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Computational search for direct band gap silicon crystals
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Due to its abundance, silicon is the preferred solar-cell material despite the fact that current silicon materials
have indirect band gaps. Although the band gap properties of silicon have been studied intensively, until now, no
direct band gap silicon-based material has been found or suggested. We report here the discovery of direct band
gap silicon crystals. By using conformational space annealing, we optimize various crystal structures containing
multiple (10 to 20) silicon atoms per unit cell so that their electronic structures become direct band gap. Through
first-principles calculations, we identify many direct and quasidirect band gap crystal structures, which exhibit
excellent photovoltaic efficiency.
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I. INTRODUCTION

Silicon is one of the most abundant elements on Earth,
and silicon-based materials can be produced for lower cost
than any other semiconductor. For this reason, the most
widely used solar-cell materials are all silicon based [1].
Current silicon-based materials, however, have indirect band
gaps, and materials with indirect band gaps do not absorb
or emit light as efficiently as materials with direct band gaps.
Transitions to and from an indirect conduction band only occur
via momentum-conserving phonons. Thus silicon solar cells
are hundreds of microns thick, while solar cells made from
direct band gap materials (such as CdTe, CIGS, or CZTS)
can efficiently absorb light even with a very thin (∼1 micron)
layer. Also, indirect band gap semiconductors are less likely to
absorb light at low temperatures where the phonon populations
are low.

Computational methods are revolutionizing the engineering
of materials [2]. It is now possible to use computer simulations
to design new materials that possess predefined structural and
electronic properties. Examples include band gap engineering,
alloy design, superconductivity design, and the designing of
superhard materials [3–7]. Recently, Botti et al. proposed
low-energy silicon structures that have quasidirect and dipole-
allowed band gaps in the range of 0.8 to 1.5 eV for applications
in thin-film solar cells [8]. Also, Xiang et al. suggested
a quasidirect band gap silicon structure with better optical
properties than diamond silicon, the so-called cubic structure
Si20-T, containing 20 silicon atoms per simple cubic unit
cell [9]. They tried to obtain silicon structures with efficient
optical properties, penalizing optically forbidden transitions,
by carrying out a conformational search with the particle-
swarm optimization algorithm. Yet due to the inefficiency of
earlier global optimization methods and the common belief
that it is impossible to design a direct band gap silicon-based
material, until now no one has identified or suggested a direct
band gap silicon-based material, which with a sunlike spectrum
would efficiently absorb solar energy.
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In this work, we report an approach, which advances design
of materials and use it to search for direct band gap silicon
crystals. By efficiently exploring the solution space of atomic
positions and the shape of crystal unit cell, we find many stable
direct band gap crystalline silicon structures. Calculations
based on quantum mechanics show that the optical properties
of the designed crystals with direct and quasidirect band gaps
are more efficient than those of indirect band gap structures,
demonstrating that our approach is superior to the existing
methods.

II. METHODS

The goal of computational materials design is to find mate-
rials with specific desirable properties, and many scientists
have proposed to solve the inverse problem of materials
characterization [3–6]. In our case, we search for a crystalline
silicon phase with a direct band gap in its electronic structure.
Potential candidate structures can be generated either in a
random fashion or in a grid search for small systems. However,
as shown in the Lennard-Jones cluster problem, the number of
local energy minima of a combinatorial optimization problem
typically scales exponentially with system size [10,11], and so
the aforementioned search methods do not work properly for
medium to large size problems. Therefore, to draw meaningful
conclusions from a computational materials design study, one
should start with the energy landscape of the intended material
represented as accurately as possible, and then explore the
landscape by applying the best available sampling strategy. For
sampling, we use conformational space annealing (CSA) to
generate many distinct low-energy silicon crystals with direct
band gaps. CSA has been successfully applied to various dif-
ficult combinatorial optimization problems including protein
structure prediction [11–14]. Here, we develop a variant of
the CSA algorithm for inverse band structure design [3], in
which we optimize the crystalline silicon structure through the
enthalpy minimization by using first-principles calculations,
and use its electronic structure, also calculate in the ab initio
fashion, for the selection of direct band gap solutions.

