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Semiclassical theory of multisubband plasmons: Nonlocal electrodynamics and radiative effects
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Coherent multisubband plasmons in doped semiconductor quantum wells have recently attracted large interest
as they allow us to strongly enhance light-matter interaction via collective Coulomb coupling among different
intersubband transitions. In this work, we develop a semiclassical theory of intersubband plasmons in quantum
wells, on the basis of nonlocal electrodynamics. The nonlocal treatment provides a proper description of collective
effects in the electromagnetic response of the system and, in the long-wavelength approximation, it predicts the
same resonance frequencies as the quantum mechanical description. The nonlocal formalism is applied to the
study of the radiative decay rate of multisubband plasmons and plasmon polaritons, both in the case of an isolated
quantum well and of a planar microcavity. We show that subpicosecond radiative lifetimes are to be expected
for intersubband plasmons in semiconductor quantum wells, similarly to quantum well excitons. The theory is
formulated in the context of the transfer-matrix method and it can be applied in a straightforward way to stratified
geometries of any degree of complexity.
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I. INTRODUCTION

It is well known that the intersubband electromagnetic
response of a semiconductor quantum well (QW) is a collective
phenomenon [1–5]. Major evidence for this collective behavior
is a shift in the absorption frequency of intersubband transi-
tions with respect to the energy-level separation, whose main
contribution, the so-called depolarization shift, can be thought
as a dynamical (time-dependent) Hartree correction of the
resonance frequency. A second contribution with opposite sign
originating from the dynamical exchange-correlation term, the
so-called final-state interaction or exciton correction [3,6],
for QWs is generally of far lesser extent [7,8] and it is not
considered in this work. For a two-level system, the presence
of the depolarization shift is already accounted for by a simple
slab model for the two-dimensional electron gas [2]; the same
results can also be obtained with a nonlocal electrodynamic
treatment [4,5]. Some generalizations to multilevel systems
have been derived [1,9–11]. The collective response of the QW
can be understood in terms of the coupling between photons
and a family of excitations represented by intersubband
transitions dressed by the mutual electrostatic interaction,
called intersubband plasmons (IPs) [12,13]. In addition to
optical absorption experiments, intersubband plasmons have
also been studied by other techniques, such as inelastic light
scattering [14,15].

Recently, interest on the intersubband response of two-
dimensional systems has been renewed by the demonstration
that, in a QW with several occupied subbands, the very same
cooperative mechanism that is responsible for the depolariza-
tion shift induces a redistribution of the spectral weight of
intersubband transitions, which eventually concentrates on a
single sharp resonance, to be associated with the so-called
bright multisubband plasmon [16,17]. This represents a very
promising approach for attaining infrared superradiant emis-
sion or for studying the ultrastrong-coupling regime of light-
matter interaction [13,18]. Moreover, the effect is naturally
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suited to be controlled by tailoring the two-dimensional charge
density in the QW, e.g., by the use of a gate potential [19]. It
is clear that, in view of further development in the field, a
deeper knowledge of the radiative dynamics of multisubband
plasmons, including, for instance, the behavior of radiative
lifetime and the effect of incoherent scattering channels, would
turn extremely beneficial.

A quantum mechanical theory of the intersubband response
of a QW has been recently developed [13]. The theory
is based on the electrical dipole gauge and it shows that
both the depolarization and multisubband plasmon effects
originate from the quadratic polarization term P 2 of the dipolar
Hamiltonian. A new family of operators, which are to be
associated to intersubband plasmons, are constructed from a
Hopfield-Bogoljubov transformation of the bare intersubband
operators in the presence of reciprocal coupling induced by the
P 2 term. The quantum formulation is an essential benchmark
in the theoretical treatment of multisubband plasmons, yet it
is not easily turned into a calculation of the optical properties.

Despite different characteristic frequencies, optical prop-
erties of intersubband plasmons have strong analogies with
those of Z-polarized excitons in QWs, which have been
extensively studied in the previous years [20–22]. The analogy
is related to the fact that both excitations can be modeled
semiclassically as planes of oscillating dipoles polarized
along the growth axis of the QW. The radiative lifetime
of two-dimensional excitons [23–27] is expected to have a
counterpart for intersubband plasmons. In addition, the study
of microcavity exciton-polaritons led to very exciting phe-
nomena such as stimulated emission and even Bose-Einstein
condensation [28,29]. However, an important difference with
multisubband plasmons is that, whereas the optical response
of QWs is generally characterized by the excitation of a
single exciton mode, the collective intersubband response can
be strongly affected by the mutual interaction of multiple
intersubband transitions.

In this work, we present a semiclassical theory of the
intersubband response of a generic QW based on nonlocal
electrodynamics, following the lines of Ref. [10]. The frame-
work is quite general and it is easily adapted to a variety
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of situations. In particular, we present our results by means
of the transfer-matrix formalism [30–34], which proves itself
extremely handy when dealing with layered systems. In the
long-wavelength approximation, our semiclassical results for
the frequencies of multisubband plasmons agree with those
from quantum theory, as expected for systems with a quadratic
Hamiltonian in the photon and polarization operators. In order
to illustrate the application of the theory, we focus on the
problem of the radiative decay rate of multisubband plasmons
and perform a detailed analysis following both a perturbative
and a nonperturbative approach. We also consider the presence
of metallic mirrors in the vicinity of the QW, showing that
the theory is also suitable for the analysis of intersubband
plasmon polaritons in planar microcavities [13,35,36]. The
nonlocal electrodynamics theory can be easily applied to
layered structures of any degree of complexity.

The paper is organized as follows. In Sec. II, we present
the semiclassical theory for the intersubband response of a
QW based on nonlocal electrodynamics, first in the general
case and, then, in the long-wavelength approximation. In the
latter situation, our results are compared with those from
quantum theory. In Sec. III, we apply our formalism to the
study of the radiative decay rate of multisubband plasmons,
including the effect of nonradiative decay channels. More
elaborate systems characterized by the presence of metal-
dielectric interfaces, such as planar optical cavities, are taken
into account in Sec. IV. Finally, Sec. V contains concluding
remarks, whereas Appendices A and B present two side
derivations for comparison with the results in the main text.

