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Phonon dynamics in correlated quantum systems driven away from equilibrium

Eli Y. Wilner,1 Haobin Wang,2 Michael Thoss,3 and Eran Rabani4
1School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
3Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg,

Staudtstr. 7/B2, 91058 Erlangen, Germany
4School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
(Received 24 July 2014; revised manuscript received 28 August 2014; published 25 September 2014)

A general form of a many-body Hamiltonian is considered, which includes an interacting fermionic subsystem
coupled to noninteracting extended fermionic and bosonic systems. We show that the exact dynamics of the
extended bosonic system can be derived from the reduced density matrix of the subsystem alone, despite the fact
that the latter contains information about the subsystem only. The advantage of the formalism is immediately
clear: While the reduced density matrix of the subsystem is readily available, the formalism offers access to
observables contained in the full density matrix, which is often difficult to obtain. As an example, we consider an
extended Holstein model and study the nonequilibrium dynamics of the so-called “reaction mode” for different
model parameters. The effects of the phonon frequency, the strength of the electron-phonon couplings, and the
source-drain bias voltage on the phonon dynamics across the bistability are discussed.
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Strongly correlated systems show a remarkable range of
interesting phenomena, some of which can be explained with
the current arsenal of theoretical tools [1,2]. Their behavior
when driven away from equilibrium (e.g., by a finite bias
voltage) is less well understood [3]. This is because theoretical
tools that provide a reliable and accurate description under
equilibrium conditions are difficult to converge for open
quantum systems driven away from equilibrium [4,5]. For
example, Kondo physics in equilibrium has been understood
within renormalization group theory for several decades [6],
while the spectral properties under bias [7] were recently
solved exactly by a numerical real-time quantum Monte
Carlo formalism [8,9], confirming the voltage splitting of the
Kondo peak [10]. The lack of a robust theoretical framework
to nonequilibrium many-body physics has been the driving
force for developing theoretical tools to understand both the
dynamics and the approach to a steady state when strong
correlations are dominant.

One such powerful tool is based on the Nakjima-Zwanzig
reduced density matrix (RDM) formalism [11–13] combined
with a proper impurity solver to obtain the memory kernel [14].
This approach has been applied recently to study charge
and spin relaxation near the Kondo crossover temperature
of the Anderson impurity model [15] and to study localiza-
tion and bistability in the nonequilibrium extended Holstein
model [16,17]. The Nakjima-Zwanzig formalism, by construc-
tion, provides access to the dynamics of observables within
the reduced space only. Here, we expand the methodology
and show how to extract the dynamics of a certain class of
observables that were traced out. Our approach is particularly
suitable for systems with strong electron-phonon couplings,
which give rise to highly interesting phenomena [18–22]. In
light of this, we apply the formalism to analyze nonequilibrium
phonon dynamics in the extended Holstein model. While the
nonequilibrium phonon distribution in the steady state of this
model has been analyzed in great detail (see, e.g., [23–27]
and references therein), so far there are only very few theo-

retical studies of time-dependent phonon dynamics, which all
involve significant approximations [28–31]. The methodology
presented in this paper facilitates a numerically converged
treatment of this nonequilibrium many-body problem.

To outline the reduced density matrix formalism, consider
a general Hamiltonian for a many-body quantum system
comprising bosons and fermions:

H = Hs + Hf + Hb + Vsf + Vsb, (1)

where Hs = ∑
ij εij d

†
i dj + ∑

ijnm Vijnmd
†
i d

†
j dndm and

Hf = ∑
kq εkqc

†
kcq are the interacting and noninteracting

parts of the Hamiltonian for the fermionic degrees of freedom
and Hb = ∑

α �ωα(b†αbα + 1
2 ) describes the bosonic degrees

of freedom. The coupling between the subspace “s” and
“f ” is described by Vsf and often is chosen in the form
of a hopping between sites,

∑
ik(tikd

†
i ck + H.c.), but the

formalism developed below is not limited to this choice. The
coupling between the interacting fermions and bosons is
taken to the lowest order in dimensionless boson coordinates,
xα = 1√

2
(b†α + bα):

Vsb =
∑
ij,α

Mα
ij d

†
i dj xα. (2)

