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Signatures of spin-preserving symmetries in two-dimensional hole gases
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We investigate ramifications of the persistent spin helix symmetry in two-dimensional hole gases in the
conductance of disordered mesoscopic systems. To this end we extend previous models by going beyond the
axial approximation for III-V semiconductors. For heavy-hole subbands we identify an exact spin-preserving
symmetry analogous to the electronic case by analyzing the crossover from weak antilocalization to weak
localization and spin transmission as a function of extrinsic spin-orbit interaction strength.
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I. INTRODUCTION

Control over spin relaxation is essential to the operational
capabilities of spin-based semiconductor devices [1,2]. A
major advance in this respect has been the identification
of an SU(2) symmetry that confines spin evolution to a
characteristic topology and allows realizations of “persistent
spin helix” (PSH) excitations which are robust against spin
relaxation [2,3]. The latter could be identified by means
of optical experiments [4,5] in two-dimensional electronic
systems with linear-in-momentum Bychkov-Rashba [6] and
Dresselhaus [7] type spin-orbit interaction (SOI) (here de-
pending on the parameters α and β, respectively) of equal
magnitude. As had already been suggested in Refs. [8,9],
this symmetry at α = ±β also becomes manifest in the weak
localization (WL) feature in magnetoconductance traces of
disordered materials with finite SOI, as opposed to weak
antilocalization (WAL) mediated by spin relaxation [10].
Recent experiments confirmed theoretical predictions that
the WL signature persists for n-doped systems even in the
presence of non-negligible intrinsic SOI that scales with the
cubic power of the wave number k [11–13]. The question
naturally arises whether spin relaxation is also suppressed in
p-doped semiconductors. Therefore, in the present work we
investigate the generalization of the PSH symmetry arguments
in the context of structurally confined heavy-hole (HH) states
in III-V semiconductors forming a two-dimensional hole gas
(2DHG). In these materials the spin is subject to strong
SOI which typically enhance spin relaxation. This feature
is mainly attributed to the carrier density dependence of
the spin splitting, that has been investigated analytically
by means of diagrammatic perturbation theory within the
spherical approximation for one or more subbands [14].
Other works consider weak (anti-)localization in hole gases
based on a semianalytical [15] as well as a semiclassical and
numerical [16] treatment of 4 × 4 Luttinger-Kohn models [17].

II. TWO-DIMENSIONAL HOLE GAS MODEL

Here we focus on strong confinement described by an
effective 2 × 2 model of the HH ground state. Our treatment
is not restricted to the spherical or axial approximations,
which significantly widens the range of observable phenomena

compared to prior models. The low dimensionality allows
for the identification of relevant symmetries that are used
to deduce optimum parameter regimes for controlling spin
relaxation. The structure of our model is given by the
Hamiltonian

H = Hkinσ0 + �2DHG · σ , (1)

where Hkin denotes the kinetic energy, in which, to first approx-
imation, the explicit dependence on the Luttinger parameters γi

enters in the effective mass, meff ≈ m0/(γ1 + γ2), where m0 is
the mass of the free electron and we have assumed a 2D system
on a (001) surface [18]. Here σ0 is the identity matrix, σ the
vector of Pauli matrices, and �2DHG the effective spin-orbit
field coupling to the spin. All boldface symbols used in the
present text denote 2D vectors with only xy components. In
contrast to the corresponding expression for electrons, �2DEG,
where k-linear terms are dominant [9], to leading order �2DHG

is characterized by a cubic momentum dependence. This is
in agreement with existing 2DHG models and results from
coupling of the HH to the light hole (LH) subbands [19–21].
The result (1) is obtained via a perturbation expansion of the
standard Luttinger-Kohn Hamiltonian [17] in the basis given
by the subband edge states [18]. Our model applies to typical
zinc-blende structure materials, as can be inferred from their
material properties and calculated band structures given, e.g.,
in Ref. [18]. In Eq. (1), the 2 × 2 Hamiltonian H represents the
subspace spanned by the HH states of spin angular momenta
±(3/2)�. The corresponding hole spin-orbit field is given by