The details of CSA are given elsewhere [11,12], but here we
provide a brief description. To apply CSA, three ingredients
are needed: a local minimizer, a way to generate a daughter
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TABLE I. For each structure, the lattice type, the number of atoms per unit cell, the volume per atom, the energy per atom relative to
diamond Si, the direct gap size (Ed

g ), and the indirect gap size (Ei
g) are shown, based on the PBE calculations. Lattice types are abbreviated, such

as tc: triclinic, bcm: base-centered monoclinic, or: orthorhombic, pm: primitive monoclinic, bct: body-centered tetragonal, sc: simple cubic,
bcc: body-centered cubic, rho: rhombohedral, and fcc: face-centered cubic. Q135 is classified as a quasidirect gap semiconductor according to
the quasiparticle calculation, while it is of direct gap according to the PBE functional. All eight direct gap structures shown in the top eight
rows are confirmed as direct gap semiconductors in both calculations.

Structure Lattice Atoms (Å3/atom) (eV/atom) r (Å), σr (Å) θ (◦), σθ (◦) Ed
g (eV) Ei

g (eV) Space group Ref.

D262 pm 10 21.02 0.08 2.37, 0.04 109.26, 8.17 0.29 P 21/m (No. 11)
D12 or (C) 10 21.56 0.13 2.37, 0.01 108.98, 11.19 0.50 Cmmm (No. 65)
D239 tc 10 22.72 0.16 2.37, 0.03 108.69, 13.50 0.77 P 1 (No. 1)
D63 bcm 12 21.10 0.12 2.37, 0.04 109.09, 9.76 0.66 C2/m (No. 12)
D135 bcm 12 21.24 0.22 2.38, 0.05 108.42, 14.73 0.64 Cc (No. 9)
D243 tc 12 21.88 0.29 2.38, 0.04 107.29, 18.42 0.61 P 1 (No. 1)
D76 bcm 20 21.70 0.13 2.37, 0.03 109.01, 10.59 0.57 C2 (No. 5)
D979 tc 20 21.17 0.29 2.38, 0.05 108.56, 18.40 0.60 P 1 (No. 1)
Q130 bcm 12 21.86 0.08 2.37, 0.02 108.97, 9.78 0.64 0.63 C2/m (No. 12)
Q135 bcm 12 21.50 0.15 2.37, 0.04 108.95, 11.78 0.93 C2/c (No. 15)
Q465 tc 12 21.85 0.13 2.37, 0.02 109.06, 13.63 1.25 1.23 P 1̄ (No. 2)
Q1102 pm 12 21.55 0.14 2.37, 0.02 109.19, 13.97 1.33 1.20 Pc (No. 7)
Q419 tc 12 22.25 0.20 2.38, 0.03 108.71, 14.11 1.26 1.11 P 1 (No. 1)
Q8 tc 14 20.35 0.30 2.39, 0.05 108.84, 17.19 0.65 0.56 P 1 (No. 1)
Q57 tc 14 21.55 0.34 2.39, 0.05 107.77, 18.95 0.34 0.23 P 1 (No. 1)
Q1377 tc 16 21.15 0.28 2.39, 0.05 108.23, 14.43 0.34 0.26 P 1 (No. 1)
Q913 tc 18 20.83 0.26 2.38, 0.05 108.56, 16.63 0.91 0.77 P 1 (No. 1)
Q833 tc 18 20.94 0.26 2.38, 0.03 108.07, 15.59 0.73 0.69 P 1 (No. 1)
Q1023 tc 18 20.37 0.28 2.40, 0.06 106.15, 17.60 0.30 0.17 P 1 (No. 1)
Q50 tc 18 20.54 0.31 2.39, 0.06 108.82, 17.99 0.51 0.41 P 1 (No. 1)
Q78 or 20 21.64 0.11 2.37, 0.01 109.26, 11.42 0.74 0.69 Pma2 (No. 28)
Q636 tc 20 20.89 0.15 2.38, 0.04 109.09, 10.79 0.96 0.84 P 1 (No. 1)
Q736 tc 20 20.89 0.16 2.37, 0.04 109.26, 11.07 0.92 0.78 P 1 (No. 1)
Q85 tc 20 20.11 0.21 2.38, 0.05 109.13, 13.15 0.69 0.58 P 1 (No. 1)
