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Perfect spin polarization in T-shaped double quantum dots due to the spin-dependent Fano effect
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We study the spin-resolved transport properties of T-shaped double quantum dots coupled to ferromagnetic
leads. Using the numerical renormalization group method, we calculate the linear conductance and the spin
polarization of the current for various model parameters and at different temperatures. We show that an effective
exchange field due to the presence of ferromagnets results in different conditions for Fano destructive interference
in each spin channel. This spin dependence of the Fano effect leads to perfect spin polarization, the sign of which
can be changed by tuning the dots’ levels. Large spin polarization occurs due to Coulomb correlations in the dot,
which is not directly coupled to the leads, while finite correlations in the directly coupled dot can further enhance
this effect. Moreover, we complement accurate numerical results with a simple qualitative explanation based
on analytical expressions for the zero-temperature conductance. The proposed device provides a prospective
example of an electrically controlled, fully spin-polarized current source, which operates without an external
magnetic field.
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I. INTRODUCTION

Efficient generation and control of spin currents at the
nanoscale is one of the main goals of spin nanoelectronics
[1–5]. This is because highly spin-polarized currents can
be used to address and detect the spin state of a magnetic
nanostructure, such as, e.g., a magnetic quantum dot or a
single molecular magnet [6–8], which is of vital importance
for applications in information storage technologies. One of
the easiest ways to generate high spin polarization P of the
current is to apply an external magnetic field to the system.
If one considers then a singly occupied quantum dot, the
current becomes fully spin-polarized provided the transport
voltage is smaller than the corresponding Zeeman splitting
of the dot’s level. However, this method has two drawbacks:
First, the magnetic field needs to be strong enough to ensure
that P ≈ 1 in a sufficiently large range of bias voltage, which,
however, can lead to undesired effects in the nanosystem, on
which the spin-polarized current is to act. Second, changing the
sign of P requires a change in the direction of the magnetic
field, which in typical experiments cannot be realized at a
rate comparable to operations one would like to perform in a
competitive spintronic device.

It has recently been shown that these disadvantages can
be overcome by using a quantum dot or a molecule strongly
coupled to ferromagnetic leads [9]. The presence of ferro-
magnets results then in the occurrence of an exchange field,
which leads to the splitting of the dot level similarly to an
external magnetic field [10–14]. Now one obtains a splitting,
whose sign and magnitude can be controlled by a gate voltage,
without any need to apply an external magnetic field. This
splitting can lead to an enhancement of the spin polarization.
However, to reach full spin polarization, the system needs to
be highly left-right asymmetric [9,15].

In this paper, we propose a device with which one can
induce perfect spin polarization without an external magnetic
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FIG. 1. (Color online) The spin-resolved linear conductance, Gσ ,
the total conductance, G, and the spin polarization, P , obtained by
the numerical renormalization group method, as a function of the first
dot level ε1 for typical DQD parameters indicated in the figure. The
spin-dependent Fano effect leads to perfect spin polarization, the sign
of which can be controlled by tuning the dot level position. See Sec. II
for details of the model and method.

field that can be controlled by purely electrical means. The
device does not need to be asymmetric either. It consists
of a double quantum dot (DQD) in a T-shaped geometry
coupled to external ferromagnetic leads. In this geometry,
only one of the dots is coupled directly to the leads, while
the second dot is coupled indirectly, through the first dot;
see the inset of Fig. 1. In T-shaped DQDs, the interference
of different conduction paths can lead to Fano antiresonance
in the linear conductance [16–18]. In addition, the exchange
field induced by the coupling to ferromagnets gives rise to
the spin splitting of the dots’ levels. We will show that this
leads to different conditions for destructive Fano interference
in each spin channel. As a result, there is a range of DQD
level positions where the difference between the conductance
in each spin channel is as large as a few orders of magnitude,
and the spin polarization becomes essentially perfect. This
is illustrated in Fig. 1, which shows the linear conductance
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and the spin polarization as a function of the first dot level
position for typical DQD parameters indicated in the figure,
calculated by using the numerical renormalization group
(NRG) method [19]. The mechanism leading to |P| → 1 is
clearly visible: the spin-resolved conductance Gσ displays
Fano antiresonance at different ε1. This gives rise to full spin
polarization, which changes sign just at the level position
where G is minimum. Importantly, the whole operation is
performed without any external magnetic field and can be
controlled by only electrical means.

Recently, the transport properties of T-shaped DQDs cou-
pled to nonmagnetic leads have been analyzed by Dias da Silva
et al. [20]. They focused on the role of an external magnetic
field and demonstrated that such a system may work as a spin
valve, producing spin polarization of the current P ≈ ±1 in
an appropriately adjusted field. This effect also stems from
the spin-dependent Fano effect, in which the positions of
Fano dips in respective spin channels are shifted with respect
to each other. Similar spin filtering effects have also been
studied in transport through a quantum dot side-coupled to
a quantum wire [21–23]. In our device with ferromagnetic
contacts, we show that the same is possible without applying
any magnetic field. The spin polarization is then controlled by
tuning the DQD’s levels, which is, no doubt, preferable from an
application point of view. We note that the transport properties
of T-shaped DQDs with ferromagnetic contacts have already
been addressed in a few papers [24–27]. These considerations
were, however, restricted to a rather weak-coupling regime,
and the effects of the exchange field were not properly taken
into account. Our analysis is performed with the aid of NRG,
which allows us to study the effects related to a ferromagnetic-
contact-induced exchange field in a very accurate way.

