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Recent calculations show that the band gaps of the nonisovalent random alloys such as Zn0.5Sn0.5P are much
smaller than those of their ordered phases; that is, the band gap of the random alloy is not the ensemble
averaged value of the ordered structures, in contrast to the trend observed in most isovalent semiconductor
alloys and predicted by the cluster expansion theory. We show that this abnormal behavior is caused by the
strong wave-function localization of the band-edge states in the nonisovalent alloys. Moreover, we show that
although the disordered phase of the isovalent alloys is similar to the random phase, for the nonisovalent alloy,
the disordered phase deviates significantly from the random phase and the fully random phase is not achievable
under the equilibrium growth conditions.
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I. INTRODUCTION

To broaden the range of the material properties for
specific device applications, it is quite common to mix
different elemental or binary semiconductor compounds to
form alloys, because by varying the alloy composition and/or
atomic configuration, the structural, electronic, transport, and
optical properties of the alloys can be tuned [1–6]. The
AxByC type alloys can be classified into two categories:
isovalent alloys, where A and B have the same valence
state, such as GaxIn1−xP, CdSxTe1−x , etc., and nonisovalent
alloys, where A and B have different valence states, such
as CuxInySe,Zn0.5Sn0.5P, etc. For the isovalent alloys, the
compositions x and y = 1 − x usually vary smoothly and
continuously in a wide range. However, for the nonisovalent
alloys, the compositions can only exist around some discrete
values, to satisfy the charge neutrality rule. For example, the
ZnxSnyP, which has recently been proposed as a promising
candidate for solar cells [7–9], exists only in a small range
around x = y = 0.5; the CuxInySe, which is widely used
for thin-film solar cells [10,11], can also exist at other
compositions besides x = y = 0.5, such as CuIn3Se5. The
properties of the isovalent alloys have been extensively studied.
For example, the band gap of the GaxIn1−xP, which is an
ideal material for the solid-state light-emitting diodes and
high-efficiency multijunction solar cells [12,13], can be tuned
by varying the composition and ordering parameters. However,
the properties of the nonisovalent alloys are poorly understood.

Isovalent and nonisovalent alloys can have some similar
properties. For example, they all adopt ordered structures at
low temperatures, and experience an order-disorder transition
due to the increased entropy contribution as the temperature
increases. They also have many different properties, even
different chemical trends. For example, the ground states of
free-standing isovalent alloys are generally phase separated,
due to the positive mixing enthalpy, but those of the noniso-
valent alloys are the ordered alloy structures satisfying the
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octahedral rule [14,15]. Their electronic structures can also
be very different. For the direct-band-gap isovalent alloys,
it was found Eg(CH) > Eg(CA) > Eg(CP) [16], where CH,
CA, and CP represent the ordered chalcopyrite, CuAu-, and
CuPt-like structures, respectively, and the random alloy has
a band gap close to the ensemble averaged value of these
ordered ones. However, for the nonisovalent alloys, the band
gap of the random structure could be very small, and even
smaller than that of the CP structure [9]. Nevertheless, such
a small band gap has never been observed experimentally.
The reason for this abnormal behavior is unclear. Because
more and more nonisovalent alloys are currently considered for
the optoelectronic applications, it is imperative to understand
the general differences between the isovalent and nonisovalent
alloys in their structural-functional relationships.

In this paper, using first-principles calculations, we compare
the structural and electronic properties between the isovalent
Ga0.5In0.5P (for comparison, we only consider x = y = 0.5)
and the nonisovalent Zn0.5Sn0.5P alloys. We have calculated
the band-edge energies of the ordered CH, CA, CP, and
fully random alloy structures. We find that for the isova-
lent alloys Eg(CH) > Eg(CA) ∼ Eg(Random) > Eg(CP), but
for the nonisovalent alloys Eg(CH) > Eg(CA) > Eg(CP) >

Eg(Random). The abnormal trend of the nonisovalent alloys
can be explained by the wave-function localization of the
band-edge states induced by the local charge transfer. We
have also calculated the alloy phase-diagrams, and find that
the disordered phase of the isovalent alloy is close to the
random structure but a strong short-range ordering exists in
the disordered nonisovalent alloy. The disordered nonisovalent
alloy near the phase transition has been simulated, and the
band gap agrees well with the experimental data. We also
point out that for the nonisovalent alloys, a fully random phase
is unachievable under the equilibrium growth condition.

