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Topological zero modes and Dirac points protected by spatial symmetry and chiral symmetry
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We explore a new class of topologically stable zero-energy modes which are protected by coexisting chiral
and spatial symmetries. If a chiral-symmetric Hamiltonian has an additional spatial symmetry such as reflection,
inversion, and rotation, the Hamiltonian can be separated into independent chiral-symmetric subsystems by
the eigenvalue of the space symmetry operator. Each subsystem supports chiral zero-energy modes when a
topological index assigned to the block is nonzero. By applying the argument to Bloch electron systems,
we detect band touching at symmetric points in the Brillouin zone. In particular, we show that Weyl nodes
appearing in honeycomb lattice (e.g., graphene) and in half-flux square lattice are protected by threefold and
twofold rotation symmetry, respectively. We also present several examples of Dirac semimetal with isolated
band-touching points in three-dimensional k space, which are protected by combined symmetry of rotation and
reflection. The zero-mode protection by spatial symmetry is distinct from that by the conventional winding
number. We demonstrate that symmetry-protected band touching points emerge even though the winding number
is zero. Finally, we identify relevant topological charges assigned to the gapless points.
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I. INTRODUCTION

The chiral symmetry is one of the fundamental symmetries
used to classify the topological states of matter [1–3]. The sym-
metry relates positive and negative parts in the energy spec-
trum, and a nontrivial topological nature is linked to a singular
property at zero energy. The chiral symmetry is also called sub-
lattice symmetry, because the bases are divided into two sublat-
tices with different eigenvalues of the chiral operator � = +1
and −1, and the Hamiltonian has no matrix elements inside
the same sublattice group. The difference between the number
of sublattices of � = +1 and −1 is a topological index which
cannot change continuously. A nontrivial index indicates the
existence of topologically protected zero-energy modes. If the
chiral Hamiltonian is defined in a phase space, on the other
hand, we have another topological invariant defined by a wind-
ing number (Berry phase) for a closed path [1,4–7]. Nonzero
winding number is also a source of topological objects such
as band touching points and zero-energy boundary modes.

A chiral-symmetric system frequently comes with other
material-dependent spatial symmetry such as reflection, ro-
tation, and inversion. Recent progress in the study on the
topological phase has revealed that the existence of the spatial
symmetry enriches the topological structure of the system
[8–17]. The spatial symmetry often stabilizes the band touch-
ing points which are otherwise unstable. For example, the
reflection symmetry defines topological crystalline insulators
with mirror Chern numbers [11], where an even number of
stable Dirac cones exist on the surface [18–20], which are gen-
erally unstable in the ordinary topological insulators [21,22].
We have a similar situation in Weyl semimetals in three
dimensions [23–25]. Weyl semimetals have stable gapless
low-energy excitations that are described by a 2 × 2 Weyl
Hamiltonian, and the spectrum is generally gapped out when
two Weyl nodes with opposite topological charges merge
at the same k point. In the presence of additional spatial
symmetry, however, we may have Dirac semimetals with
gapless low-energy excitations described by a 4 × 4 Dirac

Hamiltonian [26–29], and it has been confirmed experimen-
tally in Cd3As2 and Na3Bi [30–32]. Generally, a zero-energy
mode or gapless mode in a band structure is topologically
stable when it is realized as an intersect of constraints
given by the secular equation in momentum space [33,34].
Sophisticated topological arguments based on the K theory
enable us to classify possible intersects systematically as
topological obstructions, predicting gapless modes consistent
with the spatial symmetries [35–37].

In this paper, we find a new class of zero-energy modes
protected by the coexistence of chiral symmetry and spatial
symmetry. If a chiral-symmetric system has an additional
symmetry such as reflection, inversion, and rotation, the
Hamiltonian can be block diagonalized into the eigenspaces
of the symmetry operation, and each individual sector is
viewed as an independent chiral-symmetric system. There
we can define a topological index as the difference between
the numbers of sublattices, and a nonzero index indicates the
existence of chiral zero-energy modes in that sector. As a
result, the number of total zero-energy modes are generally
larger than in the absence of the spatial symmetry.

If we apply the argument to Bloch electron systems, we can
detect the existence of zero-energy band touching at symmetric
points in the Brillouin zone. This argument predicts the
existence of gapless points solely from the symmetry, without
even specifying the detail of the Hamiltonian. In particular,
we show that the Dirac nodes appearing in a two-dimensional
(2D) honeycomb lattice (e.g., graphene) and in a half-flux
square lattice are protected by threefold (C3) and twofold (C2)
rotation symmetry, respectively. We also present examples of
Dirac semimetal with isolated band-touching points in three-
dimensional (3D) k space, which are protected by rotation
and reflection symmetry. The zero-mode protection by spatial
symmetry is distinct from that by the conventional winding
number, and we actually demonstrate in several concrete
models that symmetry-protected band touching points emerge
even though the winding number is zero.
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In the last part of the paper, we list and classify all inde-
pendent topological invariants associated with a given Dirac
point under chiral and spatial symmetries. They consist of
winding numbers and topological indices (sublattice number
difference) of the subsectors of the spatial symmetry operator,
with the redundant degrees of freedom removed. If the spatial
symmetry is of order two (i.e., two times of operation is
proportional to identity, like reflection and inversion), we can
use the K theory with Clifford algebra to identify how many
quantum numbers are needed to label all topologically distinct
phases [35–37]. We explicitly show that a set of independent
winding numbers and topological indices serves as complete
topological charges found in the K theory.