This paper has the following structure: Having introduced
the model and method in Sec. II, in Sec. III we discuss
the behavior of the spectral function determining the linear
conductance, and we explain the physical reasons for the
occurrence of enhanced spin polarization in the system.
We also provide approximate analytical formulas for the
exchange field, which agree well with the NRG results. Finally,
we present the results of NRG calculations for the linear
conductance and the spin polarization in Sec. IV, and we
conclude the paper in Sec. V.

II. MODEL AND METHOD

We consider a double quantum dot forming a T-shaped
configuration coupled to ferromagnetic leads whose magneti-
zations are oriented in parallel; see the inset of Fig. 1. The first
dot is coupled directly to the left (right) lead with coupling
strength �Lσ (�Rσ ), while the second dot is coupled to the first
one through the hopping parameter t . The Hamiltonian of the
system has the form

H = HF + HT + HDQD, (1)

where

HF =
∑

r=L,R

∑
kσ

εrkσ c
†
rkσ crkσ (2)

is the Hamiltonian of ferromagnetic leads treated in a nonin-
teracting particle approximation, the tunneling Hamiltonian is

given by

HT =
∑

r=L,R

∑
kσ

Vrkσ (d†
1σ crkσ + c

†
rkσ d1σ ), (3)

and the DQD Hamiltonian reads

HDQD =
∑
jσ

εjσ d
†
jσ djσ +

∑
j

Ujd
†
j↑dj↑d

†
j↓dj↓

+ t
∑

σ

(d†
1σ d2σ + d

†
2σ d1σ ). (4)

Here, djσ annihilates an electron with spin σ on dot j , crkσ

annihilates an electron with spin σ and momentum k in lead
r , εjσ and εrkσ denote the energies of respective electrons,
Uj is the Coulomb interaction on dot j , and Vrkσ denotes
the corresponding tunnel matrix element. The spin-dependent
coupling to the contact r is given by �rσ = ∑

k πρrσ |Vrkσ |2,
where ρrσ is the spin-dependent, normalized density of states
of lead r . Here, we model the coupling by �rσ = (1 + σp)�r ,
where p is the spin polarization of the ferromagnets and �r =
(�r↑ + �r↓)/2. In the following, we assume �L = �R ≡ �/2.
We also assume that the Coulomb correlations between the
two dots are very weak and can be neglected. We use the band
half-width as the energy unit, D ≡ 1.

The linear-response conductance in spin channel σ can be
found from [28]

Gσ = e2

h
�σ

∫
dω

∂f (ω)

∂ω
Im 〈〈d1σ |d†

1σ 〉〉ret

ω
, (5)

where �σ = �Lσ + �Rσ , f (ω) is the Fermi-Dirac distribution

function, and 〈〈d1σ |d†
1σ 〉〉ret

ω
denotes the Fourier transform of the

retarded Green’s function of the first quantum dot.
To obtain reliable results of high accuracy for our strongly

interacting system, we employ the numerical renormalization
group method [19]. By using the complete eigenbasis of
the NRG Hamiltonian, we construct the thermal density
matrix of the system [29,30], which allows us to calculate
various correlation functions at arbitrary temperatures. Here, to
perform calculations, we use the Budapest Flexible DM-NRG
code [31,32].

The main quantity in which we are interested, apart from
linear conductance, is the spin polarization, which is defined
as

P ≡ G↑ − G↓
G↑ + G↓

. (6)

At zero temperature, formula (5) simplifies considerably to

Gσ = (e2/h)π�σA1σ (0), where A1σ (ω)=−Im 〈〈d1σ |d†
1σ 〉〉ret

ω
/

π denotes the spin-resolved spectral function of the first dot.
Then, the spin polarization can be expressed in terms of the
normalized spectral function, A1σ (ω) = π�σA1σ (ω), taken
at ω = 0, as P = [A1↑(0) − A1↓(0)]/A1(0), with A1(ω) =∑

σ A1σ (ω).

III. ORIGIN OF ENHANCED SPIN POLARIZATION

Since the linear conductance and the spin polarization are
expressed in terms of the first dot’s spectral function, we will
focus on its behavior. To understand the origin of large spin
polarization in the considered system, we first consider the case
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of noninteracting T-shaped DQD and then study the effect of
Coulomb correlations.

A. Noninteracting case

For U1 = U2 = 0, with the aid of the equation of motion,
the spectral function of the first dot can be expressed as

A1σ (ω) = 1

π

�σ

[ω − ε1σ − t2/(ω − ε2σ )]2 + �2
σ

. (7)

Then, the spin-resolved linear conductance at zero temperature
is given by

Gσ = e2

h

�2
σ

(ε1σ − t2/ε2σ )2 + �2
σ

. (8)

Let us now consider some limiting cases. For nonmagnetic
leads, p = 0, and in the absence of magnetic field, εjσ = εj ,
the linear conductance at T = 0 is given by

G = 2e2

h

�2

(ε1 − t2/ε2)2 + �2
, (9)

which for ε1 = 0 yields

G = 2e2

h

E2

1 + E2
, (10)

with E = ε2/�2 and �2 = t2/�. This is the well-known Fano
formula describing symmetric antiresonance as a function of
energy E [16,33]. For ε1 = 0, the half-width of the minimum
in G is given by t2/�. When ε1 	= 0, the antiresonance is still
located at ε2 = 0, however it becomes asymmetric [18].

