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Spin relaxation in materials lacking coherent charge transport
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We describe a broadly applicable theory of spin relaxation in materials with incoherent charge transport;
examples include amorphous inorganic semiconductors, organic semiconductors, quantum dot arrays, and systems
displaying trap-controlled transport or transport within an impurity band. The theory can incorporate many
different relaxation mechanisms, so long as electron-electron correlations can be neglected. We focus primarily
on spin relaxation caused by spin-orbit effects, which manifest through inhomogeneities in the g factor and
non-spin-conserving carrier hops, scattering, trapping, or detrapping. Analytic and numerical results from the
theory are compared in various regimes with Monte Carlo simulations. Our results should assist in evaluating the
suitability of various disordered materials for spintronic devices.
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I. INTRODUCTION

Spin relaxation associated with the band transport of elec-
trons in nonmagnetic materials exhibits a variety of regimes
and mechanisms, depending on lattice symmetries, the ratio of
momentum scattering and spin-orbit-interaction times, and the
presence of nuclear spin interactions [1–5]. When the electrons
are localized, they relax via different mechanisms, such as
spin-spin interactions [6,7]. Considerably less attention has
been directed towards spin relaxation in systems where charge
transport occurs through incoherent motion. These largely
focused on organic (noncrystalline) semiconductors [8–15],
due to their small spin-orbit interaction, affordability, and
large room-temperature spin-dependent effects [16]. Spin
transport in disordered crystalline semiconductors has been
used as a diagnostic tool for very small numbers of defects in
semiconductor junctions using electrically detected magnetic
resonance [17], but has not drawn the same attention to
fundamental mechanisms in macroscopic materials as these
other systems. Aspects of the spin transport problem when
the charge transport is incoherent also have been studied in
systems demonstrating impurity band transport [18,19], arrays
of quantum dots [20,21], and amorphous inorganic semicon-
ductors [22–24]. A fuller understanding of spin relaxation in
disordered semiconductors would help clarify the behavior
of spintronic devices based on these materials, such as spin
valves [9,11,25–27]. The influence of spin relaxation on light
emitting diodes and solar cells has recently become a focus of
considerable interest due to results showing changes in (some-
times improving substantially) device performance when spin
relaxation is increased in the materials [28–30]. Although
the investigation of spin relaxation in amorphous inorganic
semiconductors has received considerably less attention than
that of organic semiconductors, similar effects can be expected
in such materials.

In this paper, we generalize our previous work [15] with
organic semiconductors to describe spin relaxation in a broader
range of regimes of incoherent charge transport, focusing
on amorphous semiconductors such as silicon (a-Si) and
germanium (a-Ge) to showcase our results. This is done by
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explicit calculations of spin lifetimes and coherence times
using continuous-time random walk (CTRW) theory [31,32]
as well as with Monte Carlo simulations. Our theory allows
us to make precise predictions. Amorphous semiconductors
are attractive theoretically since they exhibit “dispersive
transport,” which possesses features explainable by disordered
transport theories [33–35]. Analysis of transport is murkier
for organic semiconductors due to their supposed Gaussian
density of states [36].

In the theory presented herein, the pivotal transport char-
acteristic is the wait-time distribution (WTD). This quantity,
elemental to CTRW theory, describes the probability density
function for wait times between transport-related events [37].
Most often these events are hops between localizing centers
but could also signify trapping and trap-release times. The
WTD very much depends on the system and regime under
consideration; because the wait times typically depend on the
energy depth of a charge’s inhabitance, the energy density
of states plays an important role in determining the WTD.
Determinations of the density of states and the WTD are vital
quantities to be ascertained for the various disordered systems.

Incoherent charge transport is treated as a random walk
between the various states present in the system. As a carrier
randomly walks, we keep track of its classical spin vector
given some set of spin interactions, which we model as local
magnetic fields. Some of these fields are exerted on the spin
in between steps; such fields result in a spin rotation given
by R̂s (s for stationary). The spin may be influenced by other
local fields during the stepping process; they rotate by R̂h (h
for hop). We assume the strong collision approximation[38]
for the spin random walk, which entails that the local fields
change instantaneously and are completely uncorrelated from
step to step. Wait times at any position or instant are also
uncorrelated from one another. We consider correlated steps in
our simulations. Figure 1 captures the evolution of a spin while
it randomly walks. The beauty of the CTRW theory is that a
spin ensemble’s various random rotations that are incurred
from its random walk can be summed exactly to determine the
spin polarization.

The output of our calculations are spin-polarization func-
tions of time; depending on the system at hand, we can
sometimes analytically determine the longitudinal (transverse)
spin relaxation (decoherence) time, which we denote as T1
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N. J. HARMON AND M. E. FLATTÉ PHYSICAL REVIEW B 90, 115203 (2014)

t0 t0 +dt t0 +2dt

FIG. 1. (Color online) Example for the spin evolution of a ran-
domly walking charge. At t0, the spin is initialized in a specific
direction. At some time interval, dt later, the charge has hopped
several times and is now at a new location (its history is denoted
by the shading of the sites). Due to local fields during the walk, the
spin has undergone rotations. At time t0 + 2dt , the charge has moved
further, and the spin has rotated further towards the point of a spin
flip.

(T2), respectively. In more complicated cases, T1 and T2

can be extracted from numerical fits to the spin-polarization
functions. In some cases of dispersive transport, spin losses are
algebraic in time and a characteristic timescale is ill-defined.