The paper is organized as follows. In Sec. II, we present
a general formulation for zero modes protected by the
coexistence of chiral symmetry and spatial symmetry. We
then discuss protection of the Dirac points in C3 symmetric
crystals in Sec. III and that in C2 symmetric crystals in Sec. IV,
respectively. We also argue line-node protection by additional
reflection symmetry in Sec. V. Several examples of 3D Dirac
semimetal are studied in Sec. VI. In Sec. VII, we identify
independent topological charges assigned to gapless points and
clarify the relation to the classification theory using Clifford
algebra. Finally, we present a brief conclusion in Sec. VIII.

II. GENERAL ARGUMENTS

We first present a general argument for zero modes
protected by a space symmetry in a chiral-symmetric system.
We consider a Hamiltonian H , satisfying

[H,A] = 0, (1)

{H,�} = 0, (2)

where � is the chiral operator and A is the operator describing
the spatial symmetry of the system. We also assume

[�,A] = 0, (3)

i.e., the sublattices belonging to � = 1 and −1 are not
interchanged by A.

Since [H,A] = [�,A] = 0, the matrices H , �, and A are
simultaneously block diagonalized into subspaces labeled by
the eigenvalues of A as

H =

⎛
⎜⎜⎝

Ha1

Ha2

Ha3

. . .

⎞
⎟⎟⎠,

� =

⎛
⎜⎜⎝

�a1

�a2

�a3

. . .

⎞
⎟⎟⎠, (4)

A =

⎛
⎜⎜⎝

a1

a2

a3

. . .

⎞
⎟⎟⎠,
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FIG. 1. (Color online) (a) Four-site model with reflection sym-
metry on a diagonal axis. (b) Six-site model with threefold rotation
symmetry.

where a1,a2, . . . are the eigenvalues of A. Since Eq. (2)
requires {Hai

,�ai
} = 0 for all the sectors, each eigenspace

possesses chiral symmetry independently. Then we can define
the topological index for each sector as

νai
= tr �ai

. (5)

The index νai
is equal to the difference of the chiral zero modes

of the Hamiltonian Hai
,

νai
= N+

ai
− N−

ai
, (6)

where N±
ai

are numbers of chiral zero modes satisfying

Hai

∣∣u±
ai

〉 = 0,
(7)

�ai

∣∣u±
ai

〉 = ±∣∣u±
ai

〉
.

Equation (6) guarantees that there are at least |νai
| zero modes

in each sector and therefore at least
∑

i |νai
| zero modes in the

total system.
On the other hand, the topological index for the total

Hamiltonian is given by the summation over all the subindices
as

ν0 =
∑

i

νai
, (8)

which in itself guarantees |ν0| zero modes. Since
∑

i |νai
| �

| ∑i νai
|, we can generally have more zero modes in the

presence of additional symmetry A than in its absence.
As the simplest example, let us consider a four-site square

lattice as illustrated in Fig. 1(a). We assume that the system is
invariant under the reflection R with respect to a diagonal line
connecting the sites 1 and 3. We also assume that the lattice is
bipartite, i.e., matrix elements only exist between white circles
(sites 1 and 3) and black circles (2 and 4). Then the system is
chiral symmetric under the chiral operator � defined by

�|i〉 =
{

+|i〉 (i = 1,3)

−|i〉 (i = 2,4),
(9)

where |i〉 is the state localized at the site i. The operators � and
R satisfies [�,R] = 0 since the black and white circles are not
interchanged by R. The topological index of the total system,
ν0 = tr �, is obviously zero, since there are even numbers of
white and black circles.
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Since [H,R] = [�,R] = 0, H and � are block diagonalized
into subspaces each labeled by the eigenvalues of R. Each
subspace is spanned by

R = even: |1〉,|3〉, 1√
2

(|2〉 + |4〉)
(10)

R = odd:
1√
2

(|2〉 − |4〉).

The topological indices of each subblock is written as

νeven = tr �even = +1
(11)

νodd = tr �odd = −1,

so the number of protected zero modes is |νeven| + |νodd| =
2. By breaking the reflection symmetry, the number of zero
modes is actually reduced to |ν0| = 0,

We may consider another example having C3 rotation
symmetry. Here we introduce a six-site lattice model shown in
Fig. 1(b), where the sites 1, 2, and 3 (white circles) are located
at the z axis, and sites 4, 5, and 6 (black circles) are arranged
in a triangle around the origin. The system is invariant under
the C3 rotation with respect to z axis, where the sites 1, 2,
and 3 are fixed while 4, 5, and 6 are circularly permutated.
The lattice is bipartite so the Hamiltonian is chiral symmetric
under � defined by

�|i〉 =
{

+|i〉 (i = 1,2,3)

−|i〉 (i = 4,5,6).
(12)

Since [H,C3] = [�,C3] = 0, H and � are block diagonalized
into subspaces spanned by

C3 = 1: |1〉,|2〉,|3〉, 1√
3

(|4〉 + |5〉 + |6〉),

C3 = ω:
1√
3

(|4〉 + ω2|5〉 + ω|6〉), (13)

C3 = ω2:
1√
3

(|4〉 + ω|5〉 + ω2|6〉),

where ω = exp(2πi/3). The topological indices of three
subspace become

(ν1,νω,νω2 ) = (2,−1,−1). (14)

The number of protected zero modes is |ν1| + |νω| + |νω2 | =
4, while we have only |ν0| = 0 zero modes in the absence of
C3 symmetry.