In the presence of an external magnetic field B, the position
of the Fano antiresonance depends on spin, see Eq. (8),
since it occurs at ε2σ = ε2 + σB/2 = 0, where gμB ≡ 1.
Consequently, while for one spin direction the conductance
is finite, for the other one it can be fully suppressed, leading
to |P| = 1. Assuming p = 0 and ε1σ = ε2σ = ε + σB/2, the
spin polarization is then given by

P = εB[t4 − (ε2 − B2/4)2]

(ε2 + B2/4)t4 + (ε2 − B2/4)2(ε2 + B2/4 + �2 − 2t2)
.

(11)

For ε = B/2, one has P = 1, while for ε = −B/2, P = −1.
Thus, for finite B, the spin polarization can be enhanced to its
maximum value, and its sign can be changed, depending on the
DQD’s levels. This effect is completely destroyed in B = 0,
unless p 	= 0. In the case of ferromagnetic leads and in the
absence of magnetic field (henceforth we assume εjσ ≡ εj ),
for the spin polarization of the linear conductance, one finds

P = 2p

1 + p2

(ε1 − t2/ε2)2

(ε1 − t2/ε2)2 + (1 − p2)2�2/(1 + p2)
. (12)

From this formula, it follows that P = 0 for ε1ε2 = t2 and
P = 2p2/(1 + p2) for ε2 = 0, irrespective of ε1. Thus, the
spin polarization is finite, 0 � P � 2p/(1 + p2), but it does
not change sign and is always smaller than unity for p < 1.

The spin-resolved conductance and the spin polarization
for noninteracting dots are plotted in Fig. 2. In the absence of
magnetic field, for ε1 = 0, the linear conductance in each spin
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FIG. 2. (Color online) The spin-resolved linear conductance
(first row) and the spin polarization (second row) as a function of
ε2 for two values of ε1, as indicated, and for t = 2� in the case of
noninteracting DQDs. The left column corresponds to p = 0.4 and
B = 0, while the right column to p = 0 and B = �.

channel displays a symmetric antiresonance as a function of ε2

located at ε2 = 0, which becomes asymmetric once ε1 	= 0; see
Fig. 2(a). The spin polarization is also asymmetric for ε1 	= 0.
Moreover, P is positive in the whole range of ε2 and becomes
fully suppressed for ε2/� = t2/(ε1�) = 4/3; see Fig. 2(b).
At this point, the linear conductance reaches its maximum
value, irrespective of spin channel σ . In the case of a finite
magnetic field and nonmagnetic leads, the Fano antiresonance
is asymmetric in each spin channel even for ε1 = 0 [Fig. 2(c)],
and the minimum in Gσ occurs at different ε2. This leads to
full spin polarization P , which can change sign in a certain
range of ε2; see Fig. 2(d). Figure 2 clearly demonstrates the
difference between the two cases discussed above. In the
case of noninteracting dots, spin-dependent tunneling due to
�↑ 	= �↓ (in the absence of B) does not lead to a spectacular
dependence of P on the DQD’s levels.

B. Interacting case

The spin polarization of the T-shaped DQD with ferromag-
netic contacts for B = 0 can be enhanced considerably when
one includes the interactions in the dots. For finite U1 and U2,
the Green’s function of the first dot is given by

〈〈d1σ |d†
1σ 〉〉−1

ω
= ω − ε1 − 	1σ (ω) − t2

ω − ε2 − 	2σ (ω)
+i�σ ,

(13)

where the self-energy 	jσ is defined as

	jσ (ω) = Uj

〈〈djσ njσ̄ |d†
1σ 〉〉

ω

〈〈djσ |d†
1σ 〉〉

ω

(σ̄ ≡ −σ ). (14)

One can now use the equation-of-motion technique to find
the higher-order Green’s functions and solve the problem by
using an appropriate decoupling scheme. This is, however,
not the goal of our paper, since we calculate the Green’s
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functions by NRG, which enables us to obtain very accurate
results. Nevertheless, to get some intuitive understanding of
what happens in correlated T-shaped DQDs, let us consider
the zero-temperature conductance (note that for w = 0, the
self-energy is real),

Gσ = e2

h

�2
σ

{ε1 + 	1σ (0) − t2/[ε2 + 	2σ (0)]}2 + �2
σ

. (15)

Then, we employ the simplest mean-field approximation to
the self-energies, 	jσ ≈ Uj 〈njσ̄ 〉, which allows us to extract a
few interesting conclusions from Eq. (15). The most important
one is that when ε2 + U2〈n2σ̄ 〉 = 0, the conductance in spin
channel σ becomes suppressed due to the Fano destructive
interference. If 〈n2↑〉 	= 〈n2↓〉, the conditions for conductance
suppression are different in each spin channel. The spin
imbalance in dot-level occupation can be induced by the
presence of an exchange field, as described in the following
subsection.

The difference in the positions of Fano antiresonances for
different spin channels is illustrated in Fig. 1. Indeed, G↑ has
a minimum for different ε1 compared to G↓, and the resulting
P reaches ±1. Moreover, it can be observed that P changes
sign at the level position for which the total conductance is
minimum.

The second significant conclusion, which can be drawn
from Eq. (15), is that it is sufficient to have different
occupations for given spin only in the second dot. This implies
that the first dot does not need to be interacting. Finally, the
enhanced spin polarization occurs when the second dot is in the
local moment regime, −U2 < ε2 < 0, while no such restriction
is imposed on the first dot.