We concentrate on the two mechanisms reported as
dominant in a:Si: inhomogeneous g∗ (δg) spin dephas-
ing/decoherence and spin-orbit coupling (SOC) induced spin
relaxation. The δg mechanism occurs due to variations in
g∗ felt by spins in magnetic fields. In the static limit,
this mechanism is a reversible dephasing process; however,
the occurrence of hopping leads to irreversible decoher-
ence. The SOC mechanism results from impure spin states
where the amount of spin admixture is tied to the magnitude
of the SOC. In such a case, the spin-flip matrix elements are
nonzero for scattering from spin independent potentials.

We point out the organization of the article by summarizing
the primary results: in Sec. II, the central results of the
CTRW theory of spin relaxation are derived. A compact
expression for the spin polarization is obtained. Examples of
the theory are given in Secs. III and IV, using the δg and SOC
mechanisms. We discover that strong disorder dramatically
alters SOC relaxation such that the decay is algebraic instead
of exponential. The significance of correlations between
hopping events is shown to be small for δg but large for
SOC. Section V provides a generalization of the theory to
situations where transport is governed by crossings between
two types of transport states. An example of such a system
is trapping and detrapping between extended and localized
states. In Sec. VI, we apply the theory to amorphous inorganic
semiconductors (a:Si specifically) and compare to available
experiments. The position of the Fermi level is important in
determining the transport, as well as spin lifetime, regime
in these systems. Undoped samples exhibit hopping within
strongly localized states. Since hopping is promoted by
temperature, low-temperature polarization loss is governed by
the static limit of the δg mechanism. At higher temperatures
(and faster hopping), the SOC mechanism is predominant.
Doped systems behave differently since the Fermi level is
raised near the mobility edge. At this level, both localized and
extended states play a role in the spin relaxation, which is well
described by our theory.

II. THEORY

A. Continuous-time random walk theory of spin relaxation

The unit vector S is a classical spin which in an arbitrary
static field, ω = μB ĝ B/�, is described by the following
evolution:

dS(t)

dt
= ω × S(t) − �S(t) = � · S(t) − �S(t), (1)

where � is the skew-symmetric matrix

� = ω�̂ =
⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠

≡ ω

⎛
⎝ 0 − cos θ sin θ sin φ

cos θ 0 − sin θ cos φ

− sin θ sin φ sin θ cos φ 0

⎞
⎠ (2)

and ĝ is, in general, a tensor of the g factors, which
can be expressed as a 3×3 matrix; the magnitude of the
precession frequency is ω = μB | ĝ B|/�. The term beginning
with � consists of any intrasite (IS) spin relaxation (hopping
independent). In a semiclassical picture, the magnetic field
rotates the spin orientation S. The solution to Eq. (1) is

S(t) = e−�te�t · S0 ≡ e−�t R̂(t) · S0, (3)

where S0 is the initial spin vector and R is the following
rotation matrix:

R̂(t) = 1̂ + sin ωt�̂ + 2 sin2 ωt

2
�̂ · �̂. (4)

We assume S0 = S0ẑ throughout. If different spins experience
different environments (i.e., different B), then an average over
the different configurations should be taken: R̂s(t) = 〈R̂(t)〉.

This leads us then to address the question of hopping
spins. We approach the problem as a continuous-time random
walk. To introduce the formalism in an intuitive manner, first
consider the polarization from an ensemble of stationary spins:
P ′

0 = e−�t R̂s(t) · S0. Now consider the fact that some of the
spins hop to other sites; for the time, let us ignore those
spins. How do we express the stationary spin polarization?
The rotation matrix, R̂s(t), only applies to spins that have not
hopped; that fraction is determined by the survival probability,
�(t). The survival probability is related to the WTD by the
following:

d�(t)/dt = −ψ(t),
(5)

�(t) =
∫ ∞

t

ψ(t ′)dt ′ = 1 −
∫ t

0
ψ(t ′)dt ′;

alternatively in Laplace space,

�̃(s) = (1 − ψ̃(s))/s. (6)

The polarization of spins that have not hopped is then P0 =
R̂0(t) · S0, where a new quantity has been defined as

R̂0(t) ≡ R̂s(t)�(t)e−�t . (7)

For a moment, let us forget about the stationary spins and
examine the behavior of the spins that made the single hop.
For some amount of time, these spins were at their home sites
and would have experienced R̂s(t). The amount of rotation

115203-2



SPIN RELAXATION IN MATERIALS LACKING COHERENT . . . PHYSICAL REVIEW B 90, 115203 (2014)

depends on the wait time at the home site; the wait time is
drawn from the WTD. The amount of rotation in a short time
interval dt ′ is R̂s(t ′)ψ(t ′)dt ′. At their new site, the spins begin
to evolve again with the averaged rotation matrix R̂s(t). If the
hop occurred at t ′ and they precess up to time t , this rotation
matrix is described by R̂0(t − t ′). Now we integrate over all
possible hopping times to obtain

∫ t

0 R̂0(t − t ′)R̂
′
0(t)dt ′, where

we have defined a new quantity:

R̂
′
0(t) ≡ R̂s(t)ψ(t)e−�t , (8)

which obviously commutes with R̂0(t).
Lastly, we need to include any rotations that might accrue

during the hop as opposed to before and after the hop. This
matrix, R̂h, is treated as time independent and any necessary
configurational averaging is assumed. The total rotation matrix
for spins that have hopped once is then

R̂1(t) =
∫ t

0
R̂0(t − t ′)R̂h R̂

′
0(t ′)dt ′, (9)

which has the form of a convolution. Assuming that R̂h

commutes with the other matrices (most realistically by saying
that R̂h ∝ I), allows Eq. (9) to be expressed as