Q202 tc 20 20.13 0.22 2.38, 0.05 109.41, 12.55 0.47 0.43 P 1 (No. 1)
Q7 tc 20 20.43 0.22 2.38, 0.05 109.16, 13.38 0.54 0.44 P 1 (No. 1)
Q108 tc 20 21.19 0.23 2.38, 0.05 108.74, 13.74 0.69 0.67 P 1 (No. 1)
Q660 tc 20 20.95 0.30 2.39, 0.06 106.53, 18.76 0.34 0.31 P 1 (No. 1)
I391 pm 12 22.29 0.12 2.37, 0.02 109.15, 11.31 1.09 0.91 P 21/m (No. 11)
I512 pm 12 22.61 0.16 2.37, 0.02 108.65, 12.58 1.12 0.95 Pm (No. 6)
I241 pm 12 18.33 0.18 2.39, 0.01 108.48, 16.45 1.08 0.85 P 21/c (No. 14)
I1373 bct 14 21.73 0.06 2.37, 0.02 109.19, 8.30 1.66 1.29 I 4̄ (No. 82)
I713 tc 14 21.67 0.26 2.38, 0.05 108.62, 14.78 0.75 0.43 P 1 (No. 1)
I844 tc 14 20.99 0.28 2.38, 0.04 107.76, 18.10 0.86 0.70 P 1 (No. 1)
I926 bcm 16 21.47 0.07 2.37, 0.02 109.32, 7.80 1.31 1.10 C2/m (No. 12)
I1229 tc 16 20.61 0.11 2.37, 0.04 109.20, 9.18 0.89 0.62 P 1̄ (No. 2)
I1233 tc 16 20.76 0.16 2.37, 0.03 108.84, 10.93 1.00 0.69 P 1 (No. 1)
I671 tc 18 20.68 0.14 2.38, 0.04 109.21, 10.68 1.34 0.97 P 1 (No. 1)
I617 tc 18 21.22 0.23 2.38, 0.04 108.99, 15.13 0.56 0.38 P 1 (No. 1)
I83 tc 18 20.65 0.25 2.38, 0.05 108.93, 15.16 0.79 0.50 P 1 (No. 1)
I16 pm 20 20.72 0.12 2.37, 0.04 109.23, 9.30 0.92 0.68 P 21 (No. 4)
I257 tc 20 20.58 0.16 2.38, 0.04 109.20, 10.96 0.80 0.63 P 1 (No. 1)
Si20-T sc 20 21.35 0.29 2.36, 0.01 109.03, 19.02 0.99 0.97 P 213 (No. 198) [9]
NaSi6 w/o Na or 12 21.97 0.09 2.37, 0.01 109.00, 10.08 0.58 0.50 Cmcm (No. 63) [22]
Si-III (BC8) bcc 8 18.44 0.16 2.38, 0.02 108.23, 9.52 −0.12 Ia3̄ (No. 206) [23]
Si-XII (R8) rho 8 18.20 0.16 2.38, 0.02 107.67, 13.02 −0.28 R3̄ (No. 148) [24]
clathrate-I sc 46 23.24 0.06 2.37, 0.01 109.34, 5.07 1.312 1.307 Pm3̄n (No. 223) [25]
a-Si 0.28 2.38, 0.08 108.32, 15.5 [26]
a-Si 0.25 2.35, 0.09 108.64, 14.04 [27]
a-Si 108.6, 11.3 [28]
diamond Si
calc. fcc 2 20.46 0.00 2.37, 0.00 109.47, 0.00 2.56 0.62 Fd3̄m (No.227)
expt. 20.01 3.40 1.17 [29]
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solution from one or two parent solution(s), and finally, a
measure to estimate the difference between two solutions. CSA
follows multiple trajectories of local minima and, in a broad
sense, belongs to the genetic algorithm category [15]. The
immediate goal of CSA is to generate many distinct low-energy
local minima, and special care is applied to control the diversity
of the sampled population. Annealing is performed in an
abstract solution space, so that in the early stage of the
algorithm, diversity of the population is kept rather high, and
in later stages, low-energy and yet diverse solutions are kept.
The key difference of the current sampling approach from the
usual CSA is that enthalpy minimization is performed while
the objective function for the CSA procedure is the band gap
size of the electronic structure.