C. Exchange field

The coupling to external leads gives rise to renormalization
of the DQD’s levels. Since in the case of ferromagnetic
leads the coupling �σ depends on spin direction, the level
renormalization is also spin-dependent. This results in spin-
splitting of the levels, 
ε

(j )
exch = δεj↑ − δεj↓, where 
ε

(j )
exch is

the exchange field on dot j and δεjσ denotes the respective
spin-dependent level renormalization.

Contrary to the Zeeman splitting caused by an external
magnetic field, the sign and magnitude of the splitting induced
by ferromagnetic leads can be tuned by changing the position
of the quantum dot levels [10,34]. To understand the effect of
an exchange field on transport through T-shaped DQDs, we
will consider some limiting situations. In the case of t = 0,
the exchange field on the first dot can be found within the
perturbation theory, which in the second order gives [10,34]


ε
(1)
exch = 2p�

π
log

∣∣∣∣ ε1

ε1 + U1

∣∣∣∣. (16)

Note that 
ε
(1)
exch clearly results from correlations and vanishes

for U1 = 0. Moreover, it also vanishes at the particle-hole
symmetry point, δ1 = 0, with δj = εj + Uj/2, denoting the
detuning of dot j from the symmetry point.

Now, let us see what happens in the second dot. Since,
as follows from previous discussion, to obtain large spin
polarization it is sufficient to have interactions only in the
second dot, we now assume U1 = 0. The hybridization of the

second dot depends on the local density of states of the first
dot, �2σ (ω) = πA0

1σ (ω)t2, where A0
1σ (ω) denotes the spectral

function of the first dot in the case of t = 0,

A0
1σ (ω) = 1

π

�σ

(ω − ε1)2 + �2
σ

. (17)

In this way, the model becomes equivalent to the Anderson
model with a Lorentzian density of states. Since the leads
are ferromagnetic, A0

1σ (ω) depends on spin through �σ ,
and so does �2σ (ω), which for low energies (ω = 0) and
ε1 = 0 becomes equal to t2/�σ . Note that the dependence
of couplings on spin is opposite in each dot: while �↑ > �↓,
for the second dot the spin-down level is more strongly coupled
than the spin-up one, �2↑(0) < �2↓(0). In the second order of
perturbation theory, renormalization of the second dot’s level
is given by

δε2σ = 1

π

∫
dω

[
�2σ (ω)f −(ω)

ε2 − ω
+ �2σ̄ (ω)f (ω)

ω − ε2 − U2

]
, (18)

where f −(ω) = 1 − f (ω). When assuming the limit of zero
temperature, taking ε1 = 0, and approximating the hybridiza-
tion by �2σ (ω) = t2/�σ , for the exchange field 
ε

(2)
exch one

finds


ε
(2)
exch = − t2

π�

2p

1 − p2
log

∣∣∣∣ ε2

ε2 + U2

∣∣∣∣. (19)

Although this formula is very simplified, it still allows us to
correctly extract the intuitive behavior of the system. First
of all, one can see that the presence of ferromagnets is also
revealed in the second dot. It leads to the exchange field, which
has a similar dependence on the level position, in the way that
it vanishes for δ2 = 0, but it has a different magnitude and
sign (for given detuning) compared to 
ε

(1)
exch; cf. Eq. (16).

Thus, if one would like to mimic the effect of an external
magnetic field by the exchange field, the detuning in each dot
should have an opposite sign. However, it is worth stressing
that the exchange field offers much more flexibility, since it
allows the spin-splitting to be tuned in each dot separately
by gate voltages. For completeness, we also present the zero-
temperature formula for the exchange field 
ε

(2)
exch in the case

of ε1 	= 0 and for energy-dependent hybridization �2σ (ω). It
is given by


ε
(2)
exch =

∑
σ

σ
t2

2
[L�σ

(U2 − 
) − L�σ
(
)]

−
∑

σ

σ
t2

π
arctan

(
ε1

�σ

)
[L�σ

(U2 − 
) + L�σ
(
)]

−
∑

σ

σ
t2

2π
LU2−
(�σ ) log

(ε2 + U2)2

ε2
1 + �2

σ

+
∑

σ

σ
t2

2π
L
(�σ ) log

ε2
2

ε2
1 + �2

σ

, (20)

where Ly(x) = x/(x2 + y2) and 
 = ε1 − ε2.
We note that in the case of a noninteracting first dot, the

model corresponds to the single-impurity Anderson model
with nonconstant density of states. At low temperatures,
one should then expect a single-stage Kondo effect to occur
[20,35–40]. However, due to the presence of the exchange
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FIG. 3. (Color online) The normalized spectral function of the
second dot A2(ω) plotted as a function of energy ω and position
of the second dot level ε2 for (a) ε1 = 0, (b) ε1 = −0.05�, (c) ε1 =
−0.1�, (d) ε1 = −0.15�, (e) ε1 = −0.2�, and (f) ε1 = −0.25�. The
dashed lines present the results obtained from analytical formula (20).
The parameters are U1 = 0, U2 = U = 0.5, � = U/5, t = �/2, and
p = 0.4.

field, the Kondo resonance becomes suppressed, which hap-
pens once |
ε

(2)
exch| � TK , where TK is the Kondo temperature.