Here, d
†
i /di and c

†
k/ck are fermionic creation/annihilation

operators at sites i and k, respectively, and b†α/bα are
bosonic creation/annihilation operators for mode α. The above
many-body Hamiltonian is a general form covering different
generic models, e.g., the Fermi-Bose-Hubbard model [32], the
spin-boson model [33], and the Anderson-Holstein quantum
impurity model [34,35]. Thus, developing an approach to
extract the time-dependent solution of this generic model is of
great importance. Using the projection operator P = ρf (0) ⊗
ρb(0)Trf,b, where ρf (0) ⊗ ρb(0) is the initial density matrix
in the “b” and “f ” subspaces and the trace Trf,b is performed
only for these degrees of freedom, one can derive an exact
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equation of motion for the RDM of subspace “s” (referred to
as the “system”) [16]:

i�
∂

∂t
σ (t) = Lsσ (t) + ϑ(t) − i

�

∫ t

0
dτκ(τ )σ (t − τ ), (3)

where σ (t) = Trf,b ρ(t) and ρ(t) is the full time-dependent
density matrix obeying the Liouville-von Neumann equation,
ρ̇ = − i

�
[H,ρ]. In the above equation, Ls = [Hs, . . .] is the

system’s Liouvillian,

ϑ(t) = Trf,b

{
Lve

− i
�
QLtQρ(0)

}
(4)

is a superoperator matrix, that depends on the choice of
initial conditions and Lv = [Vsf + Vsb, . . .]. By construction,
ϑ(t) vanishes for an uncorrelated initial state [16], i.e.,
when ρ(0) = σ (0) ⊗ ρf (0) ⊗ ρb(0), where σ (0) is the system
initial density matrix. The memory kernel superoperator κ(τ )
which describes the non-Markovian dependency of the time
propagation of the system, is given by [16]

κ(t) = Trf,b

{
Lve

− i
�
QLtQL(ρf (0) ⊗ ρb(0))

}
(5)

with Q = 1 − P .
The calculation of the RDM in Eq. (3) requires as input

the knowledge of the time-dependent memory kernel. The
difficulty in solving the many-body quantum Liouville-von
Neumann equation for ρ(t) is now shifted to obtaining κ(t).
However, simplifications can be made and rely on the fact
that often the memory kernel is short lived (the time scale is
typically governed by a large energy scale), i.e., the system
“forgets” its history rapidly [36]. Therefore, one can develop
suitable quantum impurity solvers to calculate the memory
until it decays and obtain the dynamics of the RDM at all
times using Eq. (3).

The Nakjima-Zwanzig formalism, by construction, pro-
vides access to the dynamics of observables within the reduced
space only. Observables that depend also on nonsystem
degrees of freedom (∈ f,b) can, in principle, be calculated
by introducing additional sets of Nakjima-Zwanzig-like equa-
tions. For example, for open quantum systems, the current
which depends both on s and f operators requires the
introduction of an additional memory term with a longer decay
time [36]. The drawback of this extended Nakjima-Zwanzig
formalism for nonsystem operators is that each observable
requires the introduction of an additional memory term, which
is often difficult (or perhaps impossible) to calculate.

We propose an alternative formalism suitable for a certain
class of observables that does not require any additional
calculation of memory terms or the inclusion of the boson
degrees of freedom in the system part. More specifically, we
show that the time evolution of the expectation values of
the positions and momenta of the bosonic variables can be
obtained from the RDM [or from the lesser two-time Green
function, G<(t,t)] of the system alone, despite the fact that
σ (t) [or G<(t,t)] does not contain any information about the
bosonic bath that was traced out. The derivation given below is
rather simple but the result is powerful. It offers a way to extract
information which is not directly accessible. We illustrate
the approach for the extended nonequilibrium Holstein model
and discuss the correlations between the phonon and electron
dynamics.

Consider the Heisenberg equation of motion for bα(t) and
b†α(t) generated by the general Hamiltonian of Eq. (1):

ḃα(t) = −iωαbα(t) − i√
2�

∑
ij

Mα
ij d

†
i (t)dj (t),

(6)

ḃ†α(t) = iωαb†α(t) + i√
2�

∑
ij

Mα
ij d

†
i (t)dj (t),

where the dimensionless position and momentum of each bo-
son mode is given by xα(t) = 1√

2
[b†α(t) + bα(t)] and pα(t) =

i√
2
[b†α(t) − bα(t)], respectively. Taking the expectation value

over the initial density matrix ρ(0), we find that

〈ẋα(t)〉 = ωα〈pα(t)〉,
(7)

〈ṗα(t)〉 = −ωα〈xα(t)〉 − 1

�

∑
ij

Mα
ij 〈d†

i (t)dj (t)〉,

where 〈· · · 〉 ≡ Tr[ρ(0) · · · ]. The expectation value of the site
populations and coherences can be expressed in terms of the
RDM (for the same sake by the elements of the Green function
of the system) by

〈d†
i di〉 =

∑
n1, . . . ,nN

σn1,...nN ,n1,...nN
δni ,1,

(8)
〈d†

i dj 〉 =
∑

n1, . . . ,nN

n
′
1, . . . ,n

′
N

σn1,...nN ,n1,...nN
δni ,1δnj ,0δn

′
i ,0

δn
′
j ,1

.