The simple objective function used in this study is −Ei
g +

max[0,(Ed
g − Ei

g)], where the direct and indirect band gap
sizes in the electronic structure are denoted by Ed

g and Ei
g ,

respectively. It is easy to anticipate that the objective function
favors a large indirect band gap and simultaneously a small
direct band gap. For a given number of silicon atoms (n = 10,
12, 14, 16, 18, and 20) per unit cell, the degrees of freedom
include the set of silicon atomic positions { �RI } and six lattice
parameters (a, b, c, α, β, and γ ). The volume of the unit cell
is allowed to fluctuate by as much as 12% from its theoretical
value in diamond silicon, namely 20.46 Å3/atom.

Suppose we want to explore the conformational space of a
silicon crystal with n = 12 atoms. CSA starts with N = 20
conformations, which are randomly generated in the unit
cell. Each conformation is then subjected to a subsequent
local minimization procedure (the first ingredient of CSA, see
above). For given ionic positions, the enthalpy of the system is
minimized at zero pressure by performing density functional
calculations, [16] which employ the functional form of Perdew,
Burke, and Ernzerhof (PBE) [17] for the exchange-correlation
potential and the projector augmented wave potentials [18]
as implemented in the VASP code [19]. Using a �k-point mesh
with a grid spacing of 2π × 0.02 Å−1, we repeat the iterative
procedure until all the forces and stress tensors are less than
0.01 eV/Å and 1.5 kbar, respectively. When the ions are
repositioned, the electronic structure is recalculated, which
again affects the ionic positions and lattice parameters, and so
on. To avoid core-core repulsion between the ions, special
care must be paid to prevent a situation where two ions
come too close to each other, which may ruin the quantum
computation by causing an anomalous divergence. Prior to
each first-principles calculation, unfavorable ionic positions
causing core-core overlap are adjusted by performing short
Monte Carlo simulations [20], where the maximum size of
positional perturbation is set to one-half of the Wigner-Seitz
radius.

For the second ingredient of CSA, mutation and crossover
are carried out to generate daughter conformations. Crossover
is performed in the same manner as CSA was applied to
Lennard-Jones clusters [11]. All daughter conformations are
subsequently minimized as described above. As the distance
measure between two given solutions (the final ingredient
of CSA), we use the square root of the Hamming distance
between two vectors, where vectors represent the sorted bond
lengths between silicon atoms. Bond lengths are generated

from the crystal structure constructed by 2 × 2 × 2 expansion
of the unit cell.

The key CSA procedure is as follows: at each stage,
N = 20 locally minimized solutions constitute the sampling
population. For each newly generated daughter solution σ ,
out of N = 20 current populations, the closest one to σ is
identified, which is called �. If the distance between σ and �

(Dσ�) is less than the current annealing parameter Dcut, σ is
considered to be similar to �, and σ can replace � if it is better
in the objective function value (otherwise σ is discarded). But,
if Dσ� � Dcut, σ can replace the worst objective function value
solution in the population. It is easy to picture that the diversity
of the sampling population can be controlled by Dcut. We set
Dcut to a large value in the early stages of the procedure, and
then gradually reduce it to smaller values. For each minimized
solution, first-principles electronic structure calculations are
performed to accurately estimate the band gap sizes (Ed

g and
Ei

g) and then obtain the objective function value, which is
used in the above CSA procedure. In this case, Kohn-Sham
eigenvalues [21] are calculated on the high resolution �k-point
mesh with grid spacings of 2π × 0.01 ∼ 2π × 0.02 Å−1,

FIG. 1. (Color online) Bond length, bond angle, and dihedral
angle distributions are shown for cubic diamond, clathrate-I, D12,
D63, D76, and D135.
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corresponding to about 1000 ∼ 2000 �k points in the irreducible
Brillouin zone.