Thus, for T-shaped DQDs with ferromagnetic contacts, the
Kondo effect is generally suppressed. In Fig. 3, we show the
NRG results on the normalized spectral function of the second
quantum dot, A2(ω) = ∑

σ πt2A2σ (ω)/�σ , where A2σ (ω)
denotes the spectral function of the second dot. For ε1 = 0,
at the particle-hole symmetry point, δ2 = 0, the effect of
the exchange field is negligible and the spectral function
exhibits Kondo resonance [35–37]. The Kondo temperature,
defined as the half-width at half-maximum of the Kondo peak
in the spectral function, for parameters assumed in Fig. 3
and for ε1 = 0 and δ2 = 0, is equal to TK ≈ 0.005�. When
δ2 	= 0 and |
ε

(2)
exch| � TK , the exchange field leads to the spin

splitting of the Kondo resonance; see Fig. 3(a). We note that
such a splitting of the Kondo effect due to the presence of
ferromagnets has already been observed experimentally in
single quantum dots [11–13]. When ε1 	= 0, the splitting of
the Kondo resonance becomes asymmetric around δ2 = 0, and
the point where the exchange field is suppressed moves toward
the resonance at ε2 = 0 until it actually merges with the
resonant peak. One observes then a spin splitting whose
magnitude can be tuned, but the sign does not change; see
Fig. 3. In the case of |
ε

(2)
exch| � TK , the Kondo peak is split

and the spectral function shows only side resonances, which
occur at ω = ±|
ε

(2)
exch| [13]. The dashed lines in Fig. 3 show

the positions of these resonances based on Eq. (20). As can be
seen, they match nicely with the numerical data for all values
of ε1 presented in the figure.

As follows from the above discussion, the effective ex-
change field induced by the presence of ferromagnets can
be conveniently tuned by sweeping the gate voltages and
adjusting the positions of the DQD’s levels. This is of
importance from an experimental point of view. We also note
that in general the splitting of the Kondo peak can also occur in
the case of relatively large hopping between the dots [38–40].
However, for parameters assumed in Fig. 3, such splitting is
absent [39]. The observed splitting is exclusively due to the
presence of the exchange field.

IV. NUMERICAL RESULTS

In the following, we present and discuss the numerical
results on the spin-resolved linear conductance Gσ and the spin
polarization P . Previous discussion showed that for the full
spin polarization to occur, it is necessary to have interactions
in the second dot, while the first dot can be noninteracting.
Therefore, we first study the case of U1 = 0 and finite U2,
and then we also include the interactions in the first dot and
analyze how they influence the linear conductance and the
spin polarization of the system. Finally, we discuss the effect
of finite temperature on transport properties.

We also note that to observe an enhanced spin polarization
and tune its sign, one can fix the level of one of the dots and
tune the other one. Since it is crucial to have an exchange
field in the second dot, we thus fix the level of the second
dot, such that δ2 	= 0, and tune the position of the first dot.
(This is what is presented in Fig. 1 for a general interacting
case.) Nevertheless, we also present the density plot of the spin
polarization as a function of both ε1 and ε2.

A. The case of noninteracting first dot

The total linear conductance and spin polarization in the
case of U1 = 0 and U2 = U = 0.5 are shown in Fig. 4 for two
values of the coupling � and for different hoppings t between
the dots. The position of the second dot level is ε2 = −U/3, to
assure that the exchange field effects are present in the system.
Since the strength of the exchange field is proportional to
�2 = t2/�, cf. Eq. (19), by increasing t one also increases
the magnitude of the exchange-field-induced spin splitting
of the second dot’s level. As a consequence, the conditions
for destructive interference change in each spin channel with
tuning t , and the dependence on t is different for each coupling
�; see Fig. 4.

First of all, one can see that by increasing t , the total
conductance decreases. For large t [see, e.g., the case of
t = 1.5� in Fig. 4(a) or t = � in Fig. 4(b)], the conductance is
three or four orders of magnitude smaller than the conductance
quantum. Although these values are rather small, they are still
measurable experimentally. In fact, similar values of G occur
in quantum dots in the cotunneling regime [41]. For ε1, where
G takes its minimum value, the spin polarization changes sign
and becomes negative. This sign change becomes enhanced
upon increasing the exchange field (increasing t), and for large
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FIG. 4. (Color online) The linear conductance (first row) and the
spin polarization (second row) as a function of ε1 for �/U = 0.1
(left column) and �/U = 0.2 (right column) calculated for different
values of the hopping t between the dots, as indicated. The parameters
are U1 = 0, U2 = U = 0.5, ε2 = −U/3, p = 0.4, and T = 0.

t , the spin polarization becomes perfect and changes sign from
+1 to −1. Thus, for given t and nonzero detuning δ2 	= 0, the
spin polarization can be tuned by only electrical means, namely
by shifting the position of the first dot level with a gate voltage.
The role of the exchange field is crucial here, which can be
deduced from the fact that the effect disappears for δ2 = 0
when 
ε

(2)
exch = 0; cf. Eq. (19).

The minimum in Gσ occurs for such ε1 that 	2σ (ω =
0) = −ε2; cf. Eq. (15). This is explicitly illustrated in Fig. 5,
which shows the spin-dependent conductance, Gσ , and self-
energy for ω = 0, 	2σ (ω = 0), and a function of ε1 for two
different hoppings: t = 0.7� (left column) and t = � (right
column). Since in calculations we assumed ε2/U2 = −1/3,
the minimum in Gσ occurs precisely at the point where
	2σ (ω = 0) = 1/3; see Fig. 5.