R̂1(t) = R̂h

∫ t

0
R̂0(t − t ′)R̂

′
0(t ′)dt ′. (10)

The convolution theorem yields

˜̂R1(s) = R̂h
˜̂R0(s + �) ˜̂R′

0(s + �). (11)

The same reasoning is used to find the rotation matrix for spins
that have hopped twice:

˜̂R2(s) = R̂
2
h

˜̂R0(s + �) ˜̂R′2
0 (s + �) = R̂h

˜̂R1(s) ˜̂R′
0(s). (12)

The procedure can be continued indefinitely for arbitrary l

hops and the following recursive expression is obtained:

˜̂Rl(s) = R̂
l

h
˜̂R0(s + �) ˜̂R′l

0 (s + �) = R̂h
˜̂Rl−1(s) ˜̂R′

0(s + �).

(13)

The polarization results from summing this geometric series:

P̃(s) =
∞∑
l=0

˜̂Rl(s) · S0

= ˜̂R0(s + �)[I − R̂h
˜̂R′

0(s + �)]−1 · S0. (14)

It may sometimes also be useful [e.g., if Laplace transform of
R̂

′
0(t) has no analytic expression] to write the polarization as

an integral equation in the time domain:

P̂(t) = R̂0(t) + R̂h

∫ t

0
P̂(t − t ′)R̂

′
0(t ′)dt ′, (15)

which is a Volterra equation of the second kind or a renewal
equation.

For the sake of pedagogy, we have not yet emphasized the
assumptions that lead to our main result, Eq. (14). We now
make them clear as they are a subject for discussion in later
sections of this article when our results are presented. We have
used a class of assumptions known as the strong collision
approximation [38]. The approximation has the following

characteristics: (1) local field changes are abrupt and not
slow at each hop and (2) local fields at or during each hop
are uncorrelated from any previous hop. In the language of
stochastic process theory, the evolution is Markovian (2) but
not Gaussian-Markovian (1).

A simple example of the theory is demonstrated by using
an exponential WTD, ψ(t) = ke−kt , where k is the average
hopping rate. Immediately, we can write from Eq. (14)

P̃(s) = ˜̂Rs(s + � + k)[I − k R̂h
˜̂Rs(s + � + k)]−1 · S0.

(16)

In later sections, we show explicit examples of when P̃(s) can
be inverted.

B. Multiple trapping model

More realistic WTDs are much harder to handle. In this
paper, we concentrate on the aforementioned exponential
WTD and on the WTD produced by an exponential den-
sity of states (which is the appropriate one for amorphous
semiconductor band tails). The multiple trapping model (MT)
constructs a WTD from hopping rates that are of the form
of trap release rates, k(ε) = k0e

ε/kBT , where ε is the trap
energy and is distributed exponentially. The energy levels are
uncorrelated between hops. The WTD, ψ(t), is described by∫ 0
−∞ g(ε)k(ε)e−k(ε)t dε or in Laplace space as

ψ̃(s) =
∫ 0

−∞
dεg(ε)

k(ε)

s + k(ε)
=

∫ 0

−∞
dxex k0e

x/α

s + k0ex/α
, (17)

with x = ε/kBT0 and α = T/T0 when using an exponential
density of states. The result can be written as a hypergeometric
function:

ψ̃(s) = k0α

s + αs 2
F1(1,1 + α,2 + α,−k0/s). (18)

The long time, or asymptotic, behavior of the WTD is of
interest. It is more straightforward to derive it for the survival
probability first,

�̃(s) =
∫ 0

−∞
dx

ex

s + k0ex/α
= −

∫ 0

∞

dx

s

e−x

1 + (k0/s)e−x/α
.

(19)

After making a change of variable, w = e−x(s/k0)−α , we
obtain

�̃(s) =
∫ (s/k0)−α

0

dw

s

(
s

k0

)α 1

1 + w1/α
. (20)

Up to now, we have not made any assumptions; assuming long
times is identical to assuming small s, so we can rewrite the
WTD as

�̃(s) = 1

s

(
s

k0

)α ∫ ∞

0
dw

1

1 + w1/α
. (21)

The integral is equal to πα csc(πα) so the final result in
Laplace space is

�̃(s → 0) = sα−1

kα
0

πα csc(πα) ∼ sα−1

kα
0

, (22)
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where we are not concerned with prefactors. The Tauberian
theorems dictate that in the time-domain [39]

�̃(t → ∞) ∼ t−α

kα
0

. (23)

By the identities between the survival probability and the
WTD, we can find the asymptotic form of the WTD:

ψ̃(t → ∞) ∼ t−α−1

kα
0

. (24)

We stress that the MT ignores correlated hopping, which
one might suspect in a real system where the energy level the
carrier resides is dependent on the previous state. However,
the WTDs for the two situations actually agree very well [36].
The calculated currents in the two situations also match, which
demonstrates that correlations do not contribute heavily to the
carrier transport [35,36]. We find that correlated hopping can
be very important for spin lifetimes and therefore also spin
transport.

C. Multiple hopping model

The multiple trapping model treats each hop independently
as trap release events with a release rate k(ε) = k0e

ε/kBT

(see left side of Fig. 2). Such a model ignores the fact that
hopping may be correlated to the configuration of sites. For
instance, two sites near in energy may experience back and
forth hopping before the charge carrier escapes to some other
site. Therefore treating hops independently as necessitated
by Eq. (14) is inappropriate in general. We have chosen to
address the more realistic hopping that includes correlations
by simulating the spin evolution where hops from i to j are
dictated by Miller-Abrahams rates:

kij =
{
k0, if εi � εj ,

k0e
(εi−εj )/kBT , if εi < εj .