III. RESULTS AND DISCUSSION

Considering up to n = 20 atoms in a unit cell, without using
any specific knowledge of other existing silicon crystalline
structures, we obtain many promising low-energy metastable
structures, including eight direct gap crystals and 20 quasidi-
rect gap crystals (Ei

g < Ed
g � Ei

g + 0.15 eV), as shown in
Table I. The optical properties of some of them are found
to be excellent, as will be discussed later. For comparison,
the previously proposed structure of Si20-T with a quasidirect
band gap [9], amorphous silicon (experiment and calculation),
and experimentally observed silicon structures including cubic
diamond are also given. Note that the six newly designed direct
gap structures are all energetically more stable than Si20-T and
amorphous silicon.

When bond length, bond angle, and dihedral angle distri-
butions are calculated, we observe that many designed silicon
structures are superior to Si20-T and amorphous silicon in

FIG. 2. (Color online) Bond length, bond angle, and dihedral
angle distributions are shown for D262, Q135, I926, NaSi6 clathrate
without Na (Ref. [22]), Si-III (BC8), and Si-XII (R8).

FIG. 3. Atomic structures of (a) D135, (b) Q135, and (c) I926 are
shown. No coordination defects are found.

terms of local geometry, with smaller deviations of bond
lengths and bond angles from their ideal values. In fact, we
find that the total energy with respect to diamond silicon can
be well fitted to 	E = pσr + qσθ with p = 1.43 eV/Å and
q = 0.0108 eV/deg, showing that the excess energy arises
mostly from the bond angle deviation from its ideal value. The
dihedral angle, on the other hand, is distributed rather broadly,
like an almost flat distribution. An analysis of the newly
discovered silicon crystal structures, in terms of coordination
numbers, bond lengths, bond angles, dihedral angles (Figs. 1
and 2), shows that they are semiconductors with stable local
geometries and strong covalent bonds. We point out that the
predicted structures are all crystalline, with well-defined space

FIG. 4. (Color online) (a) Total energy (eV/atom) vs atomic
volume curves plotted for cubic diamond, β-Sn, bct5, D135, Q135,
and I926. (b) The characteristic band gap size dependence on the
external pressure is shown for D135, Q135, I926, and diamond Si.
D135 undergoes a transition from direct band gap to indirect band gap
at pressures above 106 kbar. Also, at pressures below −51 kbar, D135
becomes indirect. Black symbols represent the indirect band gap of
diamond Si, which decreases more rapidly than D135 as pressure
increases.
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groups by 10 to 20 silicon atoms in the unit cell (Table I).
Moreover, they exhibit very sharp peaks in the distribution
of bond lengths due to the fourfold coordination, while the
bond-length distribution is broad and coordination defects
exist in the amorphous Si.

Relating to the structural and optical properties, we focus
on the three structures, D135, Q135, and I926, which have
the direct, quasidirect, and indirect gaps, respectively. These
structures contain no coordination defects, but do have slightly
distorted tetrahedral bonds, as shown in Fig. 3. The amounts
of distortions are represented by the deviations of bond
lengths and bond angles from their ideal values (Table I).
Due to the bond angle fluctuation (σθ = 14.73◦, 11.78◦, and
7.80◦ for D135, Q135, and I926, respectively), the internal
energies of D135, Q135, and I926 are higher by 0.22, 0.15,
and 0.07 eV/atom, respectively, compared with diamond Si,
but lower than those for β-Sn, body-centered tetragonal 5
(bct5) [30], and amorphous Si (Fig. 4 and Table I). The lattice
mismatches of direct gap silicon crystals with diamond Si are
all rather small (1% ∼ 4% in Table I), especially, only off by
1.3% for D135 and 1.7% for Q135.

As mentioned earlier, the enthalpy is minimized to find tar-
get structures, which only warrants that the obtained structures
are stable at zero temperature. For this reason, we examine

FIG. 5. (Color online) The phonon dispersion and phonon den-
sity of states are shown for (a) D135, (b) Q135, and (c) I926. The
phonon density of states of amorphous Si (a − Si) is taken from
Ref. [32].