�2DHG = βHHk + λD
{ − γ̄ k2k + δ

[
k3
x x̂ + k3

y ŷ

− 3kxky(ky x̂ + kx ŷ)
]} + λR

{
δk2(ky x̂ + kx ŷ)

+ γ̄
[ − k3

y x̂ − k3
x ŷ + 3kxky k

]}
, (2)

with the intrinsic Dresselhaus parameters

βHH = −
√

3Ck

2
, (3)

λD =
√

3�2

2m0�HL

[
Ck +

√
3b̃8v8v

41

〈
k2
z

〉 ]
, (4)
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the structural, electrical field 〈Ez〉 dependent Bychkov-Rashba
parameter,

λR = 3�2

2m0�HL
〈Ez〉r̃8v8v

41 , (5)

and the Luttinger parameters γ̄ = (γ3 + γ2)/2 and δ = (γ3 −
γ2)/2 as in Ref. [22]. Here Ck is a material constant

while r̃8v8v
41 and b̃8v8v

41 are parameters which depend on both
material properties and geometry. In the bulk case the latter
two parameters coincide with r8v8v

41 and b8v8v
41 , respectively,

consistent with Ref. [18]. In the presence of a confinement,
these parameters are modified. Since the value b8v8v

41 is mainly
defined by the valence band (	8v) and conduction band (	6c)
gap E0, this type of Dresselhaus contribution is hardly affected

by the subband quantization. Thus we assume b8v8v
41 ≈ b̃8v8v

41 .
This does not hold for the dominant contribution by Rashba
SOI, because the origin of the SOI, which is connected with the
coefficient r̃8v8v

41 , changes: in the presence of the confinement,
the contribution due to Rashba SOI in the effective HH
system is dominated by the subband splitting between HH and
LH. This dominant contribution is proportional to the term
which is denoted here by r̃8v8v

41 . The contribution described
by r8v8v

41 , though, is induced by the coupling between valence
and conduction bands: it represents a higher order correction
and will not be considered in the following [23]. Previous
models [20,21,24] focus on the axially symmetric situation,
δ = 0. The above expression represents a generalization of
these models, allowing for the description of a broader range
of materials and considering anisotropies that are important,
for instance, in the plasmon spectra of HH systems [25].
Vertical confinement is modeled by a potential well with
perpendicular wave number 〈k2

z 〉 that displays a splitting
�HL = 2γ2�

2〈k2
z 〉/m0 between HH and LH bands. For further

analysis, the terms proportional to the small parameter Ck are
neglected in Eqs. (3) and (4), since for realistic materials and
large wave vectors (densities), the physics is dominated by
the terms proportional to b8v8v

41 〈k2
z 〉, as shown in Table 6.3

in Ref. [18]. Furthermore, the linear Dresselhaus term (3)
effectively rescales the axially symmetric part of the cubic
Dresselhaus contribution. Equation (2) results from sequential
perturbation expansions up to third order in k and to first
order with respect to the inverse splitting �HL

−1 and to Ez

imposed on the crystal. The identification of enhanced spin
relaxation times in this work is closely connected with broken
axial symmetry, since here a conserved quantity related to
the spin degree of freedom can only be constructed in the
presence of terms with both two- and threefold rotational
symmetry in the extrinsic and the intrinsic SOI. Our findings
suggest that obtaining an exact PSH symmetry is limited by the
parameters of realistic systems, since it requires that γ3 = 0.
Although an approximate symmetry in the leading-order
Fourier components of 
2DHG causes a weakly perturbed
crossover from WAL to WL, similar to electronic systems
with cubic intrinsic SOI [11], reaching exact spin preservation
associated with γ3 = 0 is not realistic. This is due to the relation
of the Kohn-Luttinger parameters described in Ref. [26], which
causes γ2 to vanish in the given case. This however violates the
perturbation expansion, in which the small parameter scales

