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Sun-Yong Hwang,1,2 Rosa López,1,3 Minchul Lee,4 and David Sánchez1,3
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We consider spin-polarized transport in a quantum spin Hall antidot system coupled to normal leads. Due
to the helical nature of the conducting edge states, the screening potential at the dot region becomes spin
dependent without external magnetic fields nor ferromagnetic contacts. Therefore, the electric current due to
voltage or temperature differences becomes spin polarized, its degree of polarization being tuned with the dot
level position or the base temperature. This spin-filter effect arises in the nonlinear transport regime only and
has a purely interaction origin. Likewise, we find a spin polarization of the heat current, which is asymmetric
with respect to the bias direction. Interestingly, our results show that a pure spin current can be generated by
thermoelectric means: when a temperature gradient is applied, the created thermovoltage (Seebeck effect) induces
a spin-polarized current for vanishingly small charge current. An analogous effect can be observed for the heat
transport: a pure spin heat flows in response to a voltage shift even if the thermal current is zero.
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I. INTRODUCTION

Two-dimensional topological insulators support gapless
current-carrying edge states characterized by opposite prop-
agation direction for opposite spins [1,2]. The conduction
of these helical states is protected against disorder since
backscattering is forbidden by time-reversal symmetry [3–5].
Therefore, a quantum Hall effect arises with a two-terminal
conductance given by 2e2/h, equivalently to the quantum Hall
conductance for filling factor 2. The difference is that in the
quantum spin Hall effect the external magnetic field is absent
and the edge states arise from a topologically nontrivial phase
in samples with strong spin-orbit coupling. Experimentally, the
quantum spin Hall effect has been confirmed in HgTe/CdTe
heterostructures [6,7], showing the spin polarization of the
conducting states [8]. In InAs/GaSb quantum wells, quantized
transport due to helical states has been observed even in the
presence of external magnetic fields [9] and disorder [10].

An exciting consequence of the spatial separation between
pairs of helical states is the emergence of spin-filtering
effects [11–17]. However, the spin current in a two-terminal
quantum spin Hall bar is zero due to the constrained geometry.
Therefore, backscattering centers are to be implemented to
preferably deflect electrons with a given spin direction. A
feasible possibility is the application of local potentials to
form quantum antidots. More generally, the presence of con-
strictions in two-dimensional topological insulators have been
proposed to give rise to coherent oscillations [18], transforma-
tions between ordinary and topological regimes [19], peaks of
noise correlations [20], metal-to-insulator quantum phase tran-
sitions [21], nonequilibrium fluctuation relations [22], braiding
of Majorana fermions [23], competition between Fabry-Pérot
and Mach-Zehnder processes [24], control of edge magneti-
zation [25], and detection of Kondo clouds [26]. Interestingly,
König et al. have experimentally demonstrated [27] the local
manipulation of helical states with back-gate electrodes.

Our aim here is to show that spin-polarized currents can
be generated in quantum spin Hall antidot systems using

thermal gradients only. In fact, we demonstrate below that
pure spin currents and pure spin heat flows can be produced
by thermoelectric means (Seebeck and Peltier effects). These
effects are relevant because many topological insulators
show excellent thermoelectric properties [28]. For instance,
porous three-dimensional topological insulators display large
thermoelectric figures of merit [29] and similar properties
have been associated to edge conduction channels [30] and
nanowires [31]. Moreover, spin Nernst signals can provide
spectroscopic information in quantum spin Hall devices [32].
Here, we consider a simple setup: a two-dimensional topo-
logical insulator connected to two electronic reservoirs, see
Fig. 1. The central antidot allows scattering between helical
states in different edges, these transitions preserving the spins
of the carriers. Therefore, in the linear regime of transport
and for normal conductors the spin current is zero. However,
in the nonlinear regime the screening potential in the dot
region becomes spin dependent since, quite generally, the dot
level will be asymmetrically coupled to the edge states. As
a consequence, the nonlinear current will be spin polarized.
This makes the nonlinear regime of quantum thermoelectric
transport quite unique and interesting to explore, as recently
emphasized in Refs. [33–43].

Heat currents can also become spin polarized, and we find
a spin Peltier effect [44,45] in addition to a spin Seebeck
effect [46–48]. Rectification effects are more visible in the
heat flow [49–51], which results in strongly asymmetric spin
polarizations. We stress that the spin-filter effects discussed
here exist regardless of couplings to ferromagnetic contacts
or external magnetic (Zeeman) fields (cf. Refs. [52–56]), and
are thereby of purely spintronic [57] (or spin caloritronic) [58]
character. Furthermore, the spin polarization for both charge
and heat currents can be controlled in our system by adjust-
ing the antidot resonant level or changing the background
temperature.