III. DIRAC POINTS IN HONEYCOMB LATTICE

Now let us extend the argument in the previous section
to Bloch electron systems. In this section, we discuss the
topological protection of the Dirac points in 2D systems in
the presence of threefold rotation symmetry. For the Bloch
Hamiltonian H (k) = e−ik·rHeik·r, the chiral symmetry and
the threefold rotation symmetry are given by unitary operators

� and C3 that satisfy

�H (k)�−1 = −H (k),
(15)

C3H (k)C−1
3 = H (R3(k)),

where R3(k) denotes a momentum rotated by 120◦ around the
origin. We assume the commutation relation of chiral operator
and threefold rotation,

[�,C3] = 0. (16)

Let us consider the high symmetry point in the Brillouin
zone that is invariant under an action of threefold rotation;
R3(k0) = k0. There Eq. (15) reduces to

{H (k0),�} = 0,
(17)

[H (k0),C3] = 0,

and we can apply the previous argument to H = H (k0). We
simultaneously block-diagonalize H , �, and C3 into three
sectors each labeled by an eigenvalue of C3 and define a
topological index for each eigenspace as

νa = tr �a, (18)

with a = 1,ω,ω2. If
∑

a |νa| is nonzero, it requires an existence
of chiral zero modes of H (k0), i.e., we have a topologically
stable gap closing at k0 protected by the chiral symmetry and
C3 symmetry.

Graphene is the simplest example of the band touching
protected by C3 symmetry. Let us consider a tight-binding
honeycomb lattice with nearest-neighbor hopping, as shown
in Fig. 2(a). The unit cell is composed of nonequivalent A and
B sublattices. The Hamiltonian is chiral symmetric in that A
is only connected to B, and the system is obviously invariant
under threefold rotation C3. C3 commutes with � because
the rotation does not interchange A and B sublattices. The
Brillouin zone corners K and K ′, shown in Fig. 2(b), are fixed
in C3 rotation so we can apply the above argument to these
points. We define the Bloch wave basis as

|X〉 = 1√
N

∑
RX

eik·RX |RX〉 (X = A,B), (19)

where k is the Bloch wave vector (K or K ′), |RX〉 is the atomic
state at the position RX, and N is the number of unit cells in
the whole system. In the basis of {|A〉,|B〉}, the chiral operator
is written as

� =
(

1
−1

)
. (20)

If we set the rotation center at A site, the rotation C3 is written
as

C3 =
(

1
ω

)
for K,

(
1

ω2

)
for K ′. (21)

This is actually derived by considering the change of the Bloch
factor in the rotation [Fig. 2(a) for the K point]. Therefore, the
topological indices are obtained as

(ν1,νω,νω2 ) =
{

(1,−1,0) for K,

(1,0,−1) for K ′.
(22)
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FIG. 2. (Color online) (a) Honeycomb lattice with nearest-
neighbor hopping. The unit cell is indicated by a dashed hexagon,
and shading represents the Bloch phase factor exp(iK · r) = 1,ω,ω2

at the K point. (b) Brillouin zone for the honeycomb lattice. Dotted,
small hexagon is the reduced Brillouin zone corresponding to the√

3 × √
3 superlattice in Figs. 3(a) and 3(b).

This requires two zero modes at each of K and K ′, which
are nothing but the gapless Dirac nodes [38,39]. Note that
the band touching is deduced purely from the symmetry
in the Bloch bases, without specifying detailed Hamiltonian
matrix.

In this particular case, the gaplessness at K and K ′
can also be concluded from the nontrivial winding number
νW = ±1 around K and K ′, respectively. (For details of the
winding number, see Sec. VII A.) However, these two different
arguments are not generally equivalent, and actually C3-
protected band touching may occur even though the winding
number is zero, as shown in the following. Let us consider
a tight-binding honeycomb lattice with

√
3 × √

3 superlattice
distortion as shown in Figs. 3(a) and 3(b), where the hopping
amplitudes for thin and thick bonds are differentiated. In
accordance with the enlarged unit cell, the Brillouin zone
is folded as shown in Fig. 2(b), where the original K , K ′,
and � points are folded onto the new � point. Then νW

around the � point is contributed from ±1 around the original
K and K ′, respectively, so we have trivial winding number
νW = 0 as a whole. However, we can show that the Dirac
point remains ungapped even in the presence of the superlattice
distortion, when the system keeps a certain threefold rotation
symmetry. We consider two different types of rotations as

4

2

1

3

6

5

1

5 4

6 2

3

(b)

(a)

(c)

4
35

53

FIG. 3. (Color online) [(a) and (b)]
√

3 × √
3 superlattice unit

cell of graphene, with possible lattice distortion under (a) C3 and
(b) C ′

3 symmetry. The center of the rotation is indicated by the X.
(c) Structure of graphite, where black and gray layers stack
alternatively.

follows:

C3: 120◦ rotation around A site.

C ′
3: 120◦ rotation around the center of hexagon.

Figures 3(a) and 3(b) are examples of the lattice distortion
under C3 and C ′

3 symmetry, respectively. The latter case,
Fig. 3(b), is the so-called Kekulé distortion.

The unit cell contains six atoms as depicted in Fig. 3.
On the basis of {|1〉,|2〉, . . . ,|6〉}, the chiral operator is given
by

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1

1

−1

1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)
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and the threefold rotation at the � point is represented by

C3 =

⎛
⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎠,

(24)

C ′
3 =

⎛
⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎠.

The topological indices of three sectors are given by

(ν1,νω,νω2 ) =
{

(2,−1,−1) for C3,

(0,0,0) for C ′
3.