as γ −1
2 . The influence of strain on our above discussed model

has been discussed in Ref. [27], in which the persistent spin
evolution requires the condition γ2 = −γ3. This criterion is
not realizable for the above mentioned reasons. In the present
discussion we will also focus on the realization of long-lived,
but not fully preserved spin states in effective heavy-hole
models, for a suitable choice of the ratio γ2/γ3. In contrast,
for η = −1 and γ3 = 0, as investigated in Fig. 2, the fully
symmetric situation is obtained, corresponding to principally
infinite spin lifetimes.

III. CHARGE TRANSPORT ANALYSIS

A. Persistent spin helix conditions

The effect of the spin symmetry on the magnetoconductance
G(B) can be analyzed by formulating the transmission in the
Landauer-Büttiker framework [28,29],

h

e2
G =

⎛⎝ ∑
n,m;σ=σ ′

+
∑

n,m;σ �=σ ′

⎞⎠ |tnσ,mσ ′ |2 =: TD + TOD, (6)

according to the spin quantum numbers σ,σ ′ in terms of
diagonal spin-preserving channels TD and spin off-diagonal
contribution TOD. Here, σ,σ ′ = ±1 refer to an arbitrary
basis defined in the ballistic leads of a two-terminal device
representing our numerical model, while n,m are integers that
define the transverse channel of the in- and outgoing states due
to a hard-wall confinement defining the edges of the leads. The
lead wave functions |φn,σ 〉 and |φm,σ ′ 〉 enter into the Fisher-Lee
relation for the amplitudes

tnσ,mσ ′ ∝
∫

∂ leads
d2r〈φn,σ |y1〉〈y1|GR|y2〉〈y2|φm,σ ′ 〉, (7)

where the integration is taken over the lead cross sections [30].
GR = (EF − H + 0+)−1 is the Green’s function of the scatter-
ing region at fixed Fermi energy EF. Knap et al. [9] found
in n-type systems particular relations between extrinsic and
intrinsic SOI magnitude, for which the Cooperon becomes
separable and a WL signal rather than WAL is observed.
In terms of the structure provided by Eq. (6), TOD vanishes
in this case and correspondingly spin scattering is absent
even in transport in disordered systems. This is equivalent
to the observation that the system displays an exact, disorder
independent symmetry [2,3], which allows for a decompo-
sition within the corresponding constant eigenbasis {|χσ 〉}
into � · σ = ∑

σ=±1 Eσ (�)|χσ 〉〈χσ |. Hence, when taking the
spin trace in Eq. (6) in the basis {|χσ 〉 = (1,σ exp[±iπ/4])†},
corresponding to the existence of the conserved quantity
�± = σx ± σy or, equivalently, fixed in-plane spin orientation
along ϕ = ±π/4, one finds that

TOD ∝
∑
σ �=σ ′

|〈χσ |χσ ′ 〉|2 =
∑
σ �=σ ′

δσ,σ ′ (8)

is suppressed and TD decomposes into two independent
channels which trivially display WL [9]. In the hole model (2)
we find the analog to the electronic PSH symmetry if the
system parameters fulfill η = ±1 and γ̄ = −δ, i.e., γ3 = 0,
where we define the parameter η ≡ λR/λD. In these two
cases the direction of �2DHG is fixed independently of the
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(a) (b)

FIG. 1. (Color online) Fermi surface for the different spin direc-
tions obtained from Eq. (1) (black and blue (gray) contours) and
the corresponding direction of the effective spin-orbit field, �2DHG,
illustrated by arrows. The SOI parameters establish a persistent
spin helix for holes with uniaxial spin orientation corresponding to
η ≡ λR/λD = +1 (a) and η = −1 (b). In both cases the Luttinger
parameters are γ̄ = −δ, i.e., γ3 = 0.