Equations (7) and (8) imply that if the RDM of the system is
known the average positions and momenta of the boson modes
can be obtained by solving for Eq. (7) with the RDM given as
an input. This is the main result of this paper. We now illustrate
this for the extended Holstein model.

In this model, Hs = εd†d includes a single level, Hf =∑
k∈L,R εkc

†
kck , and Hb = ∑

α �ωα(b†αbα + 1
2 ). The cou-

pling between the system and the fermionic and bosonic
baths is given by Vsf = ∑

k tkd
†ck + H.c. and Vf b =

d†d
∑

α Mα(b†α + bα), respectively. tk and Mα determine the
strength of the hybridization and electron-phonon couplings,
respectively. The former is modeled by a tight-binding spectral
density with an overall coupling determined by � while
the latter is modeled by an Ohmic spectral density J (ω) =
π�

2 ηωe− ω
ωc , where the dimensionless Kondo parameter, η =

2λ
�ωc

, determines the overall electron-phonon couplings, ωc is

the characteristic phonon bath frequency, and λ = ∑
α

M2
α

�ωα
=

1
π

∫
dω
ω

J (ω) is the reorganization energy (or polaron shift),
which also determines the shifting of the dot energy upon
charging.

The reduced density matrix was recently solved for this
model [16,17] by employing two different approaches to
calculate the memory kernel and solving Eq. (3) for σ (t): (i) a
two-time nonequilibrium Green function (NEGF) [37] method
within the self-consistent Born approximation (SCBA) [17]
suitable for weak electron-phonon couplings and (ii) the
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) [38,39], which is numerically exact but more
demanding. The results obtained in a wide range of parameters
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FIG. 1. (Color online) nd (t) = 〈d†d〉(t),〈P (t)〉, and 〈Q(t)〉 for
different initial conditions: Black, unoccupied [nd (0) = 0] with
〈xα(0)〉 = 0; red, occupied [nd (0) = 1] with 〈xα(0)〉 = 0; blue, un-
occupied with 〈xα(0)〉 = − 2Mα

�ωα
; and green, occupied with 〈xα(0)〉 =

− 2Mα

�ωα
. The model parameters are λ/� = 0.77, εd/� = 1.5625,

�μ/� = 0.625, and temperature T = 0.

revealed dynamics on multiple timescales. In addition to
the short and intermediate timescales associated with the
separate electronic and phononic degrees of freedom, the
electron-phonon coupling introduces longer timescales related
to the adiabatic or nonadiabatic tunneling between the two
charge states (〈d†d〉 = 1 and 〈d†d〉 = 0). The analysis shows,
furthermore, that the value of the dot occupation may depend
on the initial preparation of the phonon degrees of freedom,
suggesting the existence of bistability [16,17,23,40,41]. In-
triguingly, the phenomenon of bistability persists even on
timescales longer than the adiabatic/nonadiabatic tunneling
time.

In Fig. 1 we show the correlation between the dynamics
of the average dot occupation, the reaction mode, 〈Q(t)〉 =∑

α Mα〈xα(t)〉/√∑
α M2

α , and its corresponding momentum,

〈P (t)〉 = 〈Q̇(t)〉/�, where � =
∫

dωJ (ω)∫
dω

J (ω)
ω

= ωc is the reaction

mode frequency. These results were obtained for weak
electron-phonon couplings by solving the memory kernel
required to obtain the RDM using the two-time NEGF within
the SCBA. Within this limit, the NEGF-SCBA provides an
accurate description of the RDM in comparison to the nu-
merically exact ML-MCTDH approach [38,39]. We consider
four different initial conditions for the system and boson
bath, namely, all combinations of initial occupied/unoccupied
[nd (0) = 0/1] dot and shifted [〈xα(0)〉 = − 2Mα

�ωα
]/unshifted

[〈xα(0)〉 = 0] phonon modes. These shifted/unshifted values
of 〈xα(0)〉 correspond to the location of the minimum of the
diabatic potential energy of the occupied/unoccupied dot.
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FIG. 2. (Color online) Same as Fig. 1 for different values of the
bias voltage. The model parameters are λ/� = εd/� = 1.5625 and
ωc = 100 cm−1.