As mentioned in the preceding section, for U1 = 0 the
model is equivalent to the single-impurity Anderson model
with a Lorentzian density of states. Then, the Friedel sum
rule [42] allows one to relate the conductance through the
system to the spin-resolved occupation of the second dot. For
t 
 �, it can be written as Gσ = (e2/h) cos2(π〈n2σ 〉) [23].
Thus, the conductance in spin channel σ should be suppressed
when 〈n2σ 〉 = 1/2. However, for stronger hoppings, t ∼ �,
the condition 〈n2σ 〉 = 1/2 is not necessarily fulfilled and the
application of the Friedel sum rule becomes more complicated.
The spin-resolved occupations of the second dot as a function
of ε1 are shown in Figs. 5(c) and 5(d). The critical occupation
for which the conductance becomes minimum is still of
the order of 1/2, but its precise value is different. On the
other hand, for larger values of t , the phase shift, which
determines the position of the conductance minimum, is given
by a rather complex expression even in the particle-hole
symmetry point [20]. In the case of significant particle-hole
symmetry breaking, as considered in this paper (note that
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(c) n2↑
n2↓

Σ2↑(0)/U2

Σ2↓(0)/U2

(d)

FIG. 5. (Color online) (a) and (b) The spin-resolved and total
conductances, and (c) and (d) the spin-dependent occupations
together with the self-energies for ω = 0 of the side-coupled quantum
dot as a function of ε1 calculated by NRG for �/U = 0.2, t = 0.7�

(left column), and t = � (right column). The vertical dotted lines
mark the positions where the minima in spin-dependent conductance
occur. The horizontal lines correspond to −ε2/U2 = 1/3 and 1/2.
The minimum of Gσ occurs at the crossing of 	2σ (0)/U2 with 1/3;
cf. Eq. (15). The Friedel sum rule predicts the minimum to occur
when 〈n2σ 〉 = 1/2. The other parameters are the same as in Fig. 4.

this is a necessary condition to have the exchange field
present in the system), it is very difficult to utilize the Friedel
sum rule; nevertheless, the condition 	2σ (ω = 0) = −ε2 is
always correct as long as T = 0. Finally, one can notice
that the simplest mean-field approximation used in Sec. III,
	2σ = U2〈n2σ̄ 〉, leading to the condition 〈n2σ̄ 〉 = −ε2/U2 for
the minimum in Gσ , is also violated; see Figs. 5(c) and 5(d).
However, the qualitative analysis of the system behavior based
on this approximation is still sound.

The explicit dependence of the linear conductance and spin
polarization on both ε1 and t is shown in Fig. 6 for �/U = 0.2.
The conductance is plotted on a logarithmic scale to indicate
the position of the conductance minimum due to the Fano
effect. Clearly, the minimum occurs at different level positions
in each spin channel; see Figs. 6(c) and 6(d). Moreover, the
spin-up conductance is generally much larger than the spin-
down conductance, except for the level position where G↑ is
suppressed by the Fano effect. Consequently, for this level
position, the total conductance has a minimum [Fig. 6(b)],
while the spin polarization changes sign and becomesP ≈ −1,
otherwise P ≈ 1; see Fig. 6(a). Note also that the position of
the minimum in Gσ occurs at different ε1 for different t , which
results directly from the dependence of the exchange field
on t .

B. Fully interacting case

Let us now include the interactions in the first dot, U1 	= 0.
The linear conductance and spin polarization as a function of
the first dot detuning δ1 for different correlations U1 are shown
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FIG. 6. (Color online) The spin polarization P (a) and the log-
arithm of the linear conductance G (b), G↑ (c), and G↓ (d) as a
function of ε1 and t calculated for parameters the same as in Fig. 4
with �/U = 0.2.

in Fig. 7. This figure is calculated for U2 = 0.5, � = t = U2/5,
and ε2 = −U2/3. For finite U1 and δ1 	= 0, the exchange field
also develops in the first dot, cf. Eq. (16). We note that treating
the exchange field in each dot separately is mainly to increase
the intuitive understanding of the physics. However, we need to
stress that for larger hoppings, t � �, transport occurs through
molecular many-body states of the DQD, and formulas (19)
and (20) based on perturbation theory in t present only very
crude estimations.
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FIG. 7. (Color online) The linear conductance (a) and the spin
polarization (b) as a function of the first dot detuning δ1 calculated for
different Coulomb correlations in the first dot, as indicated. The other
parameters are U2 = 0.5, � = t = U2/5, ε2 = −U2/3, p = 0.4, and
T = 0.

By increasing U1, the exchange field effects become
generally enhanced. It can be seen that the minimum in G

and P as a function of δ1 changes position with U1; see Fig. 7.
Moreover, the width of both the conductance minimum and the
spin-polarization sign change also increase with increasing
U1. For example, when U1 = U2, both G and P exhibit
an approximately symmetric minimum as a function of δ1.
Interestingly, for U1 = U2/5, the effect of the spin-polarization
sign change is weakened, while the conductance suppression
is then very large. For these parameters, the conditions for the
Fano effect in each spin channel become roughly equal, and the
minimum in Gσ occurs at comparable δ1 in each spin channel.
We also note that for positive detuning, δ1 > 0 (notice also
that δ2 > 0 in Fig. 7), the spin polarization is approximately
equal to 1 and no sign change occurs. This can be understood
by realizing that the exchange field mimics the effect of an
external magnetic field only when δ1/|δ1| = −δ2/|δ2|, i.e.,
when the detuning in each dot has different sign; cf. Eqs. (16)
and (19). Consequently, one should expect that the sign change
of spin polarization will occur when δ1 ≶ 0 and δ2 ≷ 0. This
is indeed what we observe in the fully interacting case, as can
be seen in Fig. 8 calculated for U1 = U2, which shows the spin
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FIG. 8. (Color online) The spin polarization as a function of the
DQD levels ε1 and ε2 calculated for U1 = U2 = U = 0.5. The other
parameters are the same as in Fig. 7.