momentum, more precisely by

�2DHG ∝ [−k2(kx ± ky) ± 3kxky(kx ± ky)

− k3
x ∓ k3

y

]
(x̂ ± ŷ). (9)

We illustrate these cases in Fig. 1, where the effective spin-orbit
field �2DHG is oriented along a fixed direction for both spin
split subbands. The structure of Eq. (2) implies an additional
symmetry for γ̄ = δ, which is however outside the range of
validity, since it corresponds to γ2 = 0 and thereby a break-
down of perturbation theory. Although the given parameters
can be engineered in realistic material systems, as indicated
by Table C.9 in Ref. [18], it is not possible to influence
the effective values of γ3, without simultaneously changing
γ2 or the effective values of the Rashba and Dresselhaus
coefficients [26].

B. Numerical setup

To investigate the previously described properties we
simulate transport in disordered hole systems connected to two
terminals, represented by ballistic semi-infinite leads without
SOI. The latter is switched on and off adiabatically over
one-fifth of the total length of a rectangular scattering region
to which the leads are connected. We use an average over
an Anderson-like uniformly distributed random-box potential
Vdis to simulate disorder. The perpendicular magnetic field is
included by means of Peierls’ substitution. The Hamiltonian
is then discretized on a tight-binding grid in position space
and the transmission amplitudes are obtained by an optimized
recursive Green’s function algorithm [31]. Since we are in-
terested in modeling bulk transport, we implemented periodic
boundary conditions in the transverse direction to minimize
effects from the boundaries.

C. PSH signatures in the magnetoconductance

The symmetry condition becomes apparent in the magne-
toconductance of disordered 2DHG systems, as illustrated in
Fig. 2. Here we show results of the numerically calculated
disorder averaged transmission, Eq. (6), for finite cubic

FIG. 2. (Color online) Signatures of spin-preserving symmetries
in weak localization of a two-dimensional hole gas. (a) Disorder-
averaged magnetoconductance correction 〈T (φ)〉 − 〈T (φmax)〉 as a
function of flux φ (in units of φ0 = h/e; φmax/φ0 = 3.1) for spin-
orbit coupling ratios η ≡ λR/λD = −1.65,−0.017,−1.33,−0.67,−1
(from top to bottom). (b) Conductance correction 〈T (0)〉 − 〈T (φmax)〉
as a function of η. Negative magnetoconductance reflects suppression
of spin relaxation close to η = −1. System parameters: disorder
average over 1000 impurity configurations for a scattering region
of aspect ratio (length L to width W ) 200:80 unit cells with periodic
boundary conditions in transverse direction. Quantum transmission
computed for kFW/π = 13 hole states per spin supported in the leads,
elastic mean free path l = 0.04W , γ3 = 0, and fixed Dresselhaus spin
precession length kDW ≈ 1, defined below Eq. (18).

intrinsic SOI λD as a function of the extrinsic SOI λR.
For demonstrative purposes, we set γ3 = 0. Representative
examples of the conductance correction traces are shown in
Fig. 2(a), which display typical WAL and WL line shapes as a
function of magnetic flux φ from a homogeneous magnetic
field perpendicular to the 2DHG plane. Considering the
dependence on η, we find pronounced signatures of WAL if η

is far from −1. When η approaches −1, a crossover from
WAL to WL occurs as indicated by a maximum negative
conductance correction, in agreement with the symmetry
argument. In Fig. 2(b) our results are summarized in terms
of the conductance at maximum magnetic flux 〈T (φmax)〉
subtracted from the correction at zero flux 〈T (0)〉 plotted as a
function of η, where we chose φmax = 3.1φ0. The results show
that the parameter regime where a PSH type symmetry occurs
is characterized by a negative conductance correction, i.e., by
a WL signature.