The paper is organized as follows. In Sec. II, we de-
scribe our model based on scattering theory to determine
the generalized transmission probability that depends on the
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FIG. 1. (Color online) Schematics of our setup. A quantum spin
Hall bar with a single-level antidot at the center is attached to
two terminals, where both voltage bias and temperature gradient
are applied. Interactions are described using capacitance coefficients
Cis,dσ , where i = 1,2 labels the edges, s = ± is the helicity, d stands
for dot, and σ = ↑,↓ is the electronic spin. Couplings between the
helical edge states and the dot are denoted with �is .

screening potential. Intriguingly, the potential response in the
antidot region is spin dependent even though the contacts are
normal leads [Eqs. (9) and (10)], giving rise to spin-polarized
electronic and heat currents [Eqs. (17) and (18)], with the
asymmetric tunneling described by the parameter η. The
transport coefficients are calculated in Sec. III using an
expansion around the equilibrium point. We analytically show
that the leading-order rectification terms of the currents with
respect to voltage and thermal biases show spin-dependent
screening effects, in contrast to the linear coefficients. These
results are central to our work. Section IV presents numerical
results that are valid beyond the Sommerfeld and the weakly
nonlinear approximations when both voltage and thermal
biases applied to the sample are strong. We also discuss
the possibility of generating pure spin currents from the
combination of Seebeck effect and helical propagation in the
nonlinear regime of transport. Finally, our conclusions are
contained in Sec. V.

II. THEORETICAL MODEL

We consider a quantum spin Hall (QSH) bar attached
to two terminals α = 1,2, where each terminal is driven
by the electrical voltage bias eVα = μα − EF (μα is the
electrochemical potential and EF is the common Fermi energy)
and also by the temperature shift θα = Tα − T (Tα and T

are the lead and the background temperature, respectively),
see Fig. 1. An antidot is formed inside the QSH bar. It can
connect upper and lower gapless helical edge states. Scattering
off the dot is described with the matrix sαβ = sαβ(E,eU ),
which is generally a function of the carrier energy E and
the electrostatic potential U inside the system [59,60]. The
potential Uσ = U (�r,{Vγ },{θγ },σ ) is, in turn, a function of the
position �r , the set of driving fields {Vγ } and {θγ } [33,35,36],
and the spin index σ =↑ , ↓. The σ dependence of Uσ

becomes crucial in our QSH system due to the underlying
helicity, i.e., the spin-channel separation of charge carriers
according to their motion. As a matter of fact, the different

response of screening potential through the antidot with
respect to each spin component is the working principle for
our observed spin-polarized electric and heat currents since
these fluxes are determined by the spin-dependent potential
response.

More specifically, the charge and heat currents at lead α

carried by spin component σ are respectively given by [61]

I σ
α = e

h

∑
β

∫
dEAσ

αβ(E,eU )fβ (E), (1)

J σ
α = 1

h

∑
β

∫
dE(E − μα)Aσ

αβ(E,eU )fβ(E), (2)

where Aσ
αβ = Tr[δαβ − s

†
αβsαβ] and fβ(E) = {1 + exp[(E −

μβ)/kBTβ]}−1 is the Fermi-Dirac distribution function in
the reservoir β = 1,2. Note here that we have generalized
the expressions for charge and heat currents into their spin-
resolved form, for which we separate 2Aαβ in the usual current
expressions [36] Iα = (2e/h)

∑
β

∫
dEAαβ (E,eU )fβ(E) and

Jα = (2/h)
∑

β

∫
dE(E − μα)Aαβ(E,eU )fβ (E) into A

↑
αβ =

Aαβ(U↑) and A
↓
αβ = Aαβ(U↓) in order to explicitly incorporate

the spin-dependent screening effect.
Due to current conservation for respective σ and neglecting

spin-flip scattering [62], one has
∑

α I σ
α = 0 and

∑
α(J σ

α +
I σ
α Vα) = 0, and one can define the direction of spin-resolved

currents: Iσ ≡ I σ
1 = −I σ

2 and Jσ ≡ J σ
1 = −J σ

2 − Iσ (V1 −
V2). With this convention, we define the spin-polarized
currents

Is = I↑ − I↓ (3)

Js = J↑ − J↓ (4)

along with the total fluxes Ic ≡ I↑ + I↓ and Jc ≡ J↑ + J↓
(charge and heat, respectively).

The screening potential U = ∑
σ Uσ is sensitive to varia-

tions of the external voltage or temperature biases. Since our
theory is based on an expansion around the equilibrium point,
it suffices to expand the potential up to linear order in the
driving fields [33,35,36],

U = Ueq +
∑
α,σ

uασVα +
∑
α,σ

zασ θα, (5)

where uασ = (∂Uσ/∂Vα)eq and zασ = (∂Uσ/∂θα)eq are spin-
dependent characteristic potentials (CPs) that relate the vari-
ation of the spin-dependent potential Uσ to voltage and
temperature shifts at terminal α = 1,2.

We treat electron-electron interactions within a mean-field
approximation. The self-consistent determination of U can
thus be achieved by solving the Poisson equation ∇2�U =
−4πq, with �U = U − Ueq = ∑

σ �Uσ and

q=
∑

σ

qσ = e
∑
α,σ

[
Dp

α (σ )eVα+De
α(σ )θα

] + e2
∑

σ


σ�Uσ .