II. ELECTRONIC STRUCTURE AND ENERGY
CALCULATIONS

Our calculations are based on the density functional
theory [17,18] as implemented in the VASP code [19–21].
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FIG. 1. (Color online) The HSE band-edge energies of (a) the
isovalent Ga0.5In0.5P and (b) the nonisovalent Zn0.5Sn0.5P alloys in
the CH, CA, CP, and random (SQS) structures.

The projector augmented wave [22] pseudopotentials are
employed, and the wave functions are expanded in a plane-
wave basis with an energy cutoff of 400 eV. The random
alloys are mimicked by the special quasirandom structures
(SQS) in a 64-atom cell (32 mixed-atoms) [16,23]. We employ
a 6 × 6 × 5 k-point mesh for the CH structure, 6 × 6 × 4
for the CA structure, 9 × 9 × 9 for the CP structure, and
3 × 7 × 2 for the SQS structure, respectively. The k-point
meshes are fine enough to guarantee the convergence. For
the electronic structure calculations, we employ the Heyd-
Scuseria-Ernzerhof hybrid functional (HSE) [24–26]. We have
also tested the generalized gradient functional (PBE) [27], and
the calculated trends are similar although the band gaps are
underestimated.

We start by comparing the band gaps of the ordered
(CH, CA, and CP) and random (SQS) structures between the
isovalent Ga0.5In0.5P alloy and the nonisovalent Zn0.5Sn0.5P
alloy. The HSE band gaps and the relative positions of
the conduction-band minimum (CBM) and the valence-band
maximum (VBM) are shown in Fig. 1. The band edges are
aligned using the core level of the P atoms. For the Ga0.5In0.5P,
the CH structure has the largest band gap of 2.08 eV, the CP
structure has the smallest band gap of 1.57 eV, and the CA
structure has an intermediate band gap of 1.86 eV. The band
gap of the random structure (1.92 eV) is close to the
ensemble averaged value of the ordered structures, as one
would expect. This trend is common in the isovalent alloys
and has been successfully explained by the k-point foldings
and level repulsions [16,28]. For the Zn0.5Sn0.5P, the band
gaps of the CH, CA, and CP structures are 1.73, 1.38, and
0.50 eV, respectively. The trend of the band gaps of the
ordered structures is similar to that of the Ga0.5In0.5P. However,

FIG. 2. (Color online) The charge densities of the VBM and
CBM in the random (a) Ga0.5In0.5P and (b) Zn0.5Sn0.5P alloys.

surprisingly, the band gap of the random structure of the
Zn0.5Sn0.5P shows an abnormal trend: it is very small, even
smaller than that of the CP structure.

To identify the origin of the different trends, it is helpful to
compare the VBM and CBM energies of these ordered and
random structures. As shown in Fig. 1, for both isovalent
Ga0.5In0.5P and nonisovalent Zn0.5Sn0.5P alloys, from CH,
CA, to CP, the VBM energy increases and the CBM energy
decreases, so the band gap decreases. The band gap reduction
from the CA to CP structure, however, is much larger for the
Zn0.5Sn0.5P. For the Ga0.5In0.5P, the VBM energy changes
less significantly than the CBM energy. This is because the
Ga0.5In0.5P is a common-anion alloy; therefore, the CBM,
which is mostly derived from the cation s states, is more
strongly affected by the alloying than the VBM, which is
mostly derived from the anion p states. In the random
structure, both the VBM and CBM energies are close to
the averages of the VBM and CBM energies of the ordered
structures, which confirms that the properties of the random
alloy are the averages of those of the ordered structures. For
the Zn0.5Sn0.5P, the CBM energy of the random structure,
although low, is still close to the average of the CBM energies
of the ordered structures. However, surprisingly, the VBM
energy of the random structure is the highest among all the
calculated structures, which is unexpected. Therefore the band
gap abnormality of the Zn0.5Sn0.5P is mainly due to the unusual
variation of the VBM energies.