FIG. 6. (Color online) The thermal stability of D135 and Q135
is examined by performing first-principles molecular dynamics
simulations for 200 ps at temperatures 500 and 900 K for D135
and Q135, respectively. Potential energy fluctuations are obtained for
a supercell containing 96 atoms (eight unit cells).

the structural stability of D135 and Q135 at the ambient
condition in two ways. First, we carry out first-principles
lattice dynamics calculations [31]. To calculate the dynamical
matrix, we use a sufficiently fine-meshed grid so that the sum
rule is not needed to correct errors in atomic forces. The
phonon density of states is calculated by using the �k-points
generated by the 20 × 20 × 20 mesh. The phonon spectra of
D135 and Q135 display no imaginary phonon modes in the
Brillouin zone (Fig. 5). Secondly, we perform first-principles

FIG. 7. The PBE electronic band structures of (a) D135, (b) Q135,
and (c) I926 are shown near the Fermi level. The Bravais lattices of
D135, Q135, and I926 are base-centered monoclinic.

115209-5



LEE, LEE, OH, KIM, AND CHANG PHYSICAL REVIEW B 90, 115209 (2014)

TABLE II. The estimated photovoltaic parameters for eight designed silicon crystal structures are listed. The optical type, the band gap,
the fraction of radiative electron-hole recombination current parameter (fr ), the film thickness (L), the open circuit voltage (Voc), the voltage
at the maximum power (Vmax), and the spectroscopic limited maximum efficiency (SLME) [38] are shown. Here, Ed

g (G0W0 − BSE) and
Eop

g (G0W0 − BSE) denote the direct transition gap and the optically allowed transition gap in the G0W0 and BSE calculations, respectively.

Structure Type Ed
g (G0W0 − BSE)(eV) Eop

g (G0W0 − BSE)(eV) fr L(μm) Voc(V) Vmax(V) SLME(%)

D135 OT1 0.98 0.98 1 0.5 0.75 0.67 29.71
D63 OT1 1.01 1.01 1 0.5 0.78 0.69 29.17
Q130 OT3 1.01 1.01 0.80 0.5 0.78 0.69 26.64
Q135 OT3 1.33 1.33 2.6 × 10−2 0.5 0.99 0.89 29.77
I926 OT3 1.68 1.68 8.9 × 10−6 0.5 1.10 1.01 22.37
Q465 OT4 1.69 1.70 6.3 × 10−2 0.5 1.34 1.24 22.32
Q1102 OT3 1.70 1.70 2.4 × 10−3 0.5 1.26 1.17 25.29
Q419 OT3 1.64 1.64 2.2 × 10−3 0.5 1.20 1.10 26.38
Q78 OT3 1.06 1.06 0.18 0.5 0.71 0.63 25.70
Q636 OT3 1.31 1.31 4.5 × 10−3 0.5 0.92 0.83 28.02

molecular dynamics simulations at temperatures 400∼900 K.
We observe that D135 is stable over 200 ps at 500 K, much
higher than the usual solar-cell operating temperature, with
atomic fluctuations within 0.176 ± 0.077 Å (Fig. 6). D135
is observed also quite stable up to about 80 ps at 800 K,
but the structure is transformed into Q135 with the slightly
lower energy (Table I). The structural change is involved with
breaking two long Si–Si bonds (2.49 Å) in proximity and
reforming two shorter bonds (2.46 Å) in the primitive unit cell,
and the final atomic structure of Q135 is quite similar to that
of D135. Moreover, when molecular dynamics simulations are
performed at the high temperature of 900 K, Q135 is found
to be stable up to 200 ps, which is much longer than previous
simulation times of ∼10 ps [9].