At long times, the dot population (lower panels of Fig. 1)
decays to a unique value (closer to the empty state) regardless
of the initial preparation of the system or phonon bath, with a
typical decay time inversely proportional to � for the shifted
bath and to � for the unshifted bath. The average position
〈Q(t)〉 and its corresponding momentum 〈P (t)〉 follow the
population dynamics. At t = 0, 〈Q(0)〉 assumes two different
values corresponding to the left/right potential minimum.
Regardless of the initial conditions, the motion of the reaction
mode is overdamped (i.e., no oscillations are observed). This
is known to occur for the reaction mode of a bosonic bath
with Ohmic spectral density. At long times, the average
position decays to values corresponding to the more stable
well, consistent with the behavior of the dot populations. The
typical time scale for approaching the steady-state value is
given by � (and not by �) regardless of the initial conditions
and varies only slightly for an unoccupied initial dot.

The qualitative behavior of the dot population changes
when the coupling to the boson bath increases. In Fig. 2 we
show the results for a larger value of λ = εd and different
bias voltages �μ, still within the validity of the NEGF-SCBA.
In this case, both potential minima are degenerate and the
related spin-boson model (at equilibrium) shows a localization
transition at temperature T = 0, which is broadened and finally
disappears as T is increased. The appearance of two distinct
values of the dot population at long times at small bias voltages
�μ is consistent with the equilibrium results for the spin-boson
model. The bias voltage plays a similar role of temperature,
and as its value increases the bistability disappears.

Turning to discuss the transient behavior of 〈Q(t)〉 and
〈P (t)〉, we find that similar to the previous case of weaker
electron-phonon couplings, the average position of the reaction
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FIG. 3. (Color online) Same as Fig. 1 for λ/� = 3.1 and
εd/� = 3.125.

coordinate follows closely the transient behavior of the dot
population. At long times 〈Q(t)〉 assumes two values roughly
corresponding to the two minima of the potential energy along
the reaction mode, with vanishing differences as �μ increases.
The corresponding average momenta always decays to zero at
long times, regardless of the initial conditions of the dot and
boson bath, suggesting that on the time scale observed 〈P (t)〉
decays to its vanishing steady-state value.

The relation between the behavior of nd (t) and 〈Q(t)〉 at
steady state can be derived analytically. Since at steady-state
〈ṗα(t)〉 = 0, one finds from Eq. (7) that each boson mode must
satisfy the relation 〈xα〉 = − Mα

�ωα
nd , and thus, the difference in

xα between the two different initial distributions of the phonon

modes is given by Mα�xα = − M2
α

�ωα
�nd , where �nd is the

corresponding difference between the two dot populations
at steady state. Summing both sides over α, the reaction
mode difference, �Q = ∑

α Mα�xα/
√∑

α M2
α , must satisfy

the relation

�Q = − λ√∑
α M2

α

�nd, (9)

where as before λ = ∑
α

M2
α

�ωα
. This is in agreement with the

result obtained in Fig. 2.
So far, we have discussed the appearance of two bistable

solutions in the so-called adiabatic limit, where ωc 	 �.

In Fig. 3 we show results for larger values of ωc in the
regime where ωc ≈ �. The value of the electron-phonon
coupling (reorganization energy) is somewhat larger than the
perturbation regime for which the NEGF-SCBA is accurate.
Therefore, we obtain the input required to generate the memory
kernel and the RDM from the numerically exact ML-MCTDH
approach [38,39]. Similar to the adiabatic limit with weaker
electron-phonon couplings (shown in Fig. 2), the long time
behavior of nd (t) depends on the initial conditions of the
phonon bath. However, unlike the adiabatic limit, here we find
an additional time scale at long times which is associated with
the transition from one diabatic potential surface to the other.
Intriguingly, however, the bistability prevails at times longer
than the tunneling between the two diabatic surfaces. As the
phonon frequency increases, the value of �nd decreases and
eventually disappears when ωc � �.

Similar to the adiabatic limit, Q(t) shows the same behavior
as nd (t), including the long time decay associated with the
aforementioned tunneling between the diabatic surfaces, and
the long time value of �Q is correlated with that of �nd , in
agreement with Eq. (9). Unlike the transient behavior of the
reaction coordinate, its corresponding momentum decays to
its steady-state value on a much faster time scale (typically on
a time scale given by �−1) and does not show the long time
relaxation behavior associated with the phonon tunneling. This
implies that the tunneling process is not driven by inertia, but
is rather in the overdamped limit.

In summary, we have expanded our recently developed
nonequilibrium quantum dynamics methodology, which com-
bines reduced density matrix theory with an impurity solver
to obtain the memory kernel, to describe phonon dynamics
in correlated open quantum systems. Although the phonon
degrees of freedom are formally not part of the reduced
system, the structure of the equations of motion allows
the calculation of phonon observables based solely on the
density matrix and memory kernel of the reduced system.
The application to a Holstein-type model for phonon-coupled
electron transport in nanosystems reveals the intricate interplay
between electron and phonon dynamics in these systems,
including the phenomenon of bistability.
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