II. NONLOCAL THEORY

A. General formalism

We consider a QW embedded in a slab of thickness L,
defined as a characteristic length beyond which the subband
wave functions of the QW are approximately null. The static
dielectric constant of the medium is εs (for simplicity, we ne-
glect the slight difference in the static dielectric constant of the
well and barrier materials). The nonlocal susceptibility tensor
of the QW can be calculated in the context of the effective mass
and random-phase approximations (RPA) [12,37–39] where
the nondiagonal components can be omitted. We suppose the
z axis oriented along the growth direction. After applying the
Fourier transform in the xy plane (q is the in-plane momentum
difference), the z component of the nonlocal susceptibility
tensor reads as

χ (RPA)
zz (ω,q; z,z′) =

∑
α

χα(ω,q) ξα(z) ξα(z′), (1)

where the notation α = (n,n′) indicates the transition from
subband n to subband n′ and the current distribution ξα(z) is a
function of the subband wave functions:

ξα(z) = ψn(z) ∂zψn′ (z) − ∂zψn(z) ψn′(z). (2)

If the energy of the state with in-plane momentum k in subband
n is �ωn(k) = �ω0

n + �
2k2/2m∗, fn k is the corresponding

occupation number, and S the area of the QW, the single-

FIG. 1. (Color online) Single-particle and collective response of
a 12-nm-thick Al0.3Ga0.7As/GaAs quantum well uniformly doped
with a density of 1012 cm−2 (only the first subband occupied;
nonparabolicity effects neglected; static Hartree correction included):
(a) Im χ12(ω,q), calculated from Eq. (3) for the 1 → 2 transition;
(b) Im χ (nl)

zz (ω,q) according to Eq. (14). Both quantities are nor-
malized to unity. Dashed white lines indicate the boundaries of the
single-particle continuum.

particle susceptibility for the transition α is written [39]

χα(ω,q) = − 1

ω2

�e2

ε0ωαS(m∗)2

∑
k

(fn k − fn′k+q)

×
[

1 + ωα(k,q) ωα

(ω + iη)2 − ω2
α(k,q)

]
;

(3)
ωα(k,q) = ωn′(k + q) − ωn(k);

ωα = ω0
n′ − ω0

n.

For instance, in Fig. 1(a) we show Im χ12(ω,q) for the 1 → 2
transition of a QW with only the first subband occupied. In all
the numerical results presented in this work, subband energies
have been calculated at zero temperature including the static
Hartree correction with a self-consistent method [40]. At q=0,
the resonance is centered on the energy-level separation at
68 meV; with increasing q, the continuum of single-particle
excitations is clearly recognizable. Equation (3) can be used
also in the presence of nonparabolicity in the semiconductor
conduction band [35,41], provided that the energies ωn(k) and
wave functions ψn(z) are replaced with those obtained, e.g.,
from the effective-mass procedure of Ref. [42].
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When dealing with layered systems, it is useful to solve
electromagnetic problems by means of the transfer-matrix
technique [30,31,33]. Intersubband transitions interact only
with radiation with transverse magnetic (TM) polarization.
We consider the case of a QW with inversion symmetry with
respect to the z = 0 plane. Then, in the regions z < −L/2 and
z > L/2, which we indicate with indices 1 and 2, respectively,
the x component of the electric field can be written in the form
of traveling waves (k2

z = εsω
2/c2 − q2)

Ex,j (z) = Aje
ikzz + Bje

−ikzz (j = 1,2). (4)

The transfer matrix of the QW, TQW, is the 2 × 2 matrix that
propagates the electric field across the QW[

A2

B2

]
= TQW

[
A1

B1

]
(5)

and can be calculated following a procedure analogous to that
introduced in Ref. [21] for QW excitons.

Starting from the nonlocal RPA susceptibility in Eq. (1),
from the application of Maxwell equations we obtain an
integrodifferential equation for the z component Dz of the
electric displacement field in the region −L/2 < z < L/2:

(
∂2
z + k2

z

)
Dz(z) = −

∑
α

χα(ω,q)

εs

× ξα(z)
∫

dz′ ξα(z′)
(

∂2
z′ + ω2

c2
εs

)
Dz(z

′).

(6)

After setting

Fα =
[∫

dz ξα(z)

(
∂2
z + ω2

c2
εs

)
Dz(z)

]/
(q2A), (7)

we can write a solution of Eq. (6) in the form

Dz(z) = A
[

cos(kzz) + q2
∑

α

χα(ω,q)

εs
Fα

×
∫

dz′ ξα(z′)g(z,z′)
]

+ B sin(kzz), (8)

with the Green’s function g(z,z′) = − sin(kz|z − z′|)/2kz and
A, B being arbitrary constants.

By self-replacing Eq. (8) into Eq. (7), the following linear
problem for the coefficients Fα is obtained:

Fα +
∑
α′

Fα′

{
χα′ (ω,q)

εs
[Iα,α′ + q2Dα,α′ (kz)]

}

=
∫

dz cos(kzz)ξα(z), (9)

where

Iα,α′ =
∫

dz ξα(z)ξα′(z), (10)

Dα,α′ (kz) = 1

2kz

∫
dz dz′ ξα(z) sin(kz|z − z′|)ξα′(z′). (11)

Once the coefficients Fα are calculated, the transfer matrix
for the QW is readily worked out by imposing the boundary

conditions at z = ±L/2 for Dz, Ex , and their respective
derivatives. The resulting transfer matrix is

TQW =
[

(1 + iC)eikzL −iC

iC (1 − iC)e−ikzL

]
, (12)

with

C = q2χ (nl)
zz (ω,q)/(2kz) (13)

and the nonlocal susceptibility1

χ (nl)
zz (ω,q) =

∑
α

χα(ω,q)

εs
Fα

∫
dz cos(kzz)ξα(z). (14)

As an example, Fig. 1(b) shows Im χ (nl)
zz (ω,q) for the system

whose single-particle response is represented in Fig. 1(a). This
simple example already reveals some typical features of the
collective response of QW electrons: (i) the presence of a
depolarization shift in the absorption frequency, which, in
the q = 0 case, shifts the intersubband resonance from 68
to 79 meV [1–3]; (ii) the finite and narrow linewidth of the
collective absorption peak in contrast with the broadening of
the single-particle continuum [43,44]; (iii) the onset of Landau
damping when the collective absorption gets in contact with
the single-particle excitation continuum [45].

In addition to angle-resolved absorption, the intersubband
response of the QW can also be probed in an edge-coupling
geometry (see, e.g., Ref. [46]). The present formalism applies
to edge coupling with a polished facet at a finite angle, as used
in Ref. [19], by taking the electromagnetic field at the given
incident angle in the substrate.