(6)
The charge pileup q is given by the sum of
the bare injected charge determined from the
spin-dependent particle [59,60] (p) and entropic [33]
(e) injectivities, D

p,e
α (σ ) = − ∫

dEν
p,e
α (E,σ )∂Ef , where
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ν
p
α (E,σ ) = (2πi)−1 ∑

β Tr[s†βα

dsβα

dE
] and νe

α(E,σ ) =
(2πi)−1 ∑

β Tr[E−EF

T
s
†
βα

dsβα

dE
], and the screening charge

e2 ∑
σ 
σ�Uσ , where 
σ is the spin-dependent Lindhard

function, which in the long wavelength limit becomes

σ = ∫

dEνσ (E)∂Ef , with νσ (E) = ∑
α ν

p
α (E,σ ) the

spin-σ electron density of states. Then, the integrated density
of states is Dσ = ∑

α D
p
α . Note, however, that possible

σ dependences of D
p,e
α (σ ) and 
σ would only appear in

our model for unequal spin populations arising, e.g., from
ferromagnetic contacts. Thus, for normal metallic contacts
the only spin-dependent term in Eq. (6) is the screening �Uσ

giving rise to a spin imbalance inside the system.
In the general case, the potential U (�r) is a space-dependent

function. For a practical calculation, we discretize the conduc-
tor into the regions illustrated in Fig. 1: �is , with i = 1,2 for
the upper and lower edges, s = ± denoting the helicity, and
dot region with spin σ . The edge states are tunnel coupled to
the dot via hybridization widths �1s and �2s , which explicitly
depend on the helicity s = ± corresponding to spin channels
↑(+) and ↓(−). The dot is described with a quasilocalized
level whose energy Ed is controllable by a top-gate potential.
In the wide-band limit, scattering with the dot is well
described using a Breit-Wigner form. Hence, the reflection
probability off the dot is given by rσ = 1 − tσ = �1s�2s/|�s |2,
where �s = EF − Ed + i�s/2 with �s = �1s + �2s , where
tσ is the transmission probability. Importantly, the helicity s

dependence of �is (i = 1,2) disappears for normal contacts,
since in this case there is no spin imbalance inside the edge
states. This leads to spin-independent transmissions t↑ = t↓ via
antidot scattering. As a consequence, the linear conductance
coefficients are spin independent and the spin polarization
arises only in the nonlinear regime of transport.

The potential Uis in each region is assumed to be spatially
homogeneous. We describe the Coulomb interaction between
the edge states and the dot with a capacitance matrix
Cis,dσ [59]. This discrete local potential model captures the
essential physics [60,63]. The region-specific CPs are then
given by uσ

iα = (∂Uσ
i /∂Vα)eq and zσ

iα = (∂Uσ
i /∂θα)eq, and the

net charge response for each region can be related to the
capacitance matrix via

qis = e
∑

α

(
D

p

is,αeVα + De
is,αθα

) + e2
is�Uis

=
∑

σ

Cis,dσ (�Uis − �Udσ ). (7)

By solving this, one can determine the potential Uiσ = Uis as a
function of the applied voltages and the thermal gradients and
obtain the spin-dependent CPs according to Eq. (5) for each
spin. It should be noted that the charge with spin σ =↑(↓)
in the antidot region is supplied from the edge states with
helicity s = +(−) via tunnel coupling since we neglect spin-
flip processes in order to maximize spin-polarization effects.
For definiteness, we assume that the density of states for all
regions are equal, i.e., Dis = Ds ≡ D/2, and the injectivities
from the two terminals are symmetric, which amount to
D

p,e

is,α = D
p,e
s ≡ Dp,e/2 and 
is = 
s ≡ 
/2.

We consider the case where the conductor is electrically
symmetric, i.e., Cis,dσ = Cis = Cs = C/2 with C=C++C−,

but asymmetric in the scattering properties such that �1s =
(1 + η)�/4 and �2s = (1 − η)�/4 with � = �+ + �− (�s =
�1s + �2s = �/2). Experimentally, this would be the general
situation for dots closer to one of the edge states. Another
possibility is to tune the width and the height of the tunnel
barriers formed between the resonance and the propagating
channels. Thus, the coupling asymmetry is described with a
nonzero η = (�1 − �2)/� where �i = ∑

s �is . From Eqs. (5)
and (7), we find the dot potential

�Udσ = u1σV1 + u2σV2 + z1σ θ1 + z2σ θ2, (8)

with the corresponding CPs

u1↑ = u2↓ = 1
2 + ηcsc, u1↓ = u2↑ = 1

2 − ηcsc, (9)

z1↑ = z2↓ = De

eDp
u1↑, z1↓ = z2↑ = De

eDp
u1↓, (10)

where csc = [2 − 2C/e2
]−1 = Cμ/2C with 1/Cμ = 1/C +
1/e2D the electrochemical capacitance. Importantly, the CPs
become spin dependent (e.g., u1↑ − u1↓ = 2ηcsc) whenever
η �= 0. As a result, we expect electronic transport to be
spin polarized for asymmetric couplings. Interestingly, the
strength of the CPs polarization is determined by the ratio
Cμ/C, similarly to the interaction induced magnetic field
asymmetry in nonlinear mesoscopic transport [64]. In other
words, our effect has a pure interaction origin and vanishes in
the noninteracting limit (C → ∞).