(25)

Nontrivial topological indices in C3 symmetry require four
zero modes, indicating that the two Dirac points are protected.
In C ′

3 symmetry, on the other hand, the topological indices
are all zero and the energy band is gapped out. The situation
of C3 symmetry closely resembles the six-site model in the
previous section, where the fixed points in the rotation (the
sites 1, 3, and 5) all contribute to the sector of C3 = 1, leading
to an imbalance in the topological indices among the three
sectors. In contrast, all the sites are circularly interchanged in
C ′

3 rotation, resulting in ν1 = νω = νω2 = ν0/3 = 0.
We can derive the same conclusion alternatively by starting

from a 4 × 4 low-energy effective Hamiltonian,

H = kxσxτz + kyσy, (26)

where Pauli matrices σ and τ span the sublattice (A,B)
and the valley (K,K ′) degrees of freedom, respectively. The
dimension of the matrix is smaller than the previous argument
(6 × 6) because we exclude the two high-energy bases from
the original � point, which do not contribute to the topological
indices. The chiral operator is given by

� = σz =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠. (27)

The matrices for C3 and C ′
3 are derived by considering the

Bloch factor in the original lattice model as

C3 =

⎛
⎜⎝

1
ω

1
ω2

⎞
⎟⎠ = exp

[
−πi

3
(σz − 1)τz

]
. (28)

C ′
3 =

⎛
⎜⎜⎜⎝

ω

ω2

ω2

ω

⎞
⎟⎟⎟⎠ = exp

[
2πi

3
σzτz

]
, (29)

The topological indices are immediately shown to be equiva-
lent to Eq. (25).

Possible mass terms under the chiral symmetry which gap
out the Hamiltonian of Eq. (26) anticommute with both H and
�. In the present case we have two such terms,

δH = mxσxτx + myσxτy. (30)

Since δH commutes with C ′
3 but not with C3, these terms can

exist only in C ′
3 symmetry. This exactly corresponds to the fact

that the Dirac point is not protected in C ′
3 symmetry. Actually,

Kekulé distortions depicted in Fig. 3(b) give rise to mass terms
δH and gap out the Dirac point.

The argument can be directly extended to a 3D crystal
with C3 symmetry. There the band touching point forms a
line node on the C3 symmetric axis in the 3D Brillouin zone.
A typical example of this is a bulk graphite, where graphene
layers are stacked in an alternative way between black and gray
layers as in Fig. 3(c). When we consider the threefold rotation
symmetry around the center of hexagon of a gray layer (the X
in the figure), the topological indices are obtained as

(ν1,νω,νω2 ) =
{

(1,0,−1) for K,

(1,−1,0) for K ′.
(31)

which guarantees two line nodes at K and K ′ parallel to the
kz direction. A real graphite is not exactly chiral symmetric
because of some minor hopping amplitudes between black
and black (white and white) atoms. As a result, the line node
slightly disperses in the kz axis, giving electron and hole
pockets at zero energy [40].

IV. DIRAC POINTS IN HALF-FLUX SQUARE LATTICE

The square lattice with half magnetic flux penetrating
a unit cell is another well-known example having gapless
Dirac nodes [41]. The band touching in this system can also
be explained by a similar argument, in terms of the chiral
symmetry and C2 rotation symmetry. We consider a lattice
Hamiltonian illustrated in Fig. 4(a). The unit cell is represented
by a dashed diamond including sites 1 and 2 inside. The
hopping integral along the horizontal bond is all identical to
tx , while the vertical hopping depends on the direction and is
given by ity for the hopping in the direction of the arrow. An
electron always acquires the factor −1 when moving around
any single plaquette, so it is equivalent to the half magnetic
flux penetrating a unit cell.

The system is C2-rotation symmetric with respect to an
arbitrary atomic site, and the rotation commutes with the chiral
operator since it does not interchange the sublattices. In the
reciprocal space [Fig. 4(c)], the points K : (π/(2a),π/(2a))
and K ′ : ( − π/(2a),π/(2a)) are both invariant in the C2

rotation, and we apply the general argument to these points. In
the basis of {|1〉,|2〉}, the chiral operator is written as

� =
(

1
−1

)
, (32)

and the C2 rotation with respect to site 1 is

C2 =
(

1
−1

)
for K and K ′. (33)
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2
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−1
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1
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(c)

(b)
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FIG. 4. (Color online) (a) Square lattice with a half magnetic flux
penetrating unit cell. The unit cell is indicated by a dashed diamond,
and shading represents the Bloch phase factor for the K point.
(b) The same system with a double unit cell. (c) Brillouin zone for
the single unit cell in (a). The dashed square is the reduced Brillouin
zone corresponding to the double unit cell in (b).

Thus the topological indices are

(νeven,νodd) = (1,−1) for K and K ′, (34)

where even and odd specify the eigenvalue of C2 rotation +1
and −1, respectively. As a result, we have two zero modes at
each of K and K ′, corresponding to the band touching points.

Similarly to the honeycomb lattice in the previous section,
we may consider the stability of the Dirac points under possible
lattice distortions for the double unit cell shown in Fig. 4(b). In
the reciprocal space, K and K ′ merge at the same corner point
and the total winding number becomes zero. We consider two

types of rotations as follows:

C2: 180◦ rotation around site1.

C ′
2: 180◦ rotation around the center of square.

In the basis of {|1〉,|2〉,|3〉 |4〉}, the chiral operator is given by

� =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠, (35)

and the 180◦ rotation at the merged k point is represented by

C2 =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠,

(36)

C ′
2 =

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠.