(25)

Spins are injected randomly into the semiconductor, which
is modeled as a cubic lattice of localizing sites. The spin of
each carrier is sampled at a chosen time interval and averaged
over many different configurations of the disorder (typically

Multiple Trapping Model Multiple Hopping Model

each hop is independent
hops are correlated

k(ε) = k0e
ε/kT , with ε < 0

εt

ε

g(ε)

Miller-Abrahams rates

g(ε)

ε

kij =
k0 if εi ≥ εj

k0e
(εi−εj)/kBT if εi < εj

FIG. 2. (Color online) Depictions of multiple trapping (left) and
hopping (right) models. Each hop in the multiple trapping model is
independent of its previous hops. We call this uncorrelated hopping.
By its very nature then, the local fields felt by the spin are also
independent at each hop. The multiple hopping models includes
correlations. For instance, a carrier beginning high in energy (as
shown) will tend to cascade downwards in energy when operating
under the Miller-Abrahams hopping rates. Since sites are correlated,
the local fields are also correlated, which can be important when a
spin hops back and forth between a small number of sites.

10 000–50 000). A single disorder configuration possesses a
fixed landscape of site energies and local fields.

The relevance of correlations (especially for high disorder)
for spin transport as opposed to charge transport can be
understood by examining site revisitation effects. Carriers
oscillate between a small number of sites many times though
these sites tend to be near in energy to one another and
therefore the oscillations are rapid and do not contribute to the
current [40]. These oscillations are still spin changing events
though and hence can be important for spin relaxation and spin
diffusion [41].

Though beyond the scope of this article, correlation effects
have been incorporated into CTRW theories on conductiv-
ity [47]. Applying these methods to the spin diffusion and
relaxation problem will be a challenging endeavor for theorists.

III. THE δg MECHANISM FOR SPIN DEPHASING AND
SPIN DECOHERENCE

For simplicity, we consider only isotropic g values such that
the g tensor can be written as ĝ = g I , where g is a random
variable drawn from a Gaussian distribution centered at g∗
with width �g. For this case, longitudinal spin relaxation does
not exist for this mechanism, so we only examine transverse
spin decoherence. At a given site i, the total angular frequency
is expressed as ωi = ω0 + δωi , where

ω0 = g∗ μB

�
B0x̂, δωi = δgi

μB

�
B0x̂, (26)

with B0 being the applied field and δgi being the random
variable taken from a Gaussian distribution centered at 0 and
with standard deviation �g. It is mathematically advantageous
to transform to a coordinate system rotating at −ω0 such that
the effective angular frequency in the coordinate system at any
site is simply δωi . The spin evolution in the new coordinate
system (marked by a prime) is

dS′(t)
dt

= δω × S′(t). (27)

The rotation matrix can be readily found and averaged over
the Gaussian distribution of δgs. The result is

Rs =
⎛
⎝1 0 0

0 e−a2t2/2 0
0 0 e−a2t2/2

⎞
⎠ , (28)

where a2 = (�gμBB0/�)2. In the absence of hopping, the
polarization is simply P(t) = R̂s ẑ; the transverse polarization
decays in a Gaussian fashion, which has been observed in
quantum dots and nanocrystals [42,43]. In the context of elec-
tron spin resonance (ESR) experiments, we label 1/T ∗

2 = a.
The line width is Gaussian with width �B1/2 = �gB0/2 [44].
It should be remembered that this reduction of polarization is a
form of inhomogeneous dephasing or broadening and the spin
polarization can be recovered by spin echo experiments.

A. The δg mechanism for spin decoherence

Once the spins begin to hop, the polarization loss is
irreversible, which is the scenario we examine now. Using
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Multiple Trapping 
Monte Carlo simulation

numerical solutions

analytic approximations

10.1 10

0.001

0.01

0.1

1

k0/a = 10

α = T/T0

1/
T

∗ 2

FIG. 3. (Color online) Transverse spin relaxation or decoherence
rate (in units of a) at long times as a function of disorder. Dotted
lines are the analytic result for γ , Eq. (31). Solid lines are the
numerical solution. Blue solid symbols are fit results from a Monte
Carlo simulation of the multiple trapping model. As α (a) increases
(decreases), the rate approaches the motional narrowing limit, a/k0,
which is expected in the case of low disorder. Black symbols: result
from the multiple hopping model via Monte Carlo simulations.
Multiple trapping and hopping models agree well (indistinguishable
in plot) except in the low disorder limit of high α.

Eq. (28), reduces Eq. (14) to the scalar equation

P̃z(s) = R̃zz
0 (s)

1 − R̃′zz
0 (s)

. (29)

The apparent simplicity of this reduced equation is deceiving.
The reason is that we are not dealing with R̃′zz

0 (s) ∝ ψ̃(s)
but instead L [ψ(t) exp(−a2t2/2)], which resists an analytic
expression (for WTDs other than the exponential). This
Laplace transform is

L [ψ(t) exp(−a2t2/2)]

=
∫ 0

−∞

√
π
2 k0e

(k0ex/α+s)2

2a2 +( 1
α
+1)xerfc

(
k0e

x/α+s√
2a

)
a

dx, (30)

where x = ε/kBT0. Using this in Eq. (29), the denominator
yields only a single pole, which dictates that the spin relaxation
is exponential at larger times. The pole, which corresponds to
the decay rate, can be obtained numerically and is shown as
the solid curves in Fig. 3. The exact pole can be approximated
by expanding the denominator to first order in s and solving
for s. The inverse Laplace transform yields a decay rate