The transfer-matrix method can be applied to model an
arbitrary number of QWs embedded in complex layered
structures. The treatment is not limited to the long-wavelength
approximation, as retardation effects can be included by
calculating the coefficients Dα,α′ in Eq. (11). We notice that
different but related formulations of the nonlocal theory have
also been presented in the literature. In the long-wavelength
approximation, the concept of sheet conductivity tensor can
also be employed [34,47] and can be incorporated in a
transfer-matrix formalism [36]. Moreover, this concept allows
going beyond the random phase approximation and the linear
response [48]. Another approach going beyond RPA has been
formulated in Ref. [49]. It is also possible to model the response
of a system of QWs in the long-wavelength approximation
through an effective uniaxial dielectric tensor in the effective
medium approximation, which has been extended to include
nonlocal effects [36,50]. This approach works well even in
the case of a small number of QWs [50], but it requires the
additional constraint for the vertical length of the embedding
structure (or the period, for periodic multiple-quantum-well
systems) to be much smaller than the wavelength of light.
Nevertheless, the effective medium approximation could prove
itself useful when dealing with systems with a high density of
QWs because it avoids performing algebraic calculations with
a large number of transfer matrices.

1Notice that χ (nl)
zz has the dimension of a length, as it is clear from

Eqs. (19) and (21).
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B. Long-wavelength approximation

In the q → 0 and kz → 0 limits (neglecting nonparabol-
icity effects), all single-particle excitations are concentrated
around the frequency ωα and the single-particle susceptibility
becomes

χα(ω,q → 0) = − �e2 
n2D,α

2ε0ωα(m∗)2

1

(ω + iη)2 − ω2
α

, (15)

with 
n2D,α the population density difference between sub-
bands n and n′. In this case, it is possible to obtain a simple
analytical expression for χ (nl)

zz . First, for each transition α we
define the oscillator strength

fα = 2m∗ωα

�
z2
α = �

2m∗ωα

[∫
dz ξα(z)

]2

(16)

(zα is the intersubband dipole moment), the plasma frequency
ωP,α , and the effective length Leff,α (our definition is the same
as in Ref. [13]):

ω2
P,α = e2
n2D,α

ε0εsm∗Leff,α
, (17)

Leff,α = 2m∗ωα

�

1

Iα,α

, (18)

where the overlap integrals between intersubband currents are
defined in Eq. (10). Following the derivation in Appendix A,
we obtain that

χ (nl)
zz (ω,q → 0) = −

∑
j

β2
j

ω2 − (
�j − i 1

2γnr,j
)2 , (19)

where �2
j are the eigenvalues of the coupling matrix

Mα,α′ = ω2
αδα,α′ + ωP,αωP,α′

Iα,α′√
Iα,αIα′,α′

(20)

and the coefficients βj are calculated from the corresponding
normalized eigenvectors E (j ) according to the relation

βj =
∑

α

ωP,α E (j )
α

√
fα Leff,α. (21)

Notice that the coefficients are subjected to the Thomas-
Reiche-Kuhn sum rule in the form∑

j

β2
j = e2N

ε0εsSm∗ , (22)

where N is the total number of electrons that take part in
intersubband transitions. Factor γnr,j is a phenomenological
rate accounting for the possible effect of incoherent scattering
(i.e., homogeneous broadening of the optical transition due to
a nonradiative decay channel).

The frequencies �j are associated to a family of modes
which can be called multisubband plasmons. In the long-
wavelength limit, our semiclassical theory gives the same
results for the frequencies �j as the purely quantum mechan-
ical theory developed in Ref. [13]. In particular, matrix (20)
coincides with that obtained from the Hopfield-Bogoljubov
transformation of the operators associated to bare intersubband
transitions in the presence of electrostatic coupling. Physically,
this means that the diagonal and off-diagonal coupling among

intersubband transitions induced by Coulomb interaction is
fully taken into account by the nonlocal equation (6) with
the proper boundary conditions. The coincidence of the
semiclassical and quantum theories stems from the fact that the
original Hamiltonian is quadratic in the photon and transition
operators [33]. Yet, the semiclassical formulation can be
used to derive a number of phenomenologically interesting
quantities related to the optical properties, as we show in the
next section.

III. RADIATIVE DECAY RATE

The transfer-matrix method offers a straightforward solu-
tion to problems involving electromagnetic radiation interact-
ing with multisubband plasmons. In particular, for a generic
transfer matrix T, the reflection amplitude is given by the ratio

r = −T21

T22
. (23)

It is well known that the properties of both radiative and bound
(polaritonic) states of the system can be calculated from the
poles of the reflection coefficient [21], i.e., by the condition
T22 = 0. Following Tait’s classification [51], two different
approaches can be employed. The quasiparticle solutions are
obtained by setting a real in-plane wave vector and searching
the poles in the complex-frequency plane. This corresponds to
pure temporal damping [52] and such solutions have a direct
physical interpretation in relation to luminescence or inelastic
scattering experiments. On the other hand, the so-called forced-
harmonic solutions are characterized by real frequencies
and complex in-plane wave vectors. They have a direct
interpretation in terms of optical spectra with monochromatic
incident light. In this work, as we are interested in the problem
of the radiative decay rate of multisubband plasmons, we will
focus on quasiparticle solutions, for which the decay rate can
be directly defined from the imaginary part of ω, according to
the relation � = −2 Im ω.

In the simplest case, the transfer matrix is that of Eq. (12);
this corresponds to the situation of a single QW embedded in
an infinite medium with dielectric constant εs (equal to that of
the barrier material), as illustrated by Fig. 2(a). According to
Eq. (19), in the long-wavelength limit the condition T22 = 0

FIG. 2. (Color online) Some configurations for the QW consid-
ered in this work: (a) simple scattering problem; (b) scattering near a
metallic mirror; (c) planar microcavity; (d) planar microcavity in the
Kretschmann configuration. The corresponding transfer matrices are
analyzed in the text.
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becomes

1 + i
q2

2kz

∑
j

{
β2

j

/[
ω2 −

(
�j − i

1

2
γnr,j

)2]}
= 0. (24)

Following the perturbative approach, by looking for a solution
in the form ω = �j − i 1

2 (γnr,j + �rad,j ) at the first order in
�rad,j , we find that the radiative decay rate for multisubband
plasmons has the expression

�
(pert)
rad,j (q) = q2

2kz�j

β2
j = q2

kzk0,j

�0,j , (25)

with

�0,j =
√

εs

2c
β2

j , (26)

k0,j = √
εs�j/c, and k2

z = k2
0,j − q2. The perturbative decay

rate is divergent for q → k0,j , as a result of a correspondent
singularity in the photon density of states. The perturbative
decay rate, however, represents only a low-q approximation.
The actual decay rate can be calculated from the numerical
solutions of Eq. (24), as shown in the following, at first for
systems with a purely radiative decay dynamics (γnr,j = 0),
and then including the presence of a finite incoherent scattering
rate γnr,j .