polarization as a function of the double quantum dot levels ε1

and ε2.
Figure 8 clearly demonstrates all the features expected on

the basis of analytical formulas presented in Sec. III. The spin
polarization is very large (approximately equal to 1) and may
change sign (reaching P = −1) as a function of either ε1 or ε2.
However, this sign change occurs when the detunings δ1 and
δ2 have opposite signs. Moreover, this interesting behavior of
the spin polarization occurs when the second dot is in the local
moment regime, −U < ε2 < 0, irrespective of the first dot’s
occupancy. In other words, for any ε2 such that −U < ε2 < 0
and ε2 	= −U2/2, there exists such ε1, that the spin polarization
changes sign and becomes −1. This sign change occurs at
the level position where the linear conductance exhibits a
minimum. The magnitude of the conductance is then of the
order of that in the cotunneling regime.

C. Finite temperature

Finally, we consider the effect of finite temperature on
the operation of our spin-polarized current source. The δ1

dependence of the linear conductance and the spin polarization
calculated for different temperatures T is shown in Fig. 9 for
the fully interacting case with U1 = U2 = U . This figure was
calculated for ε2 = −U2/3, which implies that the exchange
field is much larger than the Kondo temperature, and the Kondo
effect is suppressed. Thus, there is no universal energy scale.
Because the coupling � is directly measurable and determines
another important energy scale, namely the exchange field,
in Fig. 9 we express the temperature in units of � = U/5.
One can see that by increasing T , the conductance suppression
becomes weakened, since thermal fluctuations generally sup-
press the Fano effect. Consequently, the absolute value of the
spin polarization is also decreased. Moreover, the effect of the
sign change of P , directly associated with the spin-dependent
Fano effect, also becomes smeared out by finite temperature.
As can be seen in Fig. 9, the desired device operation persists
only at low temperatures, while already at T = �/10 the
conductance does not show any minimum due to interference
effects and the spin polarization is almost independent of δ1,
with P ≈ p.
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FIG. 9. (Color online) The linear conductance (a) and the spin
polarization (b) as a function of δ1 calculated for different temper-
atures T and for U1 = U2 = U = 0.5. The inset in (b) presents the
temperature dependence of P for δ1 = 0 and δ1/� = −0.48. The
other parameters are the same as in Fig. 7.

The explicit dependence of the spin polarization for two
representative level detunings is shown in the inset of Fig. 9(b).
For δ = −0.48�, P = −1 for T → 0, however once T >

�/1000, the absolute value of spin polarization starts slowly
decreasing. On the other hand, for δ = 0, the spin polarization
is equal to unity at low temperatures and decreases once
T > �/100. In fact, the relevant energy scale is given by
the magnitude of the exchange field. For realistic parameters,
with � ∼ meV, the device should operate at clearly cryogenic
temperatures. However, for molecules, where both U and
� can be larger, the relevant temperature range could be
increased.

V. CONCLUSIONS

In this paper, we have considered transport properties
of T-shaped double quantum dots coupled to ferromagnetic
leads. The calculations have been performed with the aid of
the numerical renormalization group method, which allowed
us to accurately determine the spectral functions, the linear
conductance, and the spin polarization of the current. Transport
properties of the considered system are determined by the
Fano effect, which reveals itself as an antiresonance in linear
conductance when changing the DQD levels. On the other
hand, the presence of ferromagnets results in an exchange
field that splits the levels in the dots. This results in the
spin dependence of the Fano effect—the conditions for Fano
destructive interference are different in each spin channel.
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Because the magnitude and sign of the exchange field can
be controlled by changing the DQD’s levels, one can tune
the conductance suppression in each spin channel. As a
consequence, there is a range of parameters where one of
the conductances is much larger than the other one and the
device exhibits perfect spin polarization. Moreover, because
the sign of the spin polarization can be changed by tuning the
levels, the operation of the device can be controlled by purely
electrical means, namely by appropriately sweeping the gate
voltages. Our device thus provides a prospective example of
an electrically controlled, fully spin-polarized current source,
which operates without the need to apply an external magnetic
field.

From analytical analysis, we have found that to get perfect
spin polarization, it is necessary to have finite Coulomb
correlations in the dot, which is not directly coupled to the
leads (the second dot). Moreover, this dot should be in the
local moment regime, while no such restriction is imposed
on the first dot, which can be noninteracting. These findings
have been confirmed by detailed NRG calculations, which
also revealed that finite Coulomb correlations in the first dot
can further increase the range of parameters where the sign
change of spin polarization occurs. Studying the conductance
at finite temperatures, we have shown that thermal fluctuations

smear out the effects of interest, which persist only at low
temperatures.

Finally, we note that T-shaped DQDs can exhibit other
interesting effects, such as, e.g., the two-stage Kondo ef-
fect [43–46]. In this effect, with lowering temperature, at
the first stage the spin in the first dot becomes screened by
conduction electrons giving rise to maximum conductance,
and then at lower temperatures, the second stage of screening
occurs, leading to conductance suppression. In fact, the
conductance suppression due to interference effects, which
occurs in T-shaped DQDs, can also be explained by invoking
the two-stage Kondo effect [17,18]. However, a detailed
analysis of the two-stage Kondo effect in the presence of
itinerant-electron ferromagnetism goes beyond the scope of
the present paper and will be considered elsewhere [47].
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[32] A. I. Tóth, C. P. Moca, Ö. Legeza, and G. Zaránd, Phys. Rev. B
78, 245109 (2008).