The spin dependence of the nonequilibrium potential
response can be easily understood in the following way.
Suppose that the left voltage is lifted with an amount �V

while the right voltage remains unchanged. Then, both the
upper edge with s = + and the lower edge state with
s = − carry more charge than their counterparts. Since the
dot is, say, more coupled to the upper edge than to the lower
one, effectively more electrons with spin ↑ are injected into the
dot than electrons with spin ↓. We emphasize that this effect
will be visible in the nonlinear regime of transport only since
the linear response coefficients are independent of the CPs in
Eqs. (9) and (10).

III. WEAKLY NONLINEAR TRANSPORT

In order to illustrate the mechanism of spin polarization for
the currents, we first focus on the weakly nonlinear regime of
transport and expand the electronic and heat currents in Eqs. (1)
and (2) around the equilibrium state, μα = EF and Tα = T ,
up to second order in the driving fields, Vα and θα [33,35,36]:

I σ
α =

∑
β

(
Gσ

αβVβ + Lσ
αβθβ

)

+
∑
βγ

(
Gσ

αβγ VβVγ + Lσ
αβγ θβθγ + 2Mσ

αβγ Vβθγ

)
, (11)

J σ
α =

∑
β

(
Rσ

αβVβ + Kσ
αβθβ

)

+
∑
βγ

(
Rσ

αβγ VβVγ + Kσ
αβγ θβθγ + 2Hσ

αβγ Vβθγ

)
. (12)

115301-3
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These general multiterminal expressions can easily be applied
to our two-terminal setup. In Appendix, we explicitly write
down compact expressions using a Sommerfeld expansion for
illustrative purposes, even though this expansion is valid for
low temperatures only. Below, we shall numerically evaluate
the currents by directly integrating Eqs. (1) and (2) and
compare with the analytic results.

Controlled edge backscattering across the dot is given by the
transmission probability t(EF ) = 16(EF − Ed )2/[16(EF −
Ed )2 + �2], which is a spin-independent function since
�1s = �1/2, �2s = �2/2. Hence, all linear responses are
also spin independent, i.e., G

↑
αβ = G

↓
αβ , L

↑
αβ = L

↓
αβ , R

↑
αβ =

R
↓
αβ , and K

↑
αβ = K

↓
αβ (α,β = 1,2), as should be [see

Eqs. (A1), (A2), (A3), and (A4)]. This is a straightforward
consequence of the fact that linear coefficients are independent
of the screening potential. Therefore, spin-polarization effects
arise in the nonlinear regime of transport only, since nonlinear
responses are functions of the CPs and these can exhibit spin
asymmetries, e.g., G↑

111 �= G
↓
111 with a nonzero η. This is clear

when we substitute Eq. (9) into Eq. (A5a).
Hence, in the presence of both voltage and thermal biases

with V1 = V , V2 = 0, θ1 = θ , and θ2 = 0, the spin-polarized
electronic and heat currents read

Is = [G↑
111 − G

↓
111]V 2 + [L↑

111 − L
↓
111]θ2

+ 2[M↑
111 − M

↓
111]V θ, (13)

Js = [R↑
111 − R

↓
111]V 2 + [K↑

111 − K
↓
111]θ2

+ 2[H ↑
111 − H

↓
111]V θ. (14)

We emphasize that the effects discussed in this work remain the
same even if we consider different types of bias configurations
such as V1 = V/2, V2 = −V/2, θ1 = −θ/2, θ2 = θ/2, which,
however, only complicate the algebra within our context.

The ordinary charge and heat currents are written by

Ic = [G↑
11 + G

↓
11]V + [L↑

11 + L
↓
11]θ + [G↑

111 + G
↓
111]V 2

+ [L↑
111 + L

↓
111]θ2 + 2[M↑

111 + M
↓
111]V θ, (15)

Jc = [R↑
11 + R

↓
11]V + [K↑

11 + K
↓
11]θ + [R↑

111 + R
↓
111]V 2

+ [K↑
111 + K

↓
111]θ2 + 2[H ↑

111 + H
↓
111]V θ. (16)

Applying the relevant nonlinear coefficients in Appendix
to Eqs. (13) and (14), we find

Is = −e3

h
(u1↑ − u1↓)t ′V 2 − e2π2k2

BT

3h
(z1↑ − z1↓)t ′′θ2

− e3

h

[
π2k2

BT

3e
(u1↑ − u1↓)t ′′ + (z1↑ − z1↓)t ′

]
V θ, (17)

Js = −e2π2(kBT )2

3h
(u1↑−u1↓)t ′′V 2−eπ2k2

BT

3h
(z1↑−z1↓)t ′θ2

− e2π2(kBT )2

3h

[
1

eT
(u1↑ − u1↓)t ′ + (z1↑ − z1↓)t ′′

]
V θ,

(18)

where t ≡ t(EF ), t ′ ≡ ∂Et(E)|E=EF
, and t ′′ ≡ ∂2

Et(E)|E=EF
.