A. Single intersubband plasmon

As a starting point for the discussion of radiative decay
rates, we consider a system with a single IP, for instance a
narrow QW with a single bright intersubband transition and
for the moment we neglect the presence of nonradiative decay
channels (γnr = 0). The results that we present are consistent
with those reported in Ref. [52] for an analogous system. Then,
in the following section, we will extend our treatment to the
case of multiple intersubband transitions.

The electromagnetic response of the QW with a single
bright intersubband transition shows a resonance in the reflec-
tion coefficient at the IP frequency �0 = (ω2

α + ω2
P,α)1/2. The

corresponding perturbative decay rate, according to Eq. (25), is

�rad(q) = q2

kzk0
�0 = sin2(θ )

cos(θ )
�0, (27)

with

�0 = e2
n2Dfα

2m∗ε0c
√

εs
(28)

and θ the angle of incidence of radiation, calculated from
the normal to the QW. This result is in agreement with that
calculated from the Fermi golden rule for a single intersubband
plasmon [53], derived in Appendix B. Equations (27) and (28)
are analogous to those of Z-polarized excitons in QWs [21].

A more complete picture of the decay rate is provided by
the nonperturbative solutions of Eq. (24), which are shown by
solid curves in Figs. 3(a) and 3(b), illustrating the frequency
dispersion and the radiative decay rate �rad = −2 Im ω, respec-
tively. The latter is compared with the perturbative solution
[dotted line in Fig. 3(b)]. As it is clear from Fig. 3(a), there
are two separate branches in the dispersion of the modes:
the radiative intersubband plasmon, whose dispersion starts

FIG. 3. (Color online) Solid curves: (a) dispersion of the radia-
tive and polariton modes and (b) decay rate of the radiative mode,
for the 1 → 2 intersubband plasmon of the same QW as in Fig. 1
(n2D = 1.5 × 1012 cm−2, γnr = 0). Red dashed curves: (a) dispersion
and (b) radiative decay rate for the case γnr = 1 meV. Green dotted
curve in (b): perturbative decay rate [Eq. (27)].

at ω = �0 and ends at point P just outside the light cone,
and a polariton mode (i.e., spatially confined along the z axis,
similarly to the surface plasmon polariton at metal interfaces)
in the region outside the light cone. The dispersion of the
radiative mode is blue-shifted due to the interaction with light
by an amount 
 = Re ω − �0 > 0, in analogy with the Lamb
shift of the hydrogen atom. The corresponding radiative decay
rate follows closely the perturbative solution at low q, but it
presents a broadening of the density-of-states singularity at
q = k0. The finite behavior of the decay rate around k0 and
the fact that the radiative branch ends slightly beyond the light
cone can both be explained by the self-induced relaxation of
energy conservation due to optical scattering of the IP itself.

The maxima of the nonperturbative decay rate and of the
Lamb shift can be approximated in the single plasmon case by
the expressions (valid for �0 � �0)

�
(max)
rad =

√
3

2

(
�2

0�0
) 1

3 , 
(max) = 1
3
√

4

(
�2

0�0
) 1

3 , (29)

which are formally identical to those reported in Ref. [22]
for the case of a T -polarized QW exciton.2 For the system
in Fig. 3, with an electron density of 1.5 × 1012 cm−2, we
have a maximum decay rate of 1.3 meV, which corresponds
to a lifetime τ = 1/�rad � 500 fs. Shorter life-times can be

2Electromagnetic modes for T -polarized QW excitons described
in Ref. [22] follow a different equation with respect to intersubband
plasmons, which are analogous to Z-polarized excitons, as we have
already remarked. The two equations become coincident only in
proximity of the light line (kz � 0).
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FIG. 4. (Color online) Absorbance of a 20-nm Al0.3Ga0.7As/
GaAs quantum well (see inset), as function of the frequency and
for several values of the two-dimensional electron density (indicated
by the labels in units of 1012 cm−2), spanning the range in Fermi
energy indicated by the shaded area in the inset (zero temperature
and γnr,j = 1 meV). Radiation is incident with a 45◦ angle from the
normal.

reached with electron densities above 1013 cm−2, which can
be accomplished in particular QW structures [16]. Lifetimes
of the order of a few 100 fs have indeed been observed for
intersubband plasmons in QWs of 15–20 nm thickness [54].

Dashed curves in Fig. 3 show how the dispersion and
radiative decay rate of the radiative mode are modified in
the presence of a finite nonradiative rate γnr > 0. The most
evident feature is that the dispersion of the radiative mode
continues beyond point P; correspondingly, the radiative decay
rate presents a dissipation-induced tail at large in-plane wave
vector. The effects of nonradiative damping on the polaritonic
modes are nontrivial and they lead also to a modification of
the number of physically significant modes. For this reason,
we will treat them in more detail in a later section (Sec. III C).

B. Multiple intersubband transitions

In the presence of multiple intersubband transitions, e.g., in
the case of a large QW with a high doping level, the radiative
response of the system is modified with respect to the single-
transition behavior of the previous section. Figure 4 shows the
absorbance A = 1 − |r|2 − |t |2 of a 20-nm-thick QW with
varying two-dimensional electron density, calculated from
the transfer matrix in Eq. (12). As higher-energy subbands
become populated, new transitions become allowed and new
peaks appear in the electromagnetic response, reflecting the
increase of the number of IPs. However, the strength of
the absorption peaks is unequally distributed and it tends
to accumulate on a single bright multisubband plasmon. The
other multisubband plasmons tend to lose oscillator strength

FIG. 5. (Color online) (a) Frequencies and (b) perturbative decay
rates [more specifically, the �0,j terms in Eq. (26)] for three
multisubband plasmons (j = 1,2,3) of the same QW as in Fig. 4 as a
function of the electron density. The two vertical dashed lines indicate
where the second and third subbands start to populate, whereas the
horizontal dotted lines show the frequencies of bare intersubband
transitions (neglecting for simplicity the static Hartree correction,
which, however, is taken into account in the calculation of the plasmon
frequencies).

and to become progressively dark as the doping level is
increased. The phenomenon originates from the electrostatic
interaction among the different intersubband transitions, which
is expressed in the q → 0 limit by the coupling matrix in
Eq. (20)

