optimization.
Therefore, our results point to an important design guideline of
antireflections for the effective refractive indices of near-zero
PCs.
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