D. Diagrammatic approach

1. Cooperon of the effective 2DHG

Our analysis above is confirmed within a diagrammatic per-
turbative treatment by exact diagonalization of the Cooperon
Ĉ(Q) in the framework of the effective model (1). For
this purpose, the scheme presented in Refs. [32,33] for
electrons is generalized to holes. The diagrammatic approach
is justified since we assume the system to be in the diffusive
regime fulfilling the Ioffe-Regel criterion, EFτ/� � 1, with
elastic scattering time τ and Fermi energy EF. Here the
scattering is modeled by standard “white-noise” disorder V (x)
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which vanishes on average, 〈V (x)〉 = 0, and is uncorrelated,
〈V (x)V (x′)〉 = δ(x − x′)/(2πντ/�), where ν is the density of
states per spin channel. Unfortunately, a general analytical
study of the Cooperon of the confined 2DHG including both
the SOI due to BIA and SIA is spoiled by the fact that
this operator, which is necessary to describe the conductivity
correction due to interference between a J = 3/2 hole and its
time-reversed counterpart, requires 16 dimensions. However,
since we mapped the 4 × 4 Luttinger Hamiltonian onto an
effective one considering only the spin ±3/2 subspace, the
Cooperon of this effective model is equivalent to the Cooperon
of s-band conduction electrons presented in Refs. [32,33],
except for the absolute value of the spin and the terms
appearing due to SOI. The total Cooperon momentum Q
is the sum of the momenta of the retarded and advanced
propagators of holes, Q = k + k′. Their spins (3/2)�σ and
(3/2)�σ ′ sum up to S = (3/2)�(σ + σ ′). We get to second
order in [�Q + (2/3)meff âS] and after an angular average
〈· · · 〉ϕ over the Fermi surface

Ĉ(Q) = �

Dh

(
�Q + 2

3meff 〈â〉ϕ · S
)2 + Hγ

, (10)

where Dh = τv2
F/2 is the diffusion constant. The matrix â in

the effective vector potential term is defined by the relation
σ · �2DHG = k · (â · σ ). With 〈â〉ϕ ≡ α̂ we find

α̂ = meff

2�4
EF

(
λD(3 + cD) λR(3 + cR)
λR(3 + cR) λD(3 + cD)

)
, (11)

with EF = meffv
2
F /2 the Fermi energy, cD = 2γ3/γ2 − 1, and

cR + cD = −2. The term

Hγ = 1

9

Dhm
4
effE

2
F

�8

[(
λ2

D(cD − 1)2 + λ2
R(cR − 1)2

)
× (

S2
x + S2

y

) + 2(cD − 1)(cR − 1)λRλD{Sx,Sy}
]

(12)

is Q independent and resembles the corresponding expression
for the 2DEG in Ref. [32] which appears due the existence
of cubic Dresselhaus SOI. We simplify the calculation by
assuming β/λD to be negligibly small and by rescaling
the Cooperon Hamiltonian HC ≡ Ĉ−1 for nonzero intrinsic
Dresselhaus λD:

H̃C ≡ HC

Dh

(
λD

m2
eff

3�3 EF
)2

(13)

=
(

�Q̃x + �−1[(3 + cD)Sx + η(1 − cD)Sy]

�Q̃y + �−1[(3 + cD)Sy + η(1 − cD)Sx]

)2

+ �−2[(1 − cD)2 + η2(3 + cD)2]
(
S2

x + S2
y

)
+ 2�−2(1 − cD)(3 + cD)η{Sx,Sy}, (14)

with Q̃i = Qi/λD
m2

eff
3�3 EF. Since the spectra of the Cooperon

and Diffuson are equal as long as time reversal symmetry is
not broken, the term Hγ , which cannot be rewritten as a vector
potential, causes in general gaps in the triplet sector of the
spectrum which correspond to finite spin relaxations [33]. As
in the case of 2DEG, only the triplet sector is affected by SOI
[here, due to the effective HH model, we have S = (3/2 +

3/2)� but one can use {|S = 0,m = 0〉, |S = 1,m = 1〉, |S =
1,m = 0〉, |S = 1,m = −1〉} as a basis since S ∼ (σ + σ ′)].
The appearance of gapless modes besides the singlet mode,
i.e., the existence of persistent spin states as found by using
the Landauer-Büttiker framework, will be discussed in the
following.