I1 − 1

I2
, (31)

where by using q = ex/α ,

I1 =
∫ 1

0

α

(√
π
2 k0q

αe
k2
0q2

2a2 erfc
(

k0q√
2a

))
a

dq (32)

and

I2 =
∫ 1

0

αk0q
α

(√
2πk0qe

k2
0q2

2a2 erfc
(

k0q√
2a

)
− 2a

)
2a3

dq, (33)

Monte Carlo simulations

Multiple Trapping
Multiple Hopping

α =
1
2

k0/a = 1000

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

a t

P
t

0 1 2 3 4 5

0.02

0.05

0.10

0.20

0.50

1.00

a t

P
t

FIG. 4. (Color online) Spin polarization function vs time as
determined by Monte Carlo simulations. In the disordered case
(α < 1), the multiple trapping model agrees well with the more
realistic multiple hopping model. Short times possess a Gaussian
type decay while longer times exhibit exponential relaxation. (Inset)
Plot on logarithmic scale showcasing exponential decay at longer
times.

which can be written in close form in terms of generalized
hypergeometric functions. As seen in Fig. 3 (dotted curves),
the adequacy of the approximation hinges on the value of α; as
α gets smaller than unity, the approximation is completely
inadequate. In the limit of fast hopping/low disorder, the
decoherence rate, Eq. (31), approaches the motional narrowing
value of 1/T ∗

2 = a2/k0. Lastly, Fig. 3 also shows the results
from fitting the Monte Carlo simulation of the multiple
trapping problem (blue solid symbols). The agreement in
relaxation rates between the simulation (multiple hopping
model) and theory (multiple trapping model) is very good
except in the regime of low disorder where site revisitation
effects are important. The next section discusses this topic in
greater detail.

An example of the polarization function’s shape is shown
in Fig. 4. For the slowest hopping/largest disorder, the polar-
ization decays in a Gaussian fashion as Eq. (28) makes clear.
As the hopping rate is continually increased or the disorder de-
creased, the polarization function develops more exponential
character until the motional narrowing regime is obtained.

B. The role of correlations

In light of Fig. 3, we see that the difference between the mul-
tiple hopping and trapping calculations is minimal at interme-
diate to large disorder strengths (α � 1) for the hopping k0 =
1000a (the same is true for smaller k0 also). In this regime,
correlations between site energies and local fields must be
inconsequential. The reason for this is the following: for large
disorder, wait times are typically longer than the local field
period such that τha � 1. The transverse spin ensemble then
decoheres on a time scale of the order of 1/a, which is what we
observe to be happening in Fig. 3. Whether a spin is frequenting
a site often is irrelevant since the phase of the spin is random-
ized by the time it embarks on its first hop. The same reasoning
can be used to explain the equivalence of multiple hopping and
trapping models when calculating hyperfine spin relaxation.

The discrepancy between the multiple hopping and trapping
models is largest when disorder is small and hopping is rapid

115203-5
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(e.g., at α = 10 in Fig. 3). Since spin decoherence times are
much longer in this regime, the role of correlations is larger
and apparent. Rotations in one dimension (only considering
transverse decoherence here) commute. So returning to a
particular site one time (each stay being of length τi and
τj ) is equivalent to having stayed at the site for a duration
τi + τj and not returned to it. From the theory of random
walks, the mean number of visits to each site of a simple cubic
lattice is 1.516 [31,45]. The mean wait time is increased by
this amount 1/k0 → 1.516/k0 [46]. The motional narrowing
spin relaxation rate is modified to be 1/T ∗

2 = 1.516a2/k0. Our
multiple hopping simulations recover this result in the low
disorder limit as shown at α = 10 in Fig. 3 (black symbol).

IV. SPIN-ORBIT SPIN RELAXATION

Each hop brings about a sudden spin rotation given by
the rotation matrix of Eq. (4) except that now the rotation
angles are independent of time; this fact simplifies the math-
ematics considerably. For simplicity, we make the following
assumption: the spin-orbit field components are distributed as
a Gaussian function with width γ [48]. For the MT model,
we are interested in the spatially averaged R̂h which, given
the assumed isotropy of the spin-orbit fields, is proportional
to the identity matrix. In the small angle approximation, the
averaged rotation matrix is simply

R̂h = (1 − γ 2)1̂. (34)

Equation (14) then reduces to a more manageable form:

P̃z(s) = �̃(s)

1 − (1 − γ 2)ψ̃(s)
. (35)

For the special case of the exponential WTD, the Laplace
inversion is determined exactly to yield Pz(t) = e−γ 2kt , which
is in agreement with existing theories of spin-orbit spin
relaxation [49,50]. Within the hitherto described multiple
trapping model, we can express the polarization in terms
of special functions by using Eq. (18). The polarization
in time can be ascertained by numerically inverting the
Laplace transform [51–53]. However, in the long-time case,
the asymptotic analysis of Sec. II B can be used to find an
analytic expression:

P (t) = 1

�(1 − α)

1

kα
0

1

γ 2
πα csc(πα)t−α, (36)

which shows that spin polarization is characterized by alge-
braic decay [15]. Some physical intuition regarding this result
can be obtained by noting that P (t) = �(t)/γ 2. By recalling
that �(t) is the probability that a hop has not taken place
up to time t , we see that the polarization decays as carriers
hop in agreement with what is true from the low-disorder
case. Thus the transport of spin is inherently detrimental to
spin preservation as expected from the similar Elliott-Yafet
mechanism in inorganic semiconductors [1,49].