The VBM and CBM charge densities of the random
structure for the Ga0.5In0.5P and Zn0.5Sn0.5P are shown in
Fig. 2. For the Ga0.5In0.5P, the VBM and CBM states
are rather delocalized. However, for the Zn0.5Sn0.5P, the
CBM localization is stronger, because the chemical potential
difference between Sn and Zn is larger than that between In
and Ga. However, because the CBM is mainly s state, which
is delocalized, the CBM localization is still not too strong. In
contrast, the VBM state of the random Zn0.5Sn0.5P is strongly
localized on the P atoms surrounded by four Zn atoms. This
is explained by the nonisovalent effect. Zn has two valence
electrons and Sn has four. To form bonds, Sn transfers an
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FIG. 3. (Color online) The total energies per cation site of the
ordered and random Ga0.5In0.5P and Zn0.5Sn0.5P alloys. The energies
of the CH structure are set to zero.

electron to Zn, so that Zn is negatively charged and Sn is
positively charged in the Zn0.5Sn0.5P. The strong Coulomb
repulsion will push up the energies of the P p levels when the
P atoms are surrounded by the negatively charged Zn atoms,
and pull down the energies of the P p levels when the P
atoms are surrounded by the positively charged Sn atoms.
Furthermore, Zn has higher d orbitals than Sn, so the stronger
p − d coupling will also make the p level higher in energy
when the P is surrounded by more Zn atoms. Therefore, the P
atoms surrounded by four Zn atoms has the highest p level,
and the VBM state is strongly localized on those sites.

For the Zn0.5Sn0.5P in the CA and CH structures, all the
P atoms are surrounded by two Zn and two Sn atoms, so the
VBM energies of these two structures are similar. In the CP
structure, half of the P atoms are surrounded by one Zn and
three Sn atoms, and the other half are surrounded by one Sn
and three Zn atoms. The VBM energy is mostly determined by
the P atoms surrounded by three Zn atoms due to the Coulomb
repulsion, so it is ∼0.4 eV higher than those of the CA and CH
structures, which explains the large band gap reduction from
the CA to CP structure. In the random structure, the VBM
energy is mostly determined by the P atoms surrounded by
four Zn atoms due to the strongest Coulomb repulsion, so it is
the highest among all the calculated structures, which explains
the abnormal trend of the band gap.

Our analysis above clearly shows that for the isovalent
Ga0.5In0.5P, the wave functions of the band-edge states are
delocalized; therefore their energies follow the ensemble aver-
ages of the ordered structures, as the cluster expansion theory
predicts [16]. However, for the nonisovalent Zn0.5Sn0.5P, the
wave functions of the band-edge states are localized, so their
energies are determined by the local atomic configurations,
not by the ensemble average of the lattice. This explains why
the ensemble average rule fails for the nonisovalent alloys.

Not only the band gap but also the total energies of the
nonisovalent alloys deviate from the ensemble average rule.
Figure 3 shows the calculated total energies of the ordered
and random structures for the Ga0.5In0.5P and Zn0.5Sn0.5P
alloys. For the Ga0.5In0.5P, the CH structure has the lowest
total energy, the CP structure has the highest total energy, and
the total energy of the CA is in between. The total energy of the
random structure is again close to the ensemble averaged value
of the ordered structures. This is the typical trend of the total

energies for the isovalent alloys. However, for the Zn0.5Sn0.5P,
the CH and CA structures have similar total energies, the
energy of the CP structure is ∼0.1 eV per cation site higher,
and the random structure has the highest energy (∼0.14 eV per
cation site higher than that of the CH structure). This abnormal
trend is again due to the nonisovalent effect. In the nonisovalent
alloys, to fulfill the octet rule, the local environment around
a common anion atom should be charge neutral. For the CH
and CA structures, because all the P atoms are surrounded by
two Zn and two Sn atoms, the octet rule is satisfied and thus
the total energies are similar and low. For the CP structure,
because all the P atoms are either surrounded by one Zn and
three Sn atoms or by one Sn and three Zn atoms, the octet rule
is not satisfied, which raises the total energy. For the random
structure, all types of the first-neighbor motifs exist. For the P
atoms surrounded by Sn4, Sn3 Zn, SnZn3, and Zn4, the octet
rule is not satisfied, and thus the energy of the random structure
is very high.

III. PHASE DIAGRAM CALCULATIONS

Now, we turn to the discussion of the thermodynamic
properties of these two alloys. The alloy phase diagrams
are calculated using the cluster expansion approach as im-
plemented in the ATAT code [29]. The cluster expansion
coefficients are fitted to the energy calculated by the PBE
functional. The equilibrium structures of the alloys at various
temperatures are calculated by the Monte Carlo simulations in
a 128 000-atom cell.