The topological indices are given by

(νeven,νodd) =
{

(2,−2) for C2,

(0,0) for C ′
2,

(37)

so the two Dirac points are protected in C2 symmetry but not
in C ′

2 symmetry.
The same conclusion can be reproduced in terms of the

low-energy effective Hamiltonian, in a manner similar to that
in Sec. III. The effective Hamiltonian and the chiral symmetry
are given by

H = kxσxτz + kyσy, � = σz, (38)

with σ and τ spanning the sublattice (|1〉,|2〉) and the valley
(K,K ′) of the π -flux lattice. By taking into account the Bloch
factor properly, the twofold rotations C2, C ′

2 are identified as

C2 = σz, C ′
2 = σzτz. (39)

Since the effective Hamiltonian and the chiral symmetry
take the same forms as those in the honeycomb lattice case,
possible mass terms consistent with the chiral symmetry are
given by the same Eq. (30). Those mass terms are apparently
inconsistent with the C2 symmetry above but consistent with
the C ′

2 symmetry. Thus, between the two types of rotations,
only the C2 symmetry does not allow these mass terms, keeping
the Dirac points gapless.

V. LINE NODE PROTECTED BY
REFLECTION SYMMETRY

As another example, we consider a 2D lattice with reflection
symmetry. In this case, the band touching is protected on the
diagonal lines in the 2D Brillouin zone and forms line nodes.
We take a lattice model as illustrated in Fig. 5, where the
unit cell is composed of four sublattices from 1 to 4, and the
structure is reflection symmetric with respect to the diagonal
lines. In the basis of {|1〉,|2〉,|3〉,|4〉}, the chiral operator is
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14

23

FIG. 5. (Color online) Square lattice model with the reflection
symmetry. Dashed square indicates a unit cell and the diagonal line
is a symmetry axis.

given by

� =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠. (40)

We consider the reflection R with respect to the line connecting
the sites 1 and 3. The fixed k points under R are given by
k0 = (k,k) with arbitrary k. There the matrix for R is written as

R =

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠. (41)

The situation is exactly the same as the four-site model in
Sec. II, and the topological indices of two sectors become

(νeven,νodd) = (1,−1). (42)

Since |νeven| + |νodd| = 2, two energy bands are touching
along the diagonal axis in the Brillouin zone. The same
argument applies to the reflection for another diagonal line,
giving a line node at (k,−k).

VI. DIRAC POINTS IN THREE DIMENSIONS

Here we present some examples of 3D Dirac system,
where the band touching occurs at isolated k points in 3D
Brillouin zone. First, we consider a stack of honeycomb lattices
with staggered interlayer coupling as illustrated in Fig. 6(a).
Here the honeycomb layers are vertically stacked at interlayer
spacing c, and the vertical hopping between the neighboring
layers is given by t and −t for A and B sublattices, respectively.
The smallest unit cell of this system is given by A and B on
a single layer, while we here take a double unit cell including
A1,B1,A2,B2, so the Hamiltonian becomes chiral symmetric
by grouping (A1,B2) into � = +1 and (B1,A2) into −1. The
effective Hamiltonian is given by

H = kxσxτz + kyσy + 2t cos(kzc)σzρx, (43)

where Pauli matrices σ and ρ span the sublattice (A,B) and
the layer (1,2) degrees of freedom, respectively, and τz = ±1
is the valley indices for K and K ′, respectively. Equation (43)

A1

B1

A2

B2

c

A1

B1

A2

B2

-tz

tz

tx

i ty

-t

t

(b)(a)

FIG. 6. (a) Stacked honeycomb lattices with staggered interlayer
coupling. (b) Cubic lattice with a half magnetic flux penetrating every
square plaquette.

has a gapless node at k0 = (0,0,π/(2c)), and two Dirac cones
are degenerate at this point. Note that the lattice period in the
z direction is 2c, so −k0 is equivalent to k0.

The gapless point at k0 can be concluded from the symmetry
argument without the band calculation. The chiral operator
is given by � = ρzσz, which obviously anticommutes with
the Hamiltonian. We consider C3 rotation with respect to the
A1-A2 axis and the reflection Rz with respect to the A1-B1
layer. The Hamiltonian is invariant and the point k0 is fixed
under these operations. Now we consider a combined operation
C3Rz at k0. Since (C3Rz)6 = 1, the eigenvalues of C3Rz are
±1, ±ω, or ±ω2. For the K valley, for example, the matrix of
C3Rz in a basis of {|A1〉,|B1〉,|A2〉,|B2〉} becomes

C3Rz = diag(1,ω,−1,−ω), (44)

i.e., the four sublattices are classified to all different sectors.
The number of zero modes is

∑
a |νa| = 4, which guarantees

the existence of Dirac nodes (doubly degenerate Weyl nodes).
The argument equally applies to more general cases where the
vertical hopping at the A and B sites is given by tA and tB
(instead of t and −t), respectively.

We can create another example of 3D Dirac nodes by
stacking the 2D π -flux lattice in Sec. IV with staggered
interlayer coupling. The model is illustrated in Fig. 6(b), where
π -flux lattices are vertically stacked with the hopping tz and
−tz for the A and B sublattices, respectively. The system
can be viewed as a cubic lattice with a half magnetic flux
threading every single square plaquette. We take a unit cell
composed of A1, B1, A2, and B2, and group (A1,B2) into
� = +1 and (B1,A2) into −1 so the Hamiltonian becomes
chiral symmetric. We have band touching at K : π/(2a)(1,1,1)
and K ′ : π/(2a)(−1,1,1), and the effective Hamiltonian near
these point nodes is given by

H = kxσxτz + kyσy − kzσzρx, (45)

where Pauli matrices σ and ρ span the sublattice (A,B) and
the layer (1,2) degrees of freedom, respectively, and τz = ±1
is the valley indices for K and K ′, respectively. The chiral
operator is given by � = ρzσz.