Figure 5 displays the results of our CTRW theory (black
solid line from numerical Laplace inversion) and analytic
asymptotic expression (dotted line). A large discrepancy
appears between the multiple trapping and hopping models,
though the qualitative features (algebraic decay) are identical.
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FIG. 5. (Color online) The spin polarization as a function of
time when relaxation is due to spin-orbit coupling using α = 1/2,
γ = 0.025. (Inset) Same data but axes are on a linear scale and the
time scale is shorter. Carriers are injected at sites randomly in the
semiconductor.

Unlike what was found for the δg mechanism, correlations are
much more pivotal to the SOC mechanism.

The three curves in Fig. 5 depict the full multiple hopping
result (green symbols), the multiple trapping result (red
symbols and solid black line), and the result where correlated
hopping exists but local fields are uncorrelated (blue symbols).
The dramatic differences between the long-time scales of the
three curves indicate the importance of correlated hopping and
correlated fluctuating fields though the algebraic dependence
is retained in all three.

The indicated results assume spins are injected randomly
into the amorphous semiconductor (i.e., no site-energy depen-
dence). We find that the spin lifetime is contingent on the
injection conditions. For example, if the spins are injected
preferably to sites lower in energy, the time to decay is
significantly lengthened since the rapid cascading at early
times is avoided (not shown). This observation suggests that
tuning the spin injection (by a bias perhaps) could alter the
spin-relaxation times.

V. SPIN RELAXATION WITH LOCALIZED AND
EXTENDED STATES

Up to this point, we have only concerned ourselves with spin
relaxation for spin carriers hopping within the mobility gap.
However, one should also account for scenarios that involve
carriers hopping up to the more conductive states above the mo-
bility edge. The CTRW and multiple trapping theories, already
previously introduced here, can be straightforwardly extended
to this more complicated situation. In the following section, we
treat the problem generally where the two subsystems (above
and below mobility edge) are not yet specified.

A. Spin relaxation of carriers that cross between two systems

Consider two subsystems, E0 and E1, that possess their
individual set of spin interactions that will lead to spin
relaxation and decoherence, which can be denoted by
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polarization matrix functions, P̂0(t) and P̂1(t) (these would
be the type of functions calculated in the previous sections),
and also their particular WTDs, ψ0(t) and ψ1(t). However,
the two subsystems are not closed from one another; there
is intersystem crossing that is not necessarily symmetric.
Environment-specific WTDs can be defined, ψ0→1 and ψ1→0,
which give the distribution of wait times before the carrier
transitions from E0 to E1 and vice versa, respectively. �0(t)
and �1(t) are survival probabilities for remaining in E0 and
E1, respectively. A final ingredient is possible: spin rotations
incurred while crossing systems; traveling from E0 to E1 gives
R̂0→1 and the opposite holds for the reverse transition. For
simplicity, we assume these rotation matrices to be isotropic
(diagonal) and independent of time.

Consider the polarization function of a particle that is
initiated in E1 and at some later time t is also found in E1

though any number of intersystem crossings can occur between
0 and t . We call such a function Q̂1→1 and determine it in the
following way:

Q̂1→1(t) = �1(t) P̂1(t) + R̂0→1 R̂1→0

∫ t

0
dt ′

×
∫ t ′

0
dt ′′�1(t − t ′) P̂1(t − t ′)ψ0→1(t ′ − t ′′)

× P̂0(t ′ − t ′′)ψ1→0(t ′′) P̂1(t ′′) + ... (37)

where each additional term introduces two more intersystem
transitions. As before, it is advantageous to transform to the
Laplace domain:

˜̂Q1→1(s) = ˜̂V 1(s) + ˜̂V 1(s) ˜̂V ′
0(s) ˜̂V ′

1(s)

+ ˜̂V 1(s) ˜̂V ′
0(s) ˜̂V ′

1(s) ˜̂V ′
0(s) ˜̂V ′

1(s) + . . .

= ˜̂V 1(s)
∞∑

n=0

[ ˜̂V ′
0(s) ˜̂V ′

1(s)]n

= ˜̂V 1(s)[1̂ − ˜̂V ′
0(s) ˜̂V ′

1(s)]−1, (38)

where ˜̂V i(s) = L [�̃i(t) P̂ i(t)] and ˜̂V ′
i(s) =

R̂i→=iL [ψ̃i→=i(t) P̂ i(t)]. By symmetry, another contribution
can be readily expressed as

˜̂Q0→0(s) = ˜̂V 0(s)[1̂ − ˜̂V ′
1(s) ˜̂V ′

0(s)]−1. (39)

The other two contributions are found by modifying ˜̂Q0→0(s)
and ˜̂Q1→1(s). For ˜̂Q0→1(s), the first term in the series involves
one transition and the final state is not identical to the initial
state so

˜̂Q0→1(s) = ˜̂V 1(s) ˜̂V ′
0(s)[1̂ − ˜̂V ′

1(s) ˜̂V ′
0(s)]−1. (40)

Likewise,

˜̂Q1→0(s) = ˜̂V 0(s) ˜̂V ′
1(s)[1̂ − ˜̂V ′

0(s) ˜̂V ′
1(s)]−1. (41)

If c fraction of spins start in E0 then the total polarization
matrix in the time domain is

P̂(t) = (1 − c)[ Q̂1→1(t) + Q̂1→0(t)]

+ c[ Q̂0→0(t) + Q̂0→1(t)], (42)

which can be determined by numerical Laplace inversion if
the Q̂i→j can be expressed in Laplace space.