2. Persistent and long-lived spin states

We focus on two interesting parameter regimes: Luttinger
parameters which describe systems close to axial symmetry
where we have cD ≈ 1 and the extreme case cD = −1 for
which the SO field 
2DHG(k) is aligned in one direction if
|η| = 1 as presented in Fig. 2.

An analysis of the Cooperon triplet spectrum for values
cD ≈ 1 and moderate strength of Rashba SOI, i.e., −√

3 �
η �

√
3, reveals that the absolute minimum expressed in polar

coordinates as Q̃ = (Q̃,ϕ) can be found at finite Q̃min =√
3(3 − η2)(5 + η2) with an energy of

Ẽmin,1(Q̃min) = 21 + 66η2 − 3η4 + 3
2λ[η(5 + 6η2 + η4)

× sin(2ϕ) − 7 − 22η2 + η4] + O(λ2),
(15)

with λ = 1 − cD and |λ| 
 1. Thus the spectrum will always
be gapped with a minimal gap for η = 0. The spin states
to which the minima correspond are long-lived (finite spin
relaxation) modes which describe a spin helix due to Q̃min >

0 [33]. The situation differs completely for the case where the
Luttinger parameter γ3 vanishes, i.e., cD = −1. We find an
absolute minimum of the Cooperon triplet spectrum at Q̃ = 0
with

Ẽmin,−1(Q̃) = 24(1 − |η|)2 + 1
4Q̃2[(3 − |η|)(1 + |η|)

+ (1 − |η|)2 sin(2ϕ)] + O(Q̃3), (16)

for |η| ≈ 1. As a consequence, we obtain a gapless mode for
|η| = 1. This supports the numerical findings of persistent
spin states if the aforementioned symmetries are present:
changing η from η = 0 to η = −1 as done in Fig. 2, we
see that the energetically lowest mode, Eq. (16), is gapped
at η = 0. Thus the negative contribution of the triplet modes
to the conductivity correction �σ = (W/L)(e2/h)〈T (0)〉 −
〈T (φmax)〉 is suppressed and we end up with an enhancement
of conductivity (WAL) stemming from the positive gapless
singlet channel. Enhancing |η| does not change the singlet-
mode contribution to �σ . However, the suppression of triplet
contribution is reduced: we see a reduction of conductivity
leading to WL in the case where in addition to the gapless
singlet mode a gapless triplet mode appears.

IV. SPIN TRANSPORT ANALYSIS

Apart from considering the indirect influence of the PSH
symmetry on the WL-WAL transition, it seems natural to
search for a manifestation of a symmetry in TD, Eq. (6), since
its effects could be determined by magnetic polarization of the
leads, allowing for spin transistor operation even in the pres-
ence of disorder [2]. Numerically we can confirm the validity
of the latter approach by calculating the normalized quantity
TD/(TD + TOD) as a function of η = λR/λD, as shown in Fig. 3.
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FIG. 3. (Color online) Top: ratio of disorder averaged diagonal
transmission over total transmission 〈TD〉/〈T 〉 = 〈TD〉/〈TD + TOD〉
as a function of η for a scattering region with 150:80 aspect ratio for
fixed Dresselhaus spin precession length k−1