The same behavior is illustrated in Fig. 5, which represents
the frequencies �j and perturbative decay rates �0,j of three
selected multisubband plasmons (j = 1,2,3) as a function of
the doping density. The terms �0,j enter the expression for
the perturbative decay rate according to Eq. (25) and they are
directly proportional to the coefficients β2

j defined in Eq. (21).
The quantities �j and �0,j plotted in Fig. 5 are directly related
to the positions and widths of peaks in Fig. 4, respectively. At
very low doping, there is a single IP associated to the 1 → 2
intersubband transition, whose decay rate is linear with the
doping density, in agreement with Eq. (28). When the second
subband starts to populate (as indicated by the vertical dashed
line around the density 0.8 × 1012 cm−2), a new IP appears,
with the frequency ω23 associated to the 2 → 3 intersubband
transition. With the increasing of the density, its frequency
blue-shifts and its perturbative decay rate grows rapidly up
to including a large majority of the total available coupling
strength. Even when the third subband starts to populate (as
indicated by the second vertical dashed line), the new j = 3
intersubband plasmon, originating from the 3 → 4 transition,
rapidly loses most of its radiative strength in favor of the j = 2
plasmon. It is clear that these modes represent multisubband
plasmons that cannot be related to any particular transition any
more. In particular, the bright multisubband plasmon with j =
2 represents the cooperative response of the two-dimensional
electron gas, which dominates the optical response of the QW.
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FIG. 6. (Color online) (a) Generalized Lamb shift and (b) non-
perturbative decay rates of the three multisubband plasmons illus-
trated in Fig. 5, as a function of the in-plane wave vector. The
electronic density of the QW is 4 × 1012 cm−2. Data for the j = 1
plasmon have been multiplied by a factor 5 for visualization purposes.

These considerations are important to clarify the behavior
of the Lamb shift and of the nonpertubative radiative decay rate
as a function of the in-plane wave vector for different multi-
subband plasmons, an example of which is shown in Fig. 6.
The nonperturbative results, obtained by solving Eq. (24)
in the complex-frequency plane, are displayed for the three
previously discussed multisubband plasmons (j = 1,2,3) in
the case of an electronic density n2D = 4 × 1012 cm−2, corre-
sponding to the Fermi level just above the minimum of the third
subband. The dominance of the bright multisubband plasmon
is already evident.

As a consequence, the radiative behavior of a QW with
respect to the electron density could be classified into three
different regimes. In the low-doping regime there is only
a single populated subband and a weak radiative response
following the description in Sec. III A. By increasing the
doping, an intermediate regime is reached, characterized by
a redistribution of the radiative strength among several multi-
subband plasmons; eventually, the system is led to the bright
multisubband plasmon regime, where the radiative behavior
is dominated by a single plasmon similarly to Sec. III A, but
with a far higher radiative decay rate, due to the in-phase
response of multiple intersubband transitions (see Fig. 6). In
view of the sum rule in Eq. (22), the perturbative decay rate
of the bright multisubband plasmon can be still approximately
described by Eq. (28), with fα � 1. The coherent plasmon phe-
nomenon has been strikingly demonstrated in a highly doped
GaInAs/AlInAs QW with several occupied subbands [16].

C. Effect of nonradiative decay

In this section, we illustrate how the dispersion of radiative
and polariton modes is modified by the presence of incoherent
scattering, in the form of a nonradiative decay rate γnr,j > 0
in Eq. (24). Incoherent scattering has a strong influence on the
electromagnetic response of the QW because not only does it
modify the modal dispersion, but it also affects the total number
of physically significant modes. This effect can be visualized
more clearly in the complex-kz plane. Modes with Im kz � 0
represent polaritonic states spatially confined along the z axis,

FIG. 7. (Color online) (a) The evolution of the poles of the
reflection coefficient in the complex-kz plane with varying the
in-plane momentum, for different values of the nonradiative scattering
rate γnr. Solid curves: γnr = 0; dashed curves: γnr = 1.5 meV (both
in the strong-coupling regime); dotted curves: γnr = 3 meV (weak
coupling). The system is the same as that in Fig. 3. (b), (c)
The dispersion Re ω vs q in the cases (b) γnr = 1.5 meV and (c)
γnr = 3 meV (nonphysical modes are excluded).

whereas modes with Im kz < 0 represent radiative states [22].
In addition, assuming the temporal evolution e−iωt with
Re ω � 0, modes lying in the first (Re kz > 0 and Im kz > 0)
and third (Re kz � 0 and Im kz � 0) quadrants of the complex
plane are nonphysical since they present Im ω > 0.

Here, we consider a system with a single intersubband
plasmon, which, as we have seen, represents a good model of
both a narrow low-doped QW with a single transition available
and a thick heavily doped QW in the bright multisubband
plasmon regime. Figure 7(a) shows the evolution of the poles
of the reflection coefficient in the complex-kz plane with
varying the in-plane momentum q. Equation (24) for a single IP
presents three distinct solutions (with the condition Re ω � 0).
For γnr = 0 they represent the radiative plasmon and the
polariton modes, with the addition of a nonphysical mode
with Im ω > 0 in the third quadrant [solid curves in Fig. 7(a)].
With increasing the nonradiative rate γnr, the evolution of the
poles in the complex-kz plane is modified as shown by dashed
curves in Fig. 7(a). The radiative mode in the fourth quadrant
is downshifted, reflecting the formation of a dissipative tail at
high q in the radiative decay rate, as we have already pointed
out. Moreover, the nonphysical mode in the third quadrant
is partially shifted to the second quadrant and it emerges
as an “anomalous” polariton branch in the electromagnetic
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dispersion [curve labeled “AP” in Fig. 7(b)]. This is an example
of damping-induced dispersion branches, which are also found
in the optical response of QW excitons [22].

Two distinct regimes are individuated. The threshold
between the two regimes is given by the value γth of the
nonradiative rate corresponding to the intersection between
the dispersion of the anomalous damping-induced mode and
the original polariton. In the limit �0 � �0, the value can be
approximated as

γth = 3
√

3

2 3
√

4

(
�2

0�0
) 1

3 ,

i.e., it is of the same order of the maximum of the radiative
decay rate. For instance, in the example of Fig. 7, the threshold
is around γth � 2.5 meV. When γnr < γth, in the underdamped
or strong-coupling regime [dashed curves in Fig. 7(a) and
graph (b)], the two polariton branches are well distinct. On
the other hand, in the overdamped or weak-coupling regime
[γnr > γth; dotted curves in (a) and graph (c)], polariton modes
are merged in a continuous branch whose dispersion originates
at �0 and proceeds continuously to the high-q region [curve
labeled “P” in Fig. 7(c)]. In addition, a distinct photonlike
mode appears (curve labeled “L”), with a dispersion following
closely the light line up to ω � �0. The situation is physically
analog to the transition between the weak and strong coupling
regimes in optical microcavities [55]; in particular, γth plays
the role of the light-matter coupling parameter.