B. Spin-orbit spin relaxation from intercrossing between
extended states and localized states at a single energy level

The simplest example of the intercrossing is the case where
the Fermi energy εF (in units of kBT and defined with respect
to εc = 0) lies in the band tail. To avoid the complexity of
different energy states in the band tail, we consider only
those spins at the Fermi level. To be released from the
localized state and into the highly conductive states, an energy
−εF is required. The rate for this to happen is then kre

εF .
Conversely, an itinerant spin is occasionally trapped back
down to the localized state at a rate kt (we assume exponential
WTDs for both the trapping and release processes). For both
environments, we examine only the transport-induced spin
relaxation, which is primarily from the SOC. Thus

P0(t) = e−γ 2
0 k0t , P1(t) = e−γ 2

1 k1t , c = 0,

ψ0→1(t) = kre
εF e−kr e

εF t , ψ1→0(t) = kte
−kt t , (43)

R̂0→1 = (
1 − γ 2

01

)
1̂, R̂1→0 = (

1 − γ 2
10

)
1̂.

From these definitions, calculating the ˜̂Qi→j (s) is straight-
forward. The total polarization can be inverted though the
final expression is quite cumbersome. Most important for our
purposes are the two spin relaxation rates that can be extracted
from the exponential decay:

�fast/slow= 1
2 (kre

εF +γ 2(k0 + k1) + kt ±
√

[kreεF + γ 2(k0 + k1) + kt ]2 − 4γ 2{k0(kt + γ 2k1) + kreεF [k1 + kt (2 − γ 2)]}) (44)

where we stipulated that all spin-orbit parameters are equal,
γ0 = γ1 = γ01 = γ10. The spin relaxation among the localized
states should be much smaller than in the extended states. Also
trap release times could be significantly longer than trapping
times. Expanding the rates with these reasonable assumptions
in mind yields

�fast/slow =
{

γ 2k1 + kt

γ 2k1+2γ 2kt

γ 2k1+kt
kre

εF
. (45)

If the itinerant spin relaxation rate is sufficiently large
(i.e., �kt ), then the slow rate simplifies to kre

εF , which
indicates that localized spins that are promoted to the
higher conductive states typically lose their orientation before
they can be trapped again. Despite the fact that the fast
rate remains in the absence of SOC, we have checked
the full solution to be ( Q̂11(t) + Q̂10(t)) · ẑ = 1 if γ = 0
as expected.
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VI. AMORPHOUS INORGANIC SEMICONDUCTORS

The theory just outlined is now applied to the case of
spin-polarized carriers in amorphous semiconductors. In this
section, the basic properties of these materials are summarized.
In the following sections, we compare the result of the theory
to available ESR experiments.

Transport properties of amorphous semiconductors are
characterized by two mobility edges at energies, εv and
εc, outside of which states are extended (but still unlike
Bloch waves) and between which states are localized. These
localized states are said to fall within the “mobility gap” of
the amorphous semiconductor. (Refer to Fig. 6.) The localized
states are intrinsic to the semiconductor and not necessarily the
result of impurities. There are two types of defect states in pure
a-Si: dangling bonds that lie near the center of the band gap
and band tail states that are formed from the distorted nature of
the lattice by way of variations in bond lengths, bond angles,
and dihedral angles. The former energy states are believed to
vary not nearly as rapidly as the latter tail states which possess,
near the mobility edges, a density of these states exponential in
nature [54]. For example, below εc these so-called “band-tail”
states are given by

g(ε) = 1

kBT0
eε/kBT0 , (46)

where kB is Boltzmann’s constant, T0 is the distribution’s width
in degrees Kelvin and a measure of the disorder, and energy
ε is taken to be negative. An analogous expression exists for
the valence band tail density of states. Typical values for T0

are in the range of 300–600 K; T0 varies between the valence
and conduction mobility edges and tends to be larger for the
valence-band tail. We assume the dangling bond density of
states is approximately constant [23,55].

Commonly, the Fermi energy lies within the mobility gap;
we assume electron majority carriers though the theory applies
equally well to hole majority carriers. Pure a-Si possesses a
large dangling bond density of states which effectively pins
the Fermi level near mid band gap, which ultimately makes
the electronic properties of these materials immune to doping.
By passivating the dangling bonds through the incorporation
of hydrogen, the density of mid gap states is reduced and the

density of states, g(ε)

εv εc

ε

mobility gap

dangling bonds

band tail band tail

conduction band
valence band

FIG. 6. (Color online) Density of states for a-Si.

hydrogenated material, a-Si:H, can be successfully either p or
n doped. Amorphous silicon is prepared through a variety of
methods, the most prevalent being plasma-enhanced chemical
vapor deposition (PECVD). In this process, silane (SiH4) can
be added whose hydrogens eventually passivate a portion of
the silicon dangling bonds. Additionally, PECVD allows for
the incorporation of phosphine (PH3) and diborane (B2H6),
which lead to n doping from phosphorous and p doping from
boron. The superior properties of a-Si:H led to the material
being utilized in electronic devices.

A. Spin properties

Amorphous semiconductors such as a-Si and a-Ge also
contain few nuclear spins so we can reasonably expect
SOC to be limiting. Their hydrogenated counterparts (a-Si:H
and a-Ge:H) do obviously have significantly more nuclear
moments though the observed affect on the ESR line width
is surprisingly minimal, which indicates the paramagnetic
dangling bonds are well isolated from the hydrogen and are
highly localized on the silicon atoms [56]. For these reasons,
we will not further explore hyperfine induced spin relaxation in
this paper. IS mechanisms, which are independent of mobility,
have been studied in some detail in the past [57] but will not
be delved into here as our focus is on transport-induced spin
relaxation, which is often observed to be the dominant source
of spin relaxation at room temperature.