These expressions are central to our results. The spin-polarized
electronic and heat currents indeed appear when the potential
response via antidot scattering is different with respect to each
spin component, i.e., either u1↑ − u1↓ �= 0 or z1↑ − z1↓ �= 0.
Using the CPs in Eqs. (9) and (10) explicitly, one can finally
write

Is = −ηcsc

(
2e3

h
t ′V 2 + 2eπ2k2

BT

3h

De

Dp
t ′′θ2

+ 2e2

h

[
π2k2

BT

3
t ′′ + De

Dp
t ′
]
V θ

)
, (19)

Js = −ηcsc

(
2e2π2(kBT )2

3h
t ′′V 2 + 2π2k2

BT

3h

De

Dp
t ′θ2

+ 2eπ2(kBT )2

3h

[
1

T
t ′ + De

Dp
t ′′

]
V θ

)
. (20)

Note that the spin polarization of both currents is directly
proportional to the asymmetry parameter η and the interaction
parameter csc. Hence, the asymmetrically coupled quantum
antidot plays the role of a spin filter. In contrast, as shown in
Eqs. (15) and (16), the effect of the potential response on the
usual electronic and heat currents can be represented by the
sum u1↑ + u1↓ and z1↑ + z1↓ rather than the difference. Due
to helicity, we have u1↑ + u1↓ = 1 and z1↑ + z1↓ = De/eDp

from Eqs. (9) and (10), independently of the asymmetry:

Ic = 2e2

h
tV + 2eπ2k2

BT

3h
t ′θ + eπ2k2

B

3h

(
t ′ − T

De

Dp
t ′′

)
θ2

+ e2

h

(
π2k2

BT

3
t ′′ − De

Dp
t ′
)

V θ, (21)

Jc = 2eπ2(kBT )2

3h
t ′V + 2π2k2

BT

3h
tθ

− e2

h

(
t + π2(kBT )2

6
t ′′

)
V 2 + π2k2

B

3h

(
t − T

De

Dp
t ′
)

θ2

+ eπ2k2
BT

3h

(
t ′ − T

De

Dp
t ′′

)
V θ. (22)

Remarkably, the second-order electric response G
↑
111 + G

↓
111

cancels out because this term contains the screening ef-
fect with a factor 1 − (u1↑ + u1↓) [Eq. (A5a)], which is
always zero for normal contacts due to helical nature of
the edge states. It should be emphasized that this can-
cellation is not originated from our specific bias setup
V1 = V,V2 = 0. Indeed, even for a general voltage bias
configuration, i.e., V1 = ξV and V2 = (ξ − 1)V with 0 �
ξ � 1, the second-order effect of voltage driving can
be written as

∑
σ Gσ

111(V1 − V2)2 = ∑
σ Gσ

122(V1 − V2)2 =
−∑

σ Gσ
211(V1 − V2)2 = 0, due to gauge invariance and

current conservation. Therefore, the charge current in the
isothermal case, i.e., θ1 = θ2 = 0, is always given by Ic =
(2e2/h)tV up to order V 3. This absence of rectification effects
in our two-dimensional topological insulator system is in stark
contrast with small conductors coupled to normal reservoirs,
in which the V 2 term is generally present [49,65–71].
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IV. NUMERICAL RESULTS

In the previous section, we discussed the underlying spin-
filter mechanism in an intuitive way, deriving expressions
valid in the weakly nonlinear regime, as shown in Eqs. (17)
and (18). These analytic results are also based on a Sommerfeld
expansion, which is appropriate at low temperatures. To extend
the validity of our conclusions for both strong nonlinearities
and high temperatures, we now evaluate the currents nu-
merically via direct integration of Eqs. (1) and (2) without
any further assumption. Our only limitation is the mean-
field approximation, thus neglecting strong electron-electron
correlations in our system. Below, we discuss the isothermal
(θ1 = θ2 = 0) and isoelectric (V1 = V2 = 0) cases separately.
Finally, we consider the general case (V1 = V,θ1 = θ ) for
which, interestingly, pure spin currents can be generated.

A. Voltage-driven transport: isothermal case

In Fig. 2(a), we plot the dimensionless ratio Is/Ic between
the spin-polarized current and the charge flux as a function of
the voltage bias V for a given antidot level position Ed . At
low voltages, we observe a linear dependence of Is/Ic with
V , in agreement with the analytical results. We note that for
θ1 = θ2 = 0 = V2 and V1 = V , the spin-polarized current in
Eq. (19) reduces to