The gapless point in this model is protected by the inversion
symmetry P = C2Rz. If we consider the inversion P with
respect to A1 site, K and K ′ are both invariant, and we can
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TABLE I. Topological charges of the Dirac points in the presence
of chiral symmetry and spatial symmetry. We assume that symmetry
operators commute with each other.

Dimensions Symmetries Charges

2D �,CN ZN

3D �,C3Rz Z3

3D �,C2,Rz Z2

3D �,P Z

write P = ρzσz at these points. We then find (νeven,νodd) =
(2,−2), and thus we have doubly degenerate Weyl nodes at
each of K and K ′.

VII. CLASSIFICATION OF TOPOLOGICAL CHARGES

In this section, we present general arguments to classify
the Dirac points in the presence of chiral symmetry and
spatial symmetry. We identify relevant topological numbers
associated with protection of the Dirac points. In Table I, we
summarize our results on topological charges of the Dirac
points obtained in this section.

A. Class AIII+CN in 2D

First, let us study 2D Dirac points in class AIII systems
(possessing chiral symmetry �) with additional N -fold ro-
tation symmetry CN . We assume the commutation relation
[�,CN ] = 0; the Dirac points in Sec. III and Sec. IV are of this
class.

In the presence of the chiral symmetry, we can define a
winding number for a circle S1 surrounding the Dirac point in
the Brillouin zone [1]. When the circle S1 is parameterized by
θ ∈ [0,2π ), the winding number is given by

νW = 1

4πi

∮
S1

dθ tr[�H−1(k(θ ))∂θH (k(θ ))]. (46)

Here the Hamiltonian is gapped on S1 so the inverse H−1(k(θ ))
is well defined. In a basis where the chiral operator � is
diagonal,

� =
(

1 0
0 −1

)
, (47)

the Hamiltonian takes an off-diagonal form written as

H (k) =
(

0 D†(k)
D(k) 0

)
. (48)

Here tr � must be zero (i.e., D is a square matrix), since
otherwise zero-energy states remain independently of k. The
winding number is then recast into

νW = 1

2π
Im

[∮
S1

dθ∂θ ln detD(k(θ ))
]

. (49)

It is evident that νW is quantized to an integer since the phase
change of det D(k(θ )) around S1 must be a multiple of 2π .

As we have seen in Sec. II, by making use of rotation
symmetry CN , we can further define topological indices
νan

[an = exp(2πni/N ), n = 0,1,2, . . . ,N − 1] by Eq. (6), for
the Dirac points at CN -symmetric k points. Since we have

∑
n νan

= tr � = 0, the number of independent indices are
N − 1. Thus the topological charges assigned to the Dirac
point are (

νW ,νa1 , . . . ,νaN−1

) ∈ ZN. (50)

The Dirac points with nontrivial topological charges are stable
against perturbations preserving chiral and rotation symmetry.
In Sec. III and Sec. IV, we show examples of the Dirac points
protected by nontrivial indices νai

, while the winding number
νW is trivial. In this sense, these are canonical examples of gap-
less points whose stability is not captured only by local sym-
metry (chiral symmetry) but originates from spatial symmetry.

For twofold rotation C2, we can also use the K theory
and Clifford algebra to classify gapless points [3,6,35–
37,42–44]. In this case, the symmetry operators C2 and �

can be considered an element of complex Clifford algebra
Cln = {e1, . . . ,en} with generators e1, . . . ,en satisfying the
anticommutation relation

{ei,ej } = 2δij . (51)

Hence, the powerful representation theory of the Clifford
algebra is available in the classification. Below we show
that the approach with Clifford algebra provides the same
topological charges in Eq. (50).

Consider a general Hamiltonian of a 2D Dirac point,

H = kxγx + kyγy, (52)

where γi’s are γ matrices. The symmetries C2 and � imply

{�,γi=x,y} = 0, {C2,γi=x,y} = 0, [�,C2] = 0, (53)

so they form the complex Clifford algebra

Cl3 ⊗ Cl1 = {γx,γy,�} ⊗ {γxγyC2}, (54)

as mentioned above. Then, if the Dirac point is unstable, there
exists a Dirac mass term mγ0 consistent with the symmetries,

{�,γ0} = 0, [C2,γ0] = 0, {γi=x,y,γ0} = 0, (55)

which modifies the Clifford algebra in Eq. (54) as

Cl4 ⊗ Cl1 = {γ0,γx,γy,�} ⊗ {γxγyC2}. (56)

The modified algebra implies that the mass term γ0 behaves
like an additional chiral operator �′ that anticommutes with
�. On the other hand, if the Dirac point is stable, no such
an additional chiral operator exists. Therefore, the stability
problem of the Dirac point reduces to the existence problem
of an additional chiral operator [35,44].