Additionally, the heavier elements present (Si and Ge)
suggest SOC effects to be greater than that found in organic
materials. The SOC strength of γ ≈ 0.1 has been used often
in the literature. This value is about threes time larger than
that found for the often studied Alq3 organic semiconduc-
tor [50,58]. The larger SOC also gives rise to inhomogeneous
g factors, which can dephase or decohere spins in an applied
field. This effect—which has been considered negligible in
organic semiconductors—has been observed to contribute
significantly to ESR linewidths in amorphous semiconductors
below room temperature [24,59].

In the following sections, we discuss spin relaxation in
three regimes of inorganic semiconductors (specifically a-Si or
a-Si:H): (1) hopping within dangling bond states, (2) hopping
within band tail states, and (3) trapping and activation above
and below the mobility edges at εv or εc. Low occupational
probabilities and low spin injection densities allow us to
assume dilute carriers and avoid complicating features such
as dipolar and exchange interactions [56,59–61].

B. Undoped a-Si

In undoped a-Si, the Fermi energy lies near mid band
gap within a large density of states coming from dangling
bonds. Charge transport in this regime occurs via variable
range hopping [62]. Using the results of Sec. III and the
observed linewidth, �B1/2 = �gB0/2 = 7.5 G, where B0 is
the field corresponding to a resonant frequency of 9 GHz, a
�g ≈ 5 × 10−3 is ascertained [44,63,64]. The temperature-
dependent portion in Fig. 7 is found from our nondispersive
result in Sec. IV, 1/T2 = γ 2k(T ), which is a result first realized
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FIG. 7. (Color online) Black solid symbols are experiments of
Refs. [22] and [23]. Red solid line is our theoretical result. Parameters
used: γ = 0.1, k0 = 1010 ns−1, T0 = 4.8 × 107 K. Other experimen-
talists have seen the same variable range hopping dependence for
linewidth [60].

by Movaghar and Schweitzer in Ref. [23]. The dangling bond
density of states is slowly varying around the Fermi level so
k(T ) = k0 exp[−(T/T0)1/4] under the assumption of variable
range hopping within a constant density of states. Relaxation
times in this regime are on the order of one nanosecond at
room temperature.

C. p-doped a-Si:H (trapping and releasing around
the mobility edge)

Using the slow rate of Eq. (45) yields a rate 1/T2 ≈
kr exp(�E) if k1 � kt , which is shown in Fig. 8 along
with experimental data on p-doped a-Si:H. We have used a
generic activation �E instead of εF because in actuality the
mobility edge is ambiguously defined due to the existence of
long-ranged electrostatic potentials from negatively charged
acceptors, which effectively shift the Fermi level by some
amount; knowledge of the Fermi level is also obscured by its
temperature dependence [54,65,66]. These ambiguities aside,
independence of the spin relaxation to the SOC and the fast
hopping rate k1 indicate that the spin relaxation is controlled
by the release of carriers from the slowly relaxing localized
states to the fast relaxing itinerant states.

Another mechanism that could play a role is fast spin
exchange between localized and extended states even if the
extended states are sparsely populated [55,66,68,69]. We do
not investigate this process here.

D. Doped a-Si:H (transport in band tail)

Lastly, we consider doped a-Si:H such that the Fermi
level lies in either the conduction or valence band tail (i.e.,
exponential density of states). The theory described in previous
sections dealing with an exponential density of states assumed
a dilute limit of carriers, which is the scenario present in time-
of-flight (and spin injection) experiments where dispersive
transport is observed. This assumption was also implicit in
our simulations of a carrier hopping among completely empty
states. A feature of this system, and one that distinguishes it
from a faster decaying density of states, is that the average
energy of the carrier continually dives in energy [70]. The
algebraic spin relaxation predicted herein may be difficult to

p-doping :
[B2H6]
[SiH4]

= 2 × 10−3

a-Si:H
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FIG. 8. (Color online) Black solid symbols are experiments of
Refs. [67] and [55] as reported in Ref. [66]. Red solid line is our
theoretical result using the slow relaxation rate of Eq. (45) using
kr = 9 × 102 ns−1 and �E = −0.23 eV.

measure for the following reasons: the slow relaxation will
be masked by other faster mechanisms; in real systems spin-
spin interactions between charges must be accounted—the
exchange between quasistationary spins and faster hopping
spins will tend to reduce the breadth of relaxation times that
give rise to the algebraic decay [65].

In real systems, carriers dive until they eventually reach
energies near the Fermi level in which case occupation effects
now play a role [71]. In these equilibrium situations, the WTDs
used in our theory must be defined with care taken to the
occupation of states [10,72]. Such calculations are beyond the
scope of this paper.

VII. CONCLUSIONS

We have presented a continuous-time random walk theory
of spin relaxation that is applicable in a variety of systems that
display incoherent charge transport. The theory can account
for any number of relaxation mechanisms though we have
chosen to focus particularly on the relaxation emanating from
spin-orbit effects in inorganic semiconductors. When applying
the model to amorphous semiconductors, we find excellent
agreement with ESR data. Our random walk theory also
predicts new spin relaxation regimes (algebraic spin decay) for
charge transport within amorphous semiconductor band tails.
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