Is = −2e3

h
ηcsct

′V 2 , (23)

while the charge current is simply given by Ic = (2e2/h)tV ,
both to leading order in a voltage expansion for low T . There-
fore, the degree of polarization Is/Ic increases with voltage
for small V . At higher voltages, the polarization decreases
when V is larger than �/e because charge fluctuations are
quenched. In Fig. 2(b), we show the gate tuning of Is/Ic, which
is depicted for a fixed bias. Again, the maximal polarization
is attained when the dot level is above or below the Fermi
energy on the scale of the hybridization width � because
Eq. (23) shows that the spin current is proportional to t ′,
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FIG. 2. (Color online) Plots of Is/Ic versus (a) voltage bias eV/�

at Ed/� = 0.25 and (b) antidot level Ed/� at eV/� = 0.25, for
several background temperatures kBT in the isothermal case. In all
cases, we use η = csc = 0.5 and EF = 0.
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FIG. 3. (Color online) Plots of Js/Jc versus (a) voltage bias
eV/� at Ed/� = 0.2 and (b) antidot level Ed/� at eV/� = 0.25,
for several background temperatures kBT in the isothermal case. In
the inset of (a), an analytic result is shown in comparison with the
numerical one at kBT /� = 0.1. Parameters used are η = csc = 0.5.
Note that since at moderate voltages the Joule heating present in Jc

dominates the spin heat flow quickly becomes a nonlinear function
of V .

which is a function with an energy dependence governed by �

in the Breit-Wigner approximation. Furthermore, our results
show that the polarization decreases when the background
temperature T increases since large temperatures tend to smear
out the energy dependence of the scattering matrix, an essential
ingredient of our spin-filter effect.

Figure 3(a) displays the spin polarization of the heat current,
defined as Js/Jc, as a function of the bias voltage. For small
V in the isothermal case, Eq. (20) yields

Js = −ηcsc(2e2π2/3h)(kBT )2t ′′V 2 . (24)

This can be seen as the leading-order spin-polarized [44]
nonlinear Peltier effect. [72–74] In turn, the heat flux
associated to charge transport is given, to lowest order in V , by
Jc = (2eπ2/3h)(kBT )2t ′V − (e2/h)[t + (π2/6)(kBT )2t ′′]V 2

[we set θ1 = θ2 = 0 = V2 and V1 = V in Eq. (22)], where the
conventional Peltier coefficient and the Joule heating term are
clearly shown. Since the latter dominates even at low V , the
spin polarization quickly departs from the linear dependence,
see the inset of Fig. 3(a). Moreover, we observe an asymmetry
between positive and negative voltages due to the heat
current being, in general, asymmetric with respect to energy
integration due to the μ = EF + eV term in Eq. (2). Recent
experiments with scanning tunneling microscope probes
coupled to molecules attached to substrate precisely observe
an asymmetric heat dissipation in the charge sector [75].
Here, we predict that the same phenomenon will occur for the
spin degree of freedom and that it can be manipulated either
changing the base temperature or the dot level position, see
Fig. 3(b).

B. Temperature-driven transport: isoelectric case

We now consider the case of an applied temperature bias
such as θ1 = θ and θ2 = 0 for equal electrochemical potentials
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FIG. 4. (Color online) Plots of Is/Ic versus (a) thermal gradients
kBθ/� at Ed/� = 0.2 and (b) antidot level Ed/� at kBθ/� = 0.25,
for several background temperatures kBT in the isoelectric case. In
the inset of (a), an analytic result is shown in comparison with the
numerical one at kBT /� = 0.1. We use η = csc = 0.5 and EF = 0.

V1 = V2 = 0. To leading order in a θ expansion, the spin-
dependent current becomes at low T

Is = −ηcsc
(
2eπ2k2

BT /3h
)
(De/Dp)t ′′θ2 . (25)

Similarly to the isothermal case [cf. Eq. (23)], the spin current
is purely nonlinear in the driving field. Nevertheless, unlike the
isothermal case Is in the isoelectric case depends not only on
the particle injectivity but also on the entropic contribution
since the temperature dependence of the transmission is
determined, to leading order, by the carrier energy measured
with regard to EF [33]. We also note that Is vanishes if the
background temperature T tends to zero, thereby our thermal
spin generation has a thermoelectric character like the spin
Seebeck effect [46–48]. In fact, the charge current is simply
given by the thermocurrent expression Ic = (2eπ2k2

BT /3h)t ′θ
up to O(θ ). Hence, the spin-polarization ratio Is/Ic is a linear
function of θ at low θ . This is confirmed with our numerical
results in Fig. 4(a). In Fig. 4(b) we show that the spin-filter
effect can be, to a large extent, tuned with a gate voltage for
a fixed value of θ , which can even reverse the sign of Is/Ic.
In contrast to the isothermal case, the spin-polarization degree
vanishes for very low temperatures except for Ed close to the
leads’ Fermi energy. It is precisely at this energy for which the
isoelectric Is is more sensitive to changes in θ , in agreement
with Eq. (25).

The heat current can also become spin polarized upon
the application of a thermal gradient because the generalized
thermal conductance depends on the spin index, see Eq. (A9).
For θ1 = θ and V1 = V2 = 0 = θ2 we find

Js = −ηcsc
(
2π2k2

BT /3h
)
(De/Dp)t ′θ2 (26)

to leading order in the temperature bias. The heat current due
to charge transport is given by Jc = (2π2k2

BT /3h)tθ + O(θ )2

at low T . Therefore, the ratio Js/Jc is generally nonzero for
increasing θ , see Fig. 5(a). Interestingly, at resonance (Ed =
EF ) the spin polarization of the heat current becomes zero
[Fig. 5(b)] while the electric current counterpart shows a local
maximum [Fig. 4(b)], indicating that the spin-filter mechanism
of a QSH antidot acts differently to electric and heat currents.
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FIG. 5. (Color online) Plots of Js/Jc versus (a) thermal gradi-
ents kBθ/� at Ed/� = 0.3 and (b) antidot level Ed/� at kBθ/� =
0.25, for several background temperatures kBT in the isoelectric case.
In the inset of (a), an analytic result is shown in comparison with the
numerical one at kBT /� = 0.05. We use η = csc = 0.5 and EF = 0.