When dealing with experimental systems, it is particularly
important to identify the regime of interest. In the strong-
coupling regime, a clear signature of radiative effects is to be
expected, in the form of a short radiative lifetime and strong
Lamb shift in the resonance frequency. On the other hand, ra-
diative effects become progressively less manifest in the weak-
coupling regime, where the dynamics of the system is dom-
inated by nonradiative relaxation. Notice that the anomalous
polariton, in spite of lying inside the light cone, is a spatially
confined state (Im kz > 0), and thus it requires to be detected
by means of near-field microscopy or similar methods.

IV. LAYERED SYSTEMS WITH METAL-DIELECTRIC
INTERFACES

In most experiments, a thin layer of metal (usually gold)
is laid on top of the QW structure to increase the amount of
detected radiation. In other cases, the QW can be embedded
in an optical cavity bound between two metallic mirrors
to selectively couple intersubband transitions with a limited
number of electromagnetic modes. In this section, we study
these configurations in the context of the transfer-matrix
approach.

A. Single metallic mirror

We consider the geometry sketched in Fig. 2(b), where the
QW is separated by a spacer of length d and dielectric constant
εs from a semi-infinite metallic mirror. The transfer matrix for
the whole system is written as

T = tm

1 − r2
m

[
1 −rm

−rm 1

]
Td TQW, (30)

where rm and tm are the reflection and transmission amplitudes
for the metal-dielectric interface, TQW is the transfer matrix
for the single QW in Eq. (12), and Td = diag(eikzd ,e−ikzd )
is the propagation matrix for a slab of length d and dielectric
constant εs. Radiative modes are still provided by the condition
T22 = 0, which reads as in the q → 0 limit

1 + i
q2

2kz

∑
j

(1 − rmeikz(2d+L))β2
j

ω2 − (
�j − i 1

2γnr,j
)2 = 0. (31)

In particular, following the same procedure that led to
Eq. (25), we obtain that the perturbative decay rate of
multisubband plasmons is modified by the presence of the
metallic interface in the form

�
(pert)
rad,j (q) = {

1 − Re
[
rmeikz(2d+L)]}q2 �0,j

kzk0,j

. (32)

This result is in agreement with electromagnetic calculations
for the modification of the decay rate of a plane of radiating
dipoles in proximity to a metallic surface and directed
perpendicular to the surface. The decay rate of a single
dipole can be obtained upon integration over in-plane wave
vector q [56,57]. Moreover, such results are consistent with
those reported in Ref. [52]. For an ideal (perfectly reflecting)
metal with rm = −1 and kz(2d + L) � 1, we are left with the
result that the perturbative decay rate in the presence of the
mirror is twice the case of the isolated QW. For a real metal
with dielectric function εm(ω), the reflection amplitude at the
metal-dielectric interface reads as

rm = εsκ − εmkz

εsκ + εmkz

, (33)

with κ2 = εm(ω) ω2/c2 − q2. For noble metals, the difference
in perturbative decay rate with respect to the ideal-metal
behavior is small, except in close proximity to the light
line (q � k0,j ), when the singularity of the perturbative
decay rate is cut off and the decay rate returns to zero.
This discrepancy is not quantitatively significant because the
perturbative approach fails in the q → k0,j limit, but it is
nonetheless a clear sign that the metal dispersion could have a
strong effect on the QW radiative response for q � k0,j .

This fact is most evident from the nonperturbative decay
rate of the intersubband plasmon, extracted from the numerical
zeros of Eq. (31) and shown in Fig. 8 for the case of an
ideal metal (solid curve), gold (dashed curve), and titanium (a
metal with the very low plasma frequency ωpl � 2.5 eV [58];
dashed-dotted curve). The decay rates correspond to short,
sub-ps radiative lifetimes, down to ∼350 fs for the case of gold.
Even in the case of gold, the maximum of the decay rate near
k0 is significantly modified in the real metal case with respect
to the ideal one. The phenomenon could also be understood in
terms of competition between the radiative decay channel and
the surface plasmon polariton at the metal-dielectric interface,
as it is suggested by the fact that, when the plasma frequency
of the metal is closer to the IP frequency (e.g., in the case
of titanium), the deviation with respect to the ideal case is
more pronounced. Notice that the decay rate for real metals
always presents a small dissipative tail at high q, similarly to
the γnr 
= 0 case.
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FIG. 8. (Color online) Decay rate for the same QW as in Fig. 3,
when it is located in proximity to a metal-dielectric interface (2d +
L = 100 nm), for ideal and real metals (Au and Ti). The dielectric
function of real metals follows the Drude model with the parameters
in Ref. [58].

To sum up, the present formulation allows calculating the
change in radiative decay rate when the QW is placed in
proximity to a metallic mirror. The behavior of the decay
rate near the light line is very strongly dependent on the
configuration of the system, including the dispersion of
surrounding materials. Approximate formulas such as those
presented in Eq. (29) could be useful for qualitative guidance,
but a more detailed calculation taking into account the exact
configuration of the system is in order to get quantitative
results, as illustrated in this section. The transfer-matrix
method allows us to generalize the procedure to more complex
layered geometries.

B. Planar optical cavity

In order to increase radiation-matter interaction, a QW can
be embedded in a dielectric slab bound between two metallic
mirrors, so as to establish a planar optical cavity configuration.
We suppose that the QW is located in the middle of a cavity
of length Lcav = LQW + 2d, bound by semi-infinite metallic
mirrors, as shown in Fig. 2(c). The transfer matrix for such
a system is derived in a straightforward manner from that of
Eq. (30), in the form

T = 1

1 − r2
m

[
1 −rm

−rm 1

]
Td TQW Td

[
1 rm

rm 1

]
.

The electromagnetic modes of the system are given by the
condition T22 = 0, which reads as

r2
meikzLcav − e−ikzLcav

+ iC
[
r2

meikzLcav + e−ikzLcav − 2rm
] = 0, (34)

where the coefficient C, defined in Eq. (13), takes into ac-
count the nonlocal electrodynamic response of multisubband
plasmons in the QW.