D ≈ (k2
F λD)−1 = 1.3W

and Luttinger parameters γ2 = 1 and γ3 = 0.25 for which no exact
spin-preserving symmetry can be established. The peak of 〈TD〉/〈T 〉
at η = 1 (indicated by the arrow), coincides with the maximum of
the diabatic transition probability of Eq. (18). Average transmission
shown includes 1000 disorder configurations. With respect to the
eigenbasis of η = −1, we obtain a curve that coincides with the
mirror image of the shown plot, displaying a maximum at η = −1.
Bottom: amplitude of the magnetoconductance correction in which
no WAL-WL-WAL transition is observable in the vicinity of the
symmetry point of |η| = 1 due to insufficient spin randomization in
the regime |η| < 1.19. This example indicates that in a sweep of
the Rashba SOI, the point where Rashba and Dresselhaus SOI are
balanced displays a clear signal in the diagonal transmission, while
it may not be detectable in the form of a WAL-WL-WAL transition.

We identify a pronounced transmission maximum at η = 1 in
the basis corresponding to the +π/4 spin orientation even in
situations where the exact PSH-type symmetry is not realized.
In the given example we chose the Luttinger parameters
γ2 = 1 and γ3 = 0.25 which correspond to arbitrarily chosen
parameters, that serve as a proof of concept of measurements in
a setup, where a WAL-WL-WAL transition upon variation of
the Rashba SOI is not experimentally observable. For values of
|η| < 1.19, the conductance correction corresponding to Fig. 3
is still dominated by WL, corresponding to insufficient spin
randomization. For |η| > 1.19 we observe WAL, consistent
with the increased magnitude of the SOI. Therefore, the ex-
perimental determination of the relative magnitude of Rashba
and Dresselhaus SOI from the WAL-WL-WAL transition
is not feasible in this setup, because the point where both
contributions are in balance, i.e., |η| = 1, lies within the regime
of small spin randomization. In the spin-resolved transmission
signal the symmetry point is however clearly visible, as
demonstrated by the maximum in Fig. 3. For parameters
far from η = 1 the spin transmission is equally distributed
among the diagonal and off-diagonal channels. When |η|
approaches unity, TD formally corresponds to the probability
of diabatic Landau-Zener transitions between instantaneous

eigenstates | ± �〉 = (1,± exp[−i arctan(
y/
x)])† of the
spin-orbit contribution (2). The momentum direction is
changed by disorder scattering such that the spin evolution
is subject to inhomogeneities of the effective spin-orbit field
�. At the minima of the anisotropic spin splitting 2|Eσ (�)|,
this induces transitions of the type | ± �〉 → | ∓ �〉 with
Landau-Zener [34,35] transition probability

PD = exp
[−2πε2

12/(�|∂t (ε1(t) − ε2(t))|)]. (17)

The value of PD is calculated from the minimal spin split-
ting, 2ε12, in the corresponding directions ϕ := arctan(ky/kx)
and the slope of the splitting, ε1(t) − ε2(t), between the fully
diabatically coupled basis states.

These transitions enhance the value of TD while completely
suppressing TOD for PD = 1. The spinors {|χσ 〉} underlying
Eq. (6) coincide with the diabatic superposition of the states | ±
�〉. The latter can be checked by considering 〈χσ |� · σ |χσ 〉.
Within the HH model (2) the diabatic basis coincides with
that of the PSH eigenstates {|χσ 〉} of a 2DEG [2]. For p-type
systems we find a probability of

ln(PD)2DHG = −ζ l|kD||γ̄ + δ|(1 − |η|)2, (18)

with the elastic mean free path l and a phenomenological
factor ζ of order 1, related to the details of the scattering.
These quantities enter together with the transport time τ into
the rate of change in angle ϕ in the relation δϕ = πδt/(2τζ ).
The characteristic length scale of spin precession k−1

D is
approximated as kD ≈ k2

FλD. Equation (18) is derived under
the assumption that γ̄ �= −δ. Although the expression (17)
for the Landau-Zener transition probability predicts a clear
maximum at |η| = 1, Eq. (18) does not cover the description
of TD for parameters where the PSH symmetry is established.
It is nevertheless applicable to realistic material parameters
if γ3 �= 0 and, consequently, γ̄ �= −δ, which is verified by a
numerical transport analysis. The analysis of TD can be applied
to electronic systems as well, with an effective spin-orbit field,