The latter problem is solved as follows. By imposing chiral
symmetry � on other generators, we have an extension of
Clifford algebra

Cl2 ⊗ Cl1 = {γx,γy} ⊗ {γxγyC2}
(57)

→ Cl3 ⊗ Cl1 = {γx,γy,�} ⊗ {γxγyC2},
which defines the classifying space C0 × C0 in the K the-
ory (C0 = ∪m,nU (m + n)/(U (m) × U (n)); for details, see
Refs. [35,44]). Because the classifying space consists of all
possible matrix representations of � with other generators
fixed, the zero-th homotopy group of the classifying space

π0(C0 × C0) = Z2 (58)
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measures topologically different chiral operators, specifying
possible values for the topological number of �. Now we can
show that if there is an additional chiral operator �′, then
the topological number of � must be zero: Indeed, using �′,
one can introduce the chiral operator �(t) = � cos t + �′ sin t

connecting � = �(0) and −� = �(π ) continuously, which
implies that � must be topologically trivial since topological
numbers defined for chiral operators take opposite values for �

and −� as we will see in an explicit way later [Eq. (61)]. Taking
the contrapositive, we can also say that if the topological
number of � is nontrivial, then no additional chiral operator
exists. The last statement implies that the Dirac point is stable
if the topological number of � is nontrivial. In other words, we
can conclude that the topological charge protecting the Dirac
point in Eq. (52) is given by Eq. (58), which coincides with
Eq. (50) with N = 2.

The algebraic argument above can be intuitively understood
by considering the specific Hamiltonian. Let us take the
effective Hamiltonian of 2D half-flux square lattice, H =
kxσxτz + kyσy (i.e., γx = σxτz, γy = σy) with the twofold
rotation symmetry C2 = σz, and consider a possible generator
� to form an algebra Cl3 ⊗ Cl1 = {γx,γy,�} ⊗ {γxγyC2}.
Since � anticommutes with γx and γy while commutes with
γxγyC2 = iτz, it should be written as

� =
(

sσz 0
0 s ′σz

)
, (59)

where the first and the second blocks correspond to τz = ±1,
respectively, and s,s ′ = ±1. Since τz = ±1 are decoupled,
the sectors having different (s,s ′) cannot be connected by a
continuous transformation, and thus they are topologically all
distinct.

If we generally consider the matrix τz with larger dimension
such as τz = diag(1,1, . . . ,−1,−1, . . .), the possible expres-
sion for � is

� =
(

σz ⊗ A 0
0 σz ⊗ A′

)
, (60)

where the first and the second blocks in � correspond to τz =
±1, respectively. Since we have �2 = 1, eigenvalues of A and
A′ are either +1 or −1. The topologically distinct phases are
labeled by two integers,

(s,s ′) = (trA,trA′), (61)

and this is Z2 in Eq. (58). The winding number is given by
νW = s − s ′, and the topological index of C2 = +1 sector (i.e.,
the difference between the numbers of the bases belonging to
� = +1 and −1 in the C2 = +1 sector) is νeven = s + s ′. So
the space spanned by (s,s ′) is equivalent to that by (νW ,νeven).

B. Class AIII with C3 Rz in 3D

We study the chiral-symmetric Dirac points with C3Rz

symmetry (a combination of a threefold rotation in the x-y
plane and a reflection along the z axis) in a 3D Brillouin
zone, for which we have discussed an example in the stacked
honeycomb lattice model in Sec. VI. We write g = C3Rz and
assume the commutation relation [g,�] = 0.

We consider a Dirac point located at the C3Rz-symmetric
point and assume that the energy band is gapped in the vicinity

of the Dirac point, except for the Dirac point itself. At the Dirac
point, we can define the six topological numbers ν±1,ν±ω,ν±ω2

as we have seen in Sec. VI, but they are not completely
independent. Since g4 = C3 and g3 = Rz, the C3Rz symmetry
is always accompanied by the individual symmetries C3 and
Rz. All the points on the kz axis are fixed in C3, and in order to
have a band gap at these momenta (except for the Dirac point),
all the indices for sectors C3 = 1,ω,ω2 should be zero,

ν1 + ν−1 = νω + ν−ω = νω2 + ν−ω2 = 0. (62)

Here note that sectors g = ±1,±ω,±ω2 belong to those C3 =
1,ω,ω2, respectively. Similarly, since the kx-ky plane is fixed
in Rz, we have the following requirement:

ν1 + νω + νω2 = ν−1 + ν−ω + ν−ω2 = 0, (63)

in order to avoid a gap closing plane. Due to these constraints,
we are left with only two independent indices, for example,
ν1,νω. We can also define a winding number on the Rz-
symmetric plane. Let us perform the block diagonalization
with respect to Rz = ±1 on the Rz-symmetric plane. Then
the Rz = +1 sector is viewed as a 2D system class AIII+C3,
and we can define a winding number νW+ [Eq. (46)] for S1

surrounding the Dirac point. Similarly, we can also define νW−
for the Rz = −1 sector. However, the total winding number
νW = νW+ + νW− should vanish because a circle S1 defining
the total winding number can be freely deformed in the 3D
space so it is contractible without touching the Dirac point.
Consequently, independent topological charges assigned to the
Dirac point in the present case are a set of a winding number
νW+ and two topological indices ν1,νω,

(νW+,ν1,νω) ∈ Z3. (64)

For the Dirac point at K in the stacked honeycomb
lattice model in Sec. VI, Eq. (44) leads to (ν±1,ν±ω,ν±ω2 ) =
(±1,∓1,0), which is consistent with the constraints Eqs. (62)
and (63). The winding numbers νW± can be evaluated using
the effective Hamiltonian Eq. (43) as follows. On the Rz-
symmetric plane (kz = π/(2c)), the Hamiltonian is expressed
as

H = kxσxτz + kyσy, (65)

with Rz = ρz and � = σzρz. It takes the same form in both
the Rz = ±1 sectors, but the chiral operator has an opposite
sign, i.e., � = ±σz, leading to νW± = ±1 for the K point
(τz = +1). Since νW± is nonzero, nontrivial indices νai

are
not necessary for the topological protection of the Dirac point
in this particular example. However, if we consider a C3Rz-
symmetric superlattice where the K and K ′ points are folded
onto the same � point, as in the case of the 2D honeycomb
lattice in Sec. III, the winding number around the Dirac point
becomes zero while other indices νai

are still nonzero. There,
the gaplessness at the Dirac point is solely guaranteed by
nontrivial indices νai

.