In the case of perfectly reflecting mirrors (rm = −1),
Eq. (34) is simplified in the form

sin(kzLcav) + [1 + cos(kzLcav)]C = 0. (35)

Notice, in particular, that for C = 0 the expression reduces to
the characteristic equation for TM modes of an ideal planar

cavity. As an example of application, if we suppose that the
QW interacts with the TM0 mode of the cavity, by expanding
the equation at the first order in kzLcav and replacing Eqs. (13)
and (19), we get

εs
ω2

c2
− q2

⎡
⎣1 + 1

Lcav

∑
j

β2
j

ω2 − �2
j

⎤
⎦ = 0, (36)

which represents an implicit equation for the dispersion of
cavity polaritons.

We will briefly consider the case of a single intersubband
plasmon, which has been extensively studied in the litera-
ture [13,35,36], and then we will move to the situation of a
QW with multiple intersubband transitions. In the single IP
case, Eq. (36) reads as

εs
ω2

c2
=

(
1 + Leff,α

Lcav

fαω2
P,α

ω2 − ω2
α − ω2

P,α

)
q2, (37)

and its solutions are the well-known lower and upper cavity
polariton branches, whose dispersion is characterized by an
anticrossing behavior around the IP frequency. The minimal
splitting between the branches, i.e., the Rabi splitting, is
obtained as [13]

�R = 1

2

βj√
Lcav

= 1

2
ωP,α

√
fαLeff,α

Lcav
. (38)

With the increasing of the doping level inside the QW, a
regime characterized by the presence of several multisubband
plasmons is reached. In the single-cavity-mode approximation,
the dispersion of intersubband polaritons is still provided by
the solutions of Eq. (36); however, in this case, the interplay
among different multisubband polaritons and collective effects
such as those described in Sec. III B play a crucial role.
By analogy with Eq. (38), one can define an effective Rabi
frequency for each multisubband plasmon

�R,j = 1

2

βj√
Lcav

(39)

as a theoretical quantity providing an estimate of the coupling
strength to the TM0 cavity mode. The ratio �R,j /�j between
the Rabi and the resonance frequency is plotted in Fig. 9(a)
as a function of the two-dimensional electronic density for the
three multisubband plasmons of a 20-nm-thick QW already
considered in Fig. 5. With increasing the density, at first the
single IP regime, then a redistribution of the coupling strength
among different multisubband plasmons, and, eventually, the
emergence of the bright multisubband plasmon (j = 2) are
clearly identified. Such results parallel for the case of cavity
polaritons the analysis that we have carried out in Sec. III B
for radiative decay rates.

The model in Eq. (36) does not take into account some
important aspects, such as the presence of multiple electromag-
netic cavity modes and the dispersive and dissipative response
of the metallic plates. Moreover, from the experimental point
of view, a coupling mechanism between cavity modes and
external radiation is necessary. As a consequence, cavity
modes acquire a finite broadening, which, together with the
intrinsic nonradiative broadening of multisubband plasmons,
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FIG. 9. (Color online) (a) The ratio �R,j /�j [see Eq. (39)] for
the same QW and the same three multisubband plasmons of Fig. 5. (b)
Absorbance of the same QW (n2D = 4 × 1012 cm−2, γnr = 0.5 meV)
placed in the center of 8-μm planar cavity bound by gold mirror in
the Kretschmann configuration [see Fig. 2(d)]. Radiation impacts a
10-nm-thick gold mirror from a dieletric with εext = 15 > εs. Dashed
lines indicate the frequencies of the three multisubband plasmons of
Fig. 5. The inaccessible region of the spectrum is indicated by the
hatched region in the lower right corner of the plot. (c) Closeup of
graph (b) around the frequency of the j = 2 multisubband plasmon.

affects the number of plasmons that can enter the strong-
coupling regime of light-matter interaction. All these aspects
can be readily addressed in the transfer-matrix formalism, by
means of Eq. (34) and its generalizations to more elaborate
structures. For instance, a more realistic metallic response
can be taken into account by employing the metal-dielectric
reflection coefficient in Eq. (33).

As an example, we consider an 8-μm-thick planar cavity
bounded by gold mirrors in the Kretschmann configuration,
sketched in Fig. 2(d). The left mirror is a 10-nm-thick film,
in order to provide coupling with external radiation, and the
QW is placed in the middle of the cavity. We consider the

same QW and multisubband plasmons discussed in Sec. III B
and Fig. 9(a), with an electronic density of 4 × 1012 cm−2 (the
Fermi level is just above the third subband). The absorbance
A = 1 − |r|2 − |t |2 of the system is plotted in Fig. 9(b). Of
the three multisubband plasmons in the frequency range under
consideration, the j = 1 plasmon is in the weak-coupling
regime and no anticrossing is visible in the dispersion. On
the other hand, both the j = 2 and 3 plasmons are strongly
coupled to the TM0 and TM2 cavity modes, despite the
splitting of the j = 3 mode being far smaller (and barely
recognizable in the TM0 case). A closeup of the anticrossing
behavior around the frequency of the j = 2 mode, i.e., the
bright multisubband plasmon, is shown in Fig. 9(c). Notice
that no anticrossing phenomena are formed in correspondence
to odd TM modes of the cavity, as expected from symmetry
consideration.

In our calculations, we neglected the intrasubband response
of the QW. The intrasubband plasmon is in-plane polarized
and, in the symmetric structure that we consider, it is decoupled
from intersubband plasmons. In particular, the effect of the
intrasubband response is to slightly modify the frequencies of
the odd cavity modes, which do not interact with multisubband
plasmons. Such modification can be expected to be weak since
in our system the ratio LQW/Lcav is small. We notice, however,
that for systems including a large number of QWs, the effect
of the intrasubband plasmon can be more significant and it can
also affect the dispersion of intersubband cavity polaritons, as
discussed in Ref. [36].

In summary, the dispersion characteristics of a particular
mode can be engineered by tailoring the doping level and the
position of the QW or the length of the cavity. The bright
multisubband plasmon is particularly promising in view of
reaching very high strengths of light-matter coupling. This has
been experimentally confirmed in Ref. [16], which reports that
the dispersion of the coherent multisubband cavity polariton
has been verified for a stack of five 18.5-nm-thick QWs,
showing a clear Rabi splitting ��R = 57 meV. By applying
the nonlocal semiclassical theory with the transfer-matrix
formalism, it is possible to calculate the optical properties of
intersubband plasmons in for QWs in complex arrangements
with both dielectric and metallic layers. This opens the way
towards more specific designs in view of achieving, e.g.,
stimulated scattering of multisubband plasmons.