�2DEG = αk × ẑ + β(kx x̂ − ky ŷ) + γ
(−kxk

2
y x̂ + kyk

2
x ŷ

)
,

(19)

for transport along the [100] direction in a 2DEG grown in
[001] direction and with 〈k2

z 〉γ = β [9]. In systems described
by this model the corresponding Landau-Zener transition
probability is given by

ln(PD)2DEG = −ζ l|kβ |(	β/2 − 1 ± η)2, (20)

with the Dresselhaus spin precession length k−1
β =

(meffβ/�2)−1, ratio of cubic and linear SOI 	β = k2
Fγ /β, and

the phenomenological factor ζ as it appears in Eq. (18). This
model has been verified by numerical calculations which are
beyond the scope of this work. In both p- and n-type systems,
the signatures in TD are robust against disorder.

Therefore, as an experimental approach to analyzing spin
relaxation lengths in transport within HH systems, a detection
of the PSH signature in the longitudinal conductance of a spin-
polarized current is favorable. The mechanism responsible for
the peaks in TD is the momentum space analog to the effect
of a spatially inhomogeneous helix-type Zeeman term on the
spin conductance in dilute magnetic semiconductors [36]. An
alternative measurement method for further investigation of
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the HH PSH is represented by magneto-optical Kerr rotation
techniques, which recently allowed one to map the spin
topology in electronic systems [5].
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APPENDIX: DIABATIC TRANSITIONS
IN MOMENTUM SPACE

To obtain the leading-order contribution to the spin-
diagonal transmission defined in Eqs. (18) and (20), we
start from the diagonal approximation to the semiclassical
transmission amplitudes [37],

Tσ,σ ∼
∑

γ

|Aγ |2|〈σ |Dγ |σ 〉|2, (A1)

with the stability amplitude |Aγ |2 corresponding to classical
paths γ that connect the incident lead with the outgoing lead
for the respective channels. Summing the above expression
with respect to the spin polarizations σ = ±1 yields the semi-
classical leading-order contribution to TD after performing a
disorder average. Without the spin evolution kernel D, the

Drude conductance can be estimated from Eq. (A1), since the
summation over the amplitudes can be expressed in terms
of classical transmission probabilities [38]. For small spin
splitting compared to the kinetic energy, the trajectories γ

are solely determined by classical properties of the system.
They parametrize the spin dynamics via the equation for the
spin evolution kernel along the path γ [37],

i�
∂

∂t
Dγ (t)|σ 〉 = �(k(t)) · σDγ (t)|σ 〉, (A2)

for the effective spin-orbit field � for electrons, Eq. (19),
or holes, Eq. (2), respectively. To estimate for which values
of the spin-orbit parameters the value of Tσ,σ reaches a
maximum, we calculate |〈σ |Dγ (t)|σ 〉|2 from Eq. (A2) as
the probability to remain in the instantaneous eigenstate
matching the initial polarization at the lead-cavity interface
via the Landau-Zener formula [34,35]. We specified the
time-dependent problem (A2) after disorder average by a
momentum k(t) ≈ k(cos ϕ(t)x̂ + sin ϕ(t) ŷ) that changes due
to elastic small-angle scattering according to δϕ = πδt/(2τζ ).
Here we introduce the phenomenological parameter ζ by hand.
ζ = 1 corresponds to a momentum change due to isotropic
scattering and τ is the elastic momentum relaxation time. Note
that the disorder model on which the numerical results of Fig. 3
are based consists of Anderson-like impurity configurations
with small correlation lengths. Although the semiclassical
picture presented above is not applicable to this setup in a
strict sense, it describes the observed behavior remarkably
well.
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