C. Class AIII with C2 Rz in 3D

Finally, we study the chiral-symmetric Dirac points with
the inversion symmetry P = C2Rz in 3D. Here we consider
two different cases, (i) where we have C2 and Rz symmetries
individually and (ii) where we only have P but not C2 or Rz.
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First, we consider case (i). The half-flux cubic lattice model
argued in Sec. VI belongs to this case. We assume [C2,Rz] =
[C2,�] = [Rz,�] = 0. At the inversion-symmetric point, we
can define the four topological indices ν++,ν+−,ν−+,ν−− for
the sectors labeled by the eigenvalues of (C2,Rz). To avoid the
band gap closing on the C2-symmetric axis,

ν++ + ν+− = ν−+ + ν−− = 0. (66)

To gap out the Rz-symmetric plane, similarly, we require

ν++ + ν−+ = ν+− + ν−− = 0. (67)

Therefore (ν++,ν+−,ν−+,ν−−) is expressed by a single integer
s as (s,−s,−s,s). In Sec. VI, we defined the topological
indices (νeven,νodd) for the sectors labeled by P = C2Rz, and
they are related to the present indices by νeven = ν++ + ν−− =
2s and νodd = ν+− + ν−+ = −2s.

Similarly to the C3Rz case in the previous subsection, we
can define the winding numbers νW± for the Rz = ±1 sector,
respectively. The total winding number νW = νW+ + νW−
vanishes again for the same reason. Therefore, independent
topological charges assigned to a Dirac point are

(νW+,ν++) ∈ Z2. (68)

In case (ii), we can define the topological indices νeven,νodd

for the sectors labeled by the eigenvalues of the inversion P

(where [P,�] is assumed). The summation νeven + νodd = tr �

should vanish, otherwise the band gap closes everywhere in k

space. Unlike in case (i), we do not have the winding numbers
νW± since Rz symmetry is absent and thus we do not have a 2D
subspace invariant under the symmetry operation. As a result,
the Dirac point is characterized only by a single topological
number,

νeven ∈ Z. (69)

Because C2 and Rz are both order-two operators, we can
also derive the same conclusion from the analysis using
Clifford algebra. Let us consider a 3D Dirac point,

H = kxγx + kyγy + kzγz, (70)

and explore whether a mass term mγ0 is allowed by imposed
symmetries.

In case (i), we have three symmetries: chiral symmetry �,
twofold rotation in the x-y plane C2, and reflection symmetry
along the z direction Rz. The symmetry operators satisfy the
following algebraic relations with the γ matrices:

{γi=0,x,y,z,�} = 0,

[γi=0,z,C2] = {γi=x,y,C2} = 0, (71)

[γi=0,x,y,Rz] = {γz,Rz} = 0,

with the commutation relations with each other as follows:

[Rz,C2] = [C2,�] = [Rz,�] = 0. (72)

Then we can construct a Clifford algebra from these relations
as

Cl6 ⊗ Cl1 = {γ0,γx,γy,γz,γzRz,�} ⊗ {γxγyC2}. (73)

In a similar way as in Sec. VII A, the mass term γ0 can
be considered an additional chiral operator �′, so if the

topological number of � is nonzero, then the Dirac point is
stable. From an extension of Clifford algebra which is obtained
by adding � to other generators,

Cl4 ⊗ Cl1 = {γx,γy,γz,γzRz} ⊗ {γxγyC2}
(74)

→ Cl5 ⊗ Cl1 = {γx,γy,γz,γzRz,�} ⊗ {γxγyC2},
we identify the relevant classifying space as C0 × C0, and then
the relevant topological number is evaluated as the zero-th
homotopy,

π0(C0 × C0) = Z2, (75)

which coincides with Eq. (68).
In case (ii), the additional symmetry is only an inversion

P = C2Rz. The algebraic relations for P read as follows:

[γ0,P ] = {γi=x,y,z,P } = 0, [P,�] = 0, (76)

which form the Clifford algebra,

Cl6 = {γ0,γx,γy,γz,γxγyγzP,�}. (77)

The existence condition for the mass term γ0 is obtained from
the extension problem

Cl4 = {γx,γy,γz,γxγyγzP }
(78)

→ Cl5 = {γx,γy,γz,γxγyγzP,�},
which gives the classifying space as C0, and thus the topolog-
ical charge protecting the Dirac point is given by

π0(C0) = Z. (79)

This result reproduces Eq. (69).

VIII. CONCLUSION

In this paper, we show that the coexistence of chiral
symmetry and the spatial symmetry can stabilize zero-energy
modes, even when the chiral symmetry alone does not ensure
their stability. We present general arguments for the stability
and we identify the associated topological numbers. The
validity of our arguments are demonstrated for the Dirac points
in two dimensions with a variety of spatial symmetries. We
also illustrate that Dirac semimetals in three dimensions are
possible in the presence of coexisting spatial symmetries. In the
last part, we list and classify independent topological invariants
associated with a given Dirac point. We find that the set of
topological numbers found here gives a complete minimal set
of quantum numbers allowed by the algebraic constraint in the
case of order-two symmetries.
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