V. CONCLUSIONS

We have presented a semiclassical theory of multisubband
plasmons in semiconductor quantum wells. The collective
optical response of the two-dimensional electron gas is
strongly affected by Coulomb interaction among intersubband
transitions, which is crucial in order to explain the formation
of a coherent multisubband plasmon that takes up most of
the coupling strength with radiation. These observed effects
are fully captured by the present nonlocal formulation, which
can be used for a full calculation of the optical properties
of multisubband plasmons for QWs arranged in various
geometries.

We have applied the theory to the study of the radiative
decay rate of multisubband plasmons. Radiative lifetimes are
short, of the order of a ps or below, and can be tailored by

115311-10



SEMICLASSICAL THEORY OF MULTISUBBAND . . . PHYSICAL REVIEW B 90, 115311 (2014)

means of the two-dimensional carrier density. The radiative
decay rate calculated from perturbation theory is accurate far
from the boundary of the light cone; however, in the opposite
limit, the value of the decay rate is strongly dependent on
the configuration of the system and a case-by-case calculation
is generally in order, as we have shown in several examples,
involving also the presence of metal-dielectric interfaces. In
particular, in the case of a planar optical cavity, our formalism
provides the dispersion of multisubband cavity polaritons. The
presence of a nonradiative decay channel could play a major
role in the relaxation dynamics of the QW, by triggering the
appearance of damping-induced polaritonic modes.

We believe that the theory is presented in a sufficiently
general manner for being applied in a straightforward way to
more specific configurations of experimental interest, where it
could prove itself useful both in the design and interpretation
stages. An important research direction is to design structures
that are suitable for the observation of quantum effects related
to intersubband plasmons, like, e.g., stimulated scattering, in
analogy to similar effects that have been demonstrated for
QW exciton polaritons in microcavities [28,29]. In addition,
the analysis reported in this work could help to clarify the
dynamics of radiative relaxation by intersubband plasmons,
which is gaining increasing interest both for fundamental
physics studies and in view of practical applications in the
field of mid- and far-infrared light emission.
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APPENDIX A: LONG-WAVELENGTH LIMIT OF
NONLOCAL THEORY

In this Appendix, we derive the q → 0 and kz → 0 limits
of the nonlocal susceptibility χ (nl)

zz (ω,q), which we have
anticipated in Eq. (19). In this derivation, we neglect incoherent
scattering (γnr,j = 0). In the long-wavelength limit, the linear
problem in Eq. (9) reduces to the form

Fα +
∑
α′

χα′ (ω,q → 0) Iα,α′

εs
Fα′ =

∫
dz ξα(z), (A1)

where we replace the q → 0 expression for the single-particle
susceptibility reported in Eq. (15). By defining the vectors F̃
and X , whose components are

F̃α = Fα

ω2 − ω2
α

ωP,α√
Iα,α

, Xα = ωP,α√
Iα,α

∫
dz ξα(z),

Eq. (A1) becomes (ω2 − M)F̃ = X , with the coupling matrix
M presented in Eq. (20).

By solving the eigenproblem for the matrix M and writing
it in the form M = U�2U−1, where �2 is the diagonal matrix
of the eigenvalues �2

j and U is the orthogonal matrix of the
column eigenvectors, the solution of the linear problem is
straightforward:

F̃ = U
1

ω2 − �2
U−1 X .

In the same q → 0 limit, the nonlocal susceptibility in Eq. (14)
can be written χ (nl) = −XT F̃, from which we obtain

χ (nl) = −[U−1 X]T
1

ω2 − �2
U−1 X . (A2)

The result in Eq. (19) derives directly from the observation
that U−1 X is just the vector of the βj ’s [see also Eq. (16)].

APPENDIX B: PERTURBATIVE DECAY RATE FOR
INTERSUBBAND PLASMONS

In the following, the radiative decay for a system with
a single intersubband plasmon is calculated from the Fermi
golden rule in quantum theory. The quantum operator b

†
q

associated to the bright 1 → 2 intersubband transition in a
QW reads as

b†q = 1√

N

∑
σ

∑
kF2�k�kF1

c
†
2,k+q,σ c1,k,σ , (B1)

where c
†
n,k,σ is the creation operation for the state in subband

n with in-plane momentum k and spin σ . The sum is over all
states involved in the transition; in particular,

∑
σ

∑
k = 
N

and 
n2D = 
N/S, with S the area of the sample. As an effect
of electrostatic interaction in the two-dimensional electron gas,
resonance frequency is shifted from the frequency of the bare
transition ω12 to the frequency of the intersubband plasmon
�0 = (ω2

12 + ω2
P,12)1/2. The operator associated to the IP is

obtained through a Hopfield-Bogoljubov transformation of the
original transition operator [13]

p†
q = �0 + ω12

2
√

ω12�0
b†q + �0 − ω12

2
√

ω12�0
b−q ; (B2)

correspondingly, the wave function of an excited plasmon is
|qpl〉 = p

†
q |0〉 (|0〉 being the transformed vacuum).

Radiation-matter interaction is described by the Hamilto-
nian HI = −d · E = −ezEz, with the electric field operator

E(r) = i
∑
λ,k

(
�ck

2ε0εsV

) 1
2

E k,λ[ak,λe
ik·r + H.c.].

Then, the matrix element between a photon with wave vector
k and a plasmon with in-plane momentum q reads as

〈kph| HI |qpl〉 = −iez12

(

N�ω12ck

2�0ε0εsV

) 1
2

E k,λ · ẑ δk‖,q,

where k‖ is the in-plane component of k and z12 is the
intersubband dipole momentum. Only the TM electric field has
a non-null z component and interacts with the intersubband
transition. In particular, we easily calculate that

∑
λ |E k,λ ·

ẑ|2 = k2
‖/k2. Finally, from the Fermi golden rule, we obtain

�q = 2π

�

∑
λ

∑
k

|〈kph|HI |qpl〉 |2 δ(��0 − �ck)

= q2

k0kz

�0 = sin2(θ )

cos(θ )
�0, (B3)
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with

�0 = e2
n2D

�ε0c
√

εs
z2

12ω12 (B4)

(k0 = √
εs�0/c and k2

z = k2
0 − q2). Equation (B3) presents the

same result as Eq. (27), as it can be seen by comparison with
Eq. (16). The same result is reported also in Ref. [53]. Notice

that, by using the bare intersubband operator b
†
q instead of the

plasmon operator p
†
q , i.e., by putting �0 = ω12 everywhere,

the depolarization shift in the resonance frequency is lost, but
the value of �0 in Eqs. (28) and (B4) remains unaltered. This
is related to the fact that the term �0 gives an estimate of the
coupling strength with the external field, independently of the
microscopic dynamics of the two-dimensional electron gas.
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