C. Thermoelectric transport: pure spin currents

We have shown above that thermal gradients can generate
spin-polarized thermocurrents Is �= 0, as a synergistic combi-
nation of thermoelectric and spintronic effects [46–48]. We
now prove that it is even possible to create pure spin currents,
i.e., Is �= 0 for vanishingly small charge current, Ic = 0.
The latter condition can be easily achieved in open-circuit
conditions, in which case a thermovoltage Vth is generated
in response to a temperature bias θ . In Fig. 6(a) we plot the
numerically calculated set of biases {θ,V }, which satisfy the
expression Ic(Vth,θ ) = 0 as a function of θ . As expected,
at low-temperature bias the thermovoltage shows a linear
dependence because the Seebeck coefficient, S = Vth/θ , is
constant for small thermal gradients. With increasing θ , the
thermovoltage acquires a nonlinear component [33,41].
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FIG. 6. (Color online) Plots of generated (a) thermovoltage Vth

versus applied thermal gradient kBθ/� and (b) adiabatic thermal
gradient θad versus voltage bias eV/�, at Ed = 0.1� for several
background temperatures kBT . In the inset of (a), the Seebeck
coefficient with analytic and numerical results at kBT = 0.01�

are shown as a function of resonance level Ed/�. Parameters are
η = csc = 0.5 and EF = 0.
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FIG. 7. (Color online) Plots of (a) pure spin currents Is versus
thermal gradient kBθ/� and (b) pure spin heat currents Js versus
voltage bias eV/�, at Ed/� = 0.25 for several background temper-
atures kBT . The insets compare the analytic and numerical results at
(a) kBT = 0.03� and (b) kBT = 0.02�, where the latter comparison
has been made in a very small bias range where Js is positive. We
use η = csc = 0.5 and EF = 0.

Substituting V with Vth(θ ) in the expression for Is we find
the pure spin current

Is = ηcsc
2eπ2k2

BT

3h

(
π2k2

BT

3

[
t ′t ′′

t
− (t ′)3

t2

]

+ De

Dp

[
(t ′)2

t
− t ′′

])
θ2, (27)

up to leading order in θ . Figure 7(a) shows the numerical results
for pure Is beyond the quadratic regime (the inset displays
a comparison with the analytical results). We observe that
the amplitude of Is first increases as T is enhanced (here, it
is shown from kBT /� = 0.01 to kBT /� = 0.03) and then
decreases (from kBT /� = 0.03 to kBT /� = 0.1), exhibiting
a nonmonotonic behavior with T .

Our device also creates pure spin heat flows using electric
means only. We first solve the equation Jc(V,θad) = 0, which
amounts to adiabatically isolating the sample. This yields a
generated thermal bias θad in response to the applied voltage
V , see Fig. 6(b). θad is an increasing function of V since
a positive thermal gradient compensates the current flowing
through the system. The effect is less pronounced for higher
background temperatures T because more electrons become
thermally excited for increasing T . We then substitute θad(V )
in the Js expression and find,

Js = ηcsc
2e2π2(kBT )2

3h

([
(t ′)2

t
− t ′′

]

+ T
De

Dp

[
t ′t ′′

t
− (t ′)3

t2

])
V 2. (28)

up to leading order in V . We plot in Fig. 7(b) the pure spin
heat current Js as a function of the bias voltage. At low V ,
our numerical results agree with Eq. (28) (see the inset). For
higher voltage, the results are also in qualitative agreement
with Is because |Js | increases to higher values of T (here it is

shown up to kBT /� = 0.1), beyond which the amplitude of
Js starts to decrease.

V. CONCLUSIONS

Two-dimensional topological insulators with controlled
backscattering present a rich spin dynamics, which can be
manipulated with external gate potentials and background tem-
peratures. We have demonstrated that spin-polarized currents
can be generated in a two-terminal quantum spin Hall systems
coupled to normal contacts. Neither Zeeman fields nor ferro-
magnetic materials are needed in the implementation of our
effect. The spin dependence is purely induced by interactions
and arises in the nonequilibrium screening potential of the
conductor in the response to either voltage or temperature
shifts applied to the contacts. Importantly, pure spin currents
can be created using the Seebeck effect. The spin-polarization
mechanism also works for the heat current, in which case
a pure spin heat flow is generated for adiabatically isolated
samples.