[33] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.
Phys. 82, 2257 (2010).

115308-9

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1088/0953-8984/19/16/165222
http://dx.doi.org/10.1088/0953-8984/19/16/165222
http://dx.doi.org/10.1088/0953-8984/19/16/165222
http://dx.doi.org/10.1088/0953-8984/19/16/165222
http://dx.doi.org/10.1088/0953-8984/20/42/423202
http://dx.doi.org/10.1088/0953-8984/20/42/423202
http://dx.doi.org/10.1088/0953-8984/20/42/423202
http://dx.doi.org/10.1088/0953-8984/20/42/423202
http://dx.doi.org/10.1103/PhysRevB.73.235304
http://dx.doi.org/10.1103/PhysRevB.73.235304
http://dx.doi.org/10.1103/PhysRevB.73.235304
http://dx.doi.org/10.1103/PhysRevB.73.235304
http://dx.doi.org/10.1103/PhysRevB.75.134425
http://dx.doi.org/10.1103/PhysRevB.75.134425
http://dx.doi.org/10.1103/PhysRevB.75.134425
http://dx.doi.org/10.1103/PhysRevB.75.134425
http://dx.doi.org/10.1038/nphys1616
http://dx.doi.org/10.1038/nphys1616
http://dx.doi.org/10.1038/nphys1616
http://dx.doi.org/10.1038/nphys1616
http://dx.doi.org/10.1039/c2nr30399j
http://dx.doi.org/10.1039/c2nr30399j
http://dx.doi.org/10.1039/c2nr30399j
http://dx.doi.org/10.1039/c2nr30399j
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1103/PhysRevLett.107.176808
http://dx.doi.org/10.1103/PhysRevLett.107.176808
http://dx.doi.org/10.1103/PhysRevLett.107.176808
http://dx.doi.org/10.1103/PhysRevLett.107.176808
http://dx.doi.org/10.1103/PhysRevB.83.113306
http://dx.doi.org/10.1103/PhysRevB.83.113306
http://dx.doi.org/10.1103/PhysRevB.83.113306
http://dx.doi.org/10.1103/PhysRevB.83.113306
http://dx.doi.org/10.1088/0953-8984/25/7/075301
http://dx.doi.org/10.1088/0953-8984/25/7/075301
http://dx.doi.org/10.1088/0953-8984/25/7/075301
http://dx.doi.org/10.1088/0953-8984/25/7/075301
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevLett.103.266806
http://dx.doi.org/10.1103/PhysRevB.81.115316
http://dx.doi.org/10.1103/PhysRevB.81.115316
http://dx.doi.org/10.1103/PhysRevB.81.115316
http://dx.doi.org/10.1103/PhysRevB.81.115316
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevB.87.205313
http://dx.doi.org/10.1103/PhysRevB.87.205313
http://dx.doi.org/10.1103/PhysRevB.87.205313
http://dx.doi.org/10.1103/PhysRevB.87.205313
http://dx.doi.org/10.1103/PhysRevB.65.085302
http://dx.doi.org/10.1103/PhysRevB.65.085302
http://dx.doi.org/10.1103/PhysRevB.65.085302
http://dx.doi.org/10.1103/PhysRevB.65.085302
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1140/epjb/e2004-00072-6
http://dx.doi.org/10.1103/PhysRevB.70.075307
http://dx.doi.org/10.1103/PhysRevB.70.075307
http://dx.doi.org/10.1103/PhysRevB.70.075307
http://dx.doi.org/10.1103/PhysRevB.70.075307
http://dx.doi.org/10.1088/0256-307X/24/7/074
http://dx.doi.org/10.1088/0256-307X/24/7/074
http://dx.doi.org/10.1088/0256-307X/24/7/074
http://dx.doi.org/10.1088/0256-307X/24/7/074
http://dx.doi.org/10.1088/1674-1056/17/4/038
http://dx.doi.org/10.1088/1674-1056/17/4/038
http://dx.doi.org/10.1088/1674-1056/17/4/038
http://dx.doi.org/10.1088/1674-1056/17/4/038
http://dx.doi.org/10.1088/1674-1056/18/2/062
http://dx.doi.org/10.1088/1674-1056/18/2/062
http://dx.doi.org/10.1088/1674-1056/18/2/062
http://dx.doi.org/10.1088/1674-1056/18/2/062
http://dx.doi.org/10.1088/0253-6102/57/1/25
http://dx.doi.org/10.1088/0253-6102/57/1/25
http://dx.doi.org/10.1088/0253-6102/57/1/25
http://dx.doi.org/10.1088/0253-6102/57/1/25
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevB.74.245113
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://dx.doi.org/10.1103/PhysRevLett.99.076402
http://arxiv.org/abs/arXiv:0809.3143
http://www.phy.bme.hu/%7Edmnrg/
http://dx.doi.org/10.1103/PhysRevB.78.245109
http://dx.doi.org/10.1103/PhysRevB.78.245109
http://dx.doi.org/10.1103/PhysRevB.78.245109
http://dx.doi.org/10.1103/PhysRevB.78.245109
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
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