The band gap variation against external pressure is shown
for D135, I926, and diamond silicon in Fig. 4(b). We find that
the direct band gap of D135 is fairly stable upon the increase

FIG. 8. (Color online) The imaginary part of the dielectric func-
tion ε2(ω) is shown as a function of photon energy. Data for D135
(red), Q135 (blue), and I926 (yellow) are shown in color and the
solar spectrum (Ref. [37]) in gray. Diamond Si, amorphous Si, and
polycrystalline Si are respectively denoted as c-Si, a-Si, and p-Si.
The absorption of I926 is shown to be as good as a-Si probably due
to rather small difference between the direct and indirect band gaps
(Ed

g − Ei
g = 0.24 eV).

of external pressure. This particular pressure dependence of
the band gap rules out the possibility that the direct band
gap nature of D135 arises from the folding of the Brillouin
zone. For D135, as the external pressure exceeds 106 kbar, the
band gap changes from direct to indirect. On the contrary, in
the cubic diamond case, the indirect band gap size decreases
more rapidly with increasing pressure. The band structures of
D135, Q135, and I926 calculated by using the PBE exchange-
correlation functional are shown in Fig. 7. In D135, the direct
band gap with the size of 0.64 eV is located at the Brillouin
zone center, while it increases to 1.05 eV in quasiparticle G0W0

FIG. 9. (Color online) (a) The spectroscopic limited maximum
efficiency (SLME) [38] is calculated as the function of film thickness
L for D135, D63, Q130, Q135, Q78, Q1102, Q465, and I926. For
D135, SLME reaches 29.71% at the film thickness of L = 0.5 μm.
(b) The photovoltaic efficiency of D135 is shown along with other
designed silicon crystals (Table II) and top five systems (CuInTe2,
CuInSe2, AgInTe2, AgInSe2, and CuGaSe2) proposed by Yu and
Zunger [38]. For comparison, the theoretical upper limit (Shockley-
Queisser efficiency limit) is also shown.
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FIG. 10. The variation of the quasiparticle G0W0 band gap is
plotted with respect to the energy cutoff for D135.

calculations [33]. On the other hand, I926 has the indirect
band gap of 1.10 eV, with the valence band edge lying on the
�-Y symmetry line and the conduction band edge at the N

point in the Brillouin zone. With the PBE functional, Q135
reveals the direct gap of 0.93 eV at the � point, which is larger
by about 0.3 eV than that of D135. However, quasiparticle
G0W0 calculations show that the conduction band minimum is
located at the Y point. Thus, the band gap becomes quasidirect,
with the size of 1.31 eV, while the direct gap is 1.40 eV at the
� point.

To investigate the optical absorption spectrum, which is
relevant to photovoltaic absorption, we calculate the imaginary
part of the dielectric function ε2(ω) by solving the Bethe-
Salpeter equation [34] together with the quasiparticle G0W0

approximation [33], as implemented in the VASP code [35,36].
We obtain the numerical convergence of quasiparticle band
gaps and optical absorption spectrum by varying various
computational parameters, as described in Appendix A. It is

FIG. 11. (Color online) For D135, the variation of the imaginary
part of the dielectric function is plotted with respect to (a) the �k-point
grid and (b) the number of bands considered in the BSE calculations.
In (b), n1 and n2 in parentheses (n1,n2) denote the numbers of
occupied and unoccupied bands around the Fermi level, respectively.

TABLE III. The lattice parameters of the D135, Q135, and I926
structures.

Structure a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

D135 13.88 5.69 7.10 90 114.64 90
Q135 14.06 5.66 7.22 90 63.92 90
I926 7.60 7.73 11.84 90 80.96 90

noted that the direct transition gap in absorption spectrum is
slightly smaller than the quasiparticle band gap due to the
exciton effect (Table II). In Fig. 8, ε2(ω) is shown for D135,
Q135, and I926, along with the solar spectrum. Data for
various silicon phases including diamond Si, amorphous Si,
and polycrystalline Si are also included for comparison. The
measured dielectric function via spectroscopic ellipsometry
is taken from Ref. [37]. The absorption spectrum of D135
exhibits a significant overlap with the solar spectrum and thus
an excellent photovoltaic efficiency, with great improvements
over amorphous Si, polycrystalline Si, and diamond Si. In
Q135, overall the absorption spectrum shifts by about 0.3 eV
toward the higher energy due to the larger band gap. Since
the characteristics of dipole-allowed transitions around the
Brillouin zone center are similar to those for D135, Q135 still
exhibits good solar absorption spectrum. For D135 and Q135,
the photovoltaic efficiencies [38] are estimated to be 29.71%
and 29.77%, respectively (Table II and Fig. 9). It should be
noted that the Shockley-Queisser limit [39] of the solar cell
efficiency is 33.7%. On the other hand, the absorption spectrum
of I926 is similar to that of amorphous Si. The difference
between D135 and I926 in the absorption spectrum clearly
indicates that the direct gap of D135 does not simply result
from the band-folding effect. Since D135, Q135, and I926 are
all crystalline in their structures without coordination defects
(Wyckoff positions of atoms are given in Appendix B), they do
not suffer from degradation in solar cells, unlike the amorphous
Si.