We have calculated the phase diagrams for the coherently
strained Ga0.5In0.5P and Zn0.5Sn0.5P. The total energies per
cation site of the equilibrium structures and the probabilities of
the first-neighbor motifs of the P atoms: A4, A3B, A2B2, AB3,
and B4, as a function of the temperature, are displayed in Fig. 4.
In a fully random alloy, these probabilities are 0.0625, 0.25,
0.375, 0.25, and 0.0625, respectively, which are shown as the
dashed lines in the figure. For the free-standing GaxIn1−xP, the
most stable phase at zero temperature is the phase-separated
state, i.e., the alloy separates into GaP and InP. However, for
the coherently (no broken bonds) strained Ga0.5In0.5P [30],
where the lattice constant is fixed at the averaged value
of GaP and InP, the CH structure is the most stable. At
high temperatures, the entropy term plays a more important
role and the disordered structures become more stable. An
order-disorder phase transition occurs around T = 350 K for
the coherently constrained Ga0.5In0.5P [31], where the total
energies and the probabilities of the first-neighbor motifs of
the P atoms change dramatically. After the phase transition,
the total energies and the probabilities of the first-neighbor
motifs of the P atoms are close to those of the random alloy,
which indicates the disordered alloy is close to random. For the
Zn0.5Sn0.5P, as the temperature increases, a phase transition
occurs around T = 1100 K. However, different from the
isovalent alloy case, the total energies are still ∼0.1 eV per
cation site lower than that of the random alloy after the phase
transition. Similarly, the probabilities of the first-neighbor
motifs of the P atoms are also quite different from those
in the random alloy. Specifically, the probability of the P
atoms surrounded by two Zn atoms and two Sn atoms is
much higher, and the probabilities of the other four types are
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FIG. 4. (Color online) The total energies per cation site and
the probabilities of the first-neighbor motifs of the P atoms in the
equilibrium structures as a function of the temperature for (a) the
coherently strained Ga0.5In0.5P on a lattice matched substrate, and
(b) the Zn0.5Sn0.5P alloys. The dashed lines indicate the corresponding
total energies and probabilities in the random structure.

much lower, indicating that even after the phase transition,
a strong short-range ordering still exists in the Zn0.5Sn0.5P
alloy. This is because for the nonisovalent alloys, the local

motifs A4, B4, A3B, and AB3 have much higher energies, as
discussed before, so the alloy tends to suppress the existence
of those motifs even at the disordered phase. To study the
disordered Zn0.5Sn0.5P alloy, we have built an SQS that has the
same correlation functions as the calculated disordered alloy at
1200 K. In this case, we find that the calculated probabilities of
the first-neighbor motifs Zn4, Zn3Sn, Zn2Sn2, ZnSn3, and Sn4

are 0, 0.1875, 0.625, 0.1875, and 0, respectively, significantly
different from the values in the random alloy. The calculated
band gap of this disordered alloy is ∼1.2 eV, which is in
good agreement with the experiment [32]. As the temperature
increases further, the total energies and the probabilities of the
motifs change only slowly towards the values in the random
alloy. We find that even at an unrealistic high temperature
(T = 20 000 K), the calculated total energy of the disordered
alloy is still more than 20 meV per cation site lower than that
of the random alloy, and the probabilities of the first-neighbor
motifs of the P atoms have not achieved the values in the
random alloy. These results suggest that for the nonisovalent
alloys, the random alloy is not achievable under the equilibrium
growth conditions in the experiments.

IV. CONCLUSIONS

In summary, we show that the wave functions of the
VBM and CBM states of the nonisovalent alloys are highly
localized. This strong localization causes these states sample
only a particular region in the lattice, not the whole lattice,
which explains the failure of the ensemble average rule that
is observed in the isovalent alloys. We find that for the isova-
lent alloys Eg(CH) > Eg(CA) ∼ Eg(Random) > Eg(CP), but
for the nonisovalent alloys Eg(CH) > Eg(CA) > Eg(CP) >

Eg(Random). Moreover, we show that the disordered struc-
tures of the isovalent alloys are close to random, but for
the nonisovalent alloys the random phase is not achievable
under the equilibrium growth conditions. These findings are
important in designing new optoelectronic devices based on
the nonisovalent alloys.
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