Our discussion ignores spin-flip processes and Coulomb
blockade effects. The former will be detrimental to our spin-
filtering operational principle if spin-flip transitions preserve
the momentum [62]. The latter will have a less clear effect.
Our theory shows that the screening potential becomes spin in-
dependent in the noninteracting limit, i.e., C → ∞ in Eqs. (9)
and (10). The spin-filtering effect becomes stronger as C → 0.
Therefore, strong interaction would favor the generation of
spin currents and single-charge effects are expected to maintain
the effects discovered in our work. However, if Coulomb
blockade allows the spin-flip transitions, a more careful analy-
sis should be performed. Spin-increasing and spin-decreasing
transitions have been experimentally reported [76]. In addition,
the impact of spin-blockade phenomena [77] deserves further
investigation.

In general, there is considerable scope to extend our
model and treat different situations. For instance, one could
consider the competition between the spin-polarization effects
discussed here and spin filtering inherent to ferromagnetic
contacts or Zeeman splittings. Inclusion of these influences in
our theoretical model would be straightforward. Another in-
teresting possibility would be the study of the thermodynamic
efficiency, a subject of practical importance that has recently
attracted a good deal of attention, especially in quantum
conductors [78].
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APPENDIX: COEFFICIENTS IN
SOMMERFELD EXPANSION

In a two-terminal setup ignoring the spin-flip scatter-
ing, the current conservation condition gives Aσ

11 = Aσ
22 =

−Aσ
12 = −Aσ

21 = tσ (E), where tσ (E) is the spin-dependent
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transmission probability. One can find linear and nonlinear
coefficients [33,36] in Eqs. (11) and (12) to leading order of
the Sommerfeld expansion:

Gσ
11 = Gσ

22 = −Gσ
12 = −Gσ

21 = e2

h
tσ (EF ), (A1)

Lσ
11 = Lσ

22 = −Lσ
12 = −Lσ

21 = eπ2k2
BT

3h

∂tσ (E)

∂E

∣∣∣∣
EF

, (A2)

Rσ
11 = Rσ

22 = −Rσ
12 = −Rσ

21 = eπ2(kBT )2

3h

∂tσ (E)

∂E

∣∣∣∣
EF

, (A3)

Kσ
11 = Kσ

22 = −Kσ
12 = −Kσ

21 = π2k2
BT

3h
tσ (EF ), (A4)

Gσ
111 = e3

h

∂tσ (E)

∂E

∣∣∣∣
EF

(
1

2
− u1σ

)
, (A5a)

Gσ
122 = e3

h

∂tσ (E)

∂E

∣∣∣∣
EF

(
u2σ − 1

2

)
, (A5b)

Gσ
211 = e3

h

∂tσ (E)

∂E

∣∣∣∣
EF

(
u1σ − 1

2

)
, (A5c)

Lσ
111 = eπ2k2

B

6h

[
∂tσ (E)

∂E
− 2ez1σ T

∂2tσ (E)

∂E2

]
EF

, (A6a)

Lσ
122 = −eπ2k2

B

6h

[
∂tσ (E)

∂E
− 2ez2σ T

∂2tσ (E)

∂E2

]
EF

, (A6b)

Lσ
211 = −eπ2k2

B

6h

[
∂tσ (E)

∂E
− 2ez1σ T

∂2tσ (E)

∂E2

]
EF

, (A6c)

Mσ
111 = − e3

2h

[
∂tσ (E)

∂E
z1σ + π2k2

BT

3e

∂2tσ (E)

∂E2
(u1σ − 1)

]
EF

,

(A7a)

Mσ
121 = e3

2h

[
∂tσ (E)

∂E
z1σ − π2k2

BT

3e

∂2tσ (E)

∂E2
u2σ

]
EF

, (A7b)

Rσ
111 = − e2

2h

[
tσ (E) + π2(kBT )2

6

∂2tσ (E)

∂E2
(4u1σ − 1)

]
EF

,

(A8a)

Rσ
122 = − e2

2h

[
tσ (E) + π2(kBT )2

6

∂2tσ (E)

∂E2
(3 − 4u2σ )

]
EF

,

(A8b)

Rσ
211 = − e2

2h

[
tσ (E) + π2(kBT )2

6

∂2tσ (E)

∂E2
(3 − 4u1σ )

]
EF

,

(A8c)

Kσ
111 = π2k2

B

6h

[
tσ (E) − 2ez1σ T

∂tσ (E)

∂E

]
EF

, (A9a)

Kσ
122 = −π2k2

B

6h

[
tσ (E) − 2ez2σ T

∂tσ (E)

∂E

]
EF

, (A9b)

Kσ
211 = −π2k2

B

6h

[
tσ (E) − 2ez1σ T

∂tσ (E)

∂E

]
EF

, (A9c)

Hσ
111 = e2π2(kBT )2

6h

[
1

eT

∂tσ (E)

∂E
(1 − u1σ )−∂2tσ (E)

∂E2
z1σ

]
EF

,

(A10a)

Hσ
121 = e2π2(kBT )2

6h

[
1

eT

∂tσ (E)

∂E
(1 − u2σ )+∂2tσ (E)

∂E2
z1σ

]
EF

,

(A10b)

where tσ (EF ) = 1 − �1s�2s/|�s |2 with �s = EF − Ed +
i�s/2, �s = �1s + �2s , and s = ± corresponding to σ =↑ , ↓
interchangeably.
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[7] A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko,
X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).
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