IV. CONCLUSIONS

In conclusion, we have predicted crystalline silicon phases
with direct gaps by combining the conformational space
annealing (CSA) method for global optimization and the first-
principles density functional calculations, and also identified
many additional quasidirect gap structures. We have shown
that the band gap characteristics of Si can be modified by
varying the dihedral-angle distribution while keeping strong
and stable covalent bonds between the Si atoms, so that special

TABLE IV. Wyckoff positions of atoms in D135.

Site Fractional coordinates

4a 0.761 51 0.225 54 0.815 02
4a 0.513 44 0.356 94 0.336 21
4a −0.020 03 0.456 10 0.250 93
4a 0.082 46 0.154 20 0.203 16
4a 0.864 88 0.427 73 0.419 62
4a 0.327 74 0.413 92 0.075 04
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TABLE V. Wyckoff positions of atoms in Q135.

Site Fractional coordinates

8f 0.091 06 0.960 31 0.436 88
8f 0.193 81 0.302 10 0.424 71
8f 0.159 08 0.672 85 0.581 73

arrangements of the atoms in the unit cell lead to direct gap
electronic structures. Our approach opens new perspectives for
the inverse design of materials by providing high efficiency in
search for superior materials with preassigned properties.
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APPENDIX A: CONVERGENCE TEST
OF QUASIPARTICLE BAND GAP AND OPTICAL

ABSORPTION SPECTRUM

We test the numerical convergence of quasiparticle band
gap and optical absorption spectrum by varying various
computational parameters. It was shown that band gaps vary
with the energy cutoff and the numbers of occupied and
unoccupied bands used in quasiparticle calculations [40].

TABLE VI. Wyckoff positions of atoms in I926.

Site Fractional coordinates

8j 0.697 04 0.251 95 0.204 52
8j 0.417 52 0.261 20 0.324 04
4i 0.882 95 0.000 00 0.447 44
4i 0.603 79 0.000 00 0.565 80
4i 0.366 75 0.000 00 0.896 94
4i 0.685 95 0.000 00 0.899 21

The optical absorption spectrum obtained by solving the
Bethe-Salpeter equation (BSE) is also sensitive to the numbers
of �k points and bands used. For D135, the quasiparticle band
gap and optical absorption spectrum are calculated by using
the VASP code (ver. 5.3.3). With the parameters of 180 eV, 180,
and 6 × 6 × 6 for the energy cutoff, the number of bands,
and the �k-point grid, respectively, the G0W0 band gap is
accurate to within 0.01 eV. As the energy cutoff increases
from 180 to 300 eV, the quasiparticle gap decreases only by
0.01 eV, as shown in Fig. 10. Moreover, the quasiparticle
gap remains almost unchanged even if the fine 8 × 8 × 8
�k-point grid is used. We note that the absorption spectrum
is sensitive to the numbers of occupied and unoccupied
bands in the high energy region above 5 eV, while it is
rather insensitive to the �k-point grid (Fig. 11). With the same
parameters of 180 eV and 6 × 6 × 6 for the energy cutoff
and the �k-point grid, respectively, we find that the absorption
spectrum is well converged with the choice of 12 occupied
and 16 unoccupied bands around the Fermi level. Therefore
our calculations ensure that the solar absorption spectra of the
designed materials are properly described for energies below
5 eV.

APPENDIX B: STRUCTURAL INFORMATION ON D135,
Q135, AND I926

The lattice parameters and Wyckoff positions of D135,
Q135, and I926 are given in Tables III–VI.
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