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Angular dependence of magnetoresistance in strongly anisotropic quasi-two-dimensional metals:
Influence of Landau-level shape
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We present the quantum-mechanical calculation of the angular dependence of interlayer conductivity σzz(θ )
in a tilted magnetic field in quasi-two-dimensional (quasi-2D) layered metals. Our calculation is applicable for
arbitrary density of electron states and shows that the shape of Landau levels (LLs) is important for this angular
dependence. We derive simple analytical formulas for σzz(θ ) in the particular cases of Gaussian and dome-shaped
LLs. Since in strongly anisotropic quasi-two-dimensional metals in a high magnetic field the LL shape is closer
to dome-like or Gaussian, this analytical formula replaces the traditionally used one, derived for Lorentzian
LL shape. The amplitude of angular magnetoresistance oscillations (AMRO) is considerably stronger for the
dome-like or Gaussian than for the traditionally used Lorentzian LL shape. The ratio σzz(θ = 0)/σzz(θ → ±90◦)
is also several times smaller for the Lorentzian LL shape at the same LL width. The field dependence of
σzz(θ → ±90◦) provides useful information about the electron mean free time. AMRO and Zeeman energy
splitting lead to a spin current. For typical organic metals and for a medium magnetic field of 10 T this spin
current is only a few percent of the charge current. However, the spin current may almost reach the charge
current for special tilt angles of the magnetic field. The spin current has strong angular oscillations, which are
phase-shifted as compared to the usual AMRO.
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I. INTRODUCTION

Angular magnetoresistance oscillations (AMRO) are a
prominent feature of strongly anisotropic layered conductors,
which give important information about their electronic
properties (see, e.g., [1–3] for reviews). AMRO are actively
used to investigate various layered compounds, including or-
ganic metals [1–7], high-temperature cuprate superconductors
[8–12], heterostructures [13], etc.

AMRO were first observed [14] in 1988 in the quasi-two-
dimensional (quasi-2D) strongly anisotropic organic metal
β-(BEDT-TTF)2IBr2. The first explanation of AMRO ap-
peared the next year [15] and used the geometrical arguments
for the Fermi surface of the corrugated-cylinder shape, which
corresponds to strongly anisotropic electron dispersion,

ε3D(k) ≈ ε2D(kx,ky) − 2tz cos(kzd), (1)

where �kz is the out-of-plane electron momentum, � is
Planck’s constant, d is the interlayer spacing, and the interlayer
transfer integral tz is much less than the Fermi energy EF .
For the quadratic and isotropic in-plane electron dispersion
ε2D(kx,ky) = �

2(k2
x + k2

y)/2m∗, Yamaji obtained [15] that the
minima of interlayer conductivity σzz(θ ) correspond to the
zeros of J0(κ), where J0 is the Bessel function of the zeroth
order, κ ≡ kF d tan θ , kF is the in-plane Fermi momentum,
and θ is the angle between the applied magnetic field B and
the normal to the conducting planes. The direct calculation of
interlayer conductivity, using the electron dispersion in Eq. (1)
and the Boltzmann transport equation in the τ approximation,
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gives [16]

σzz = σ 0
zz

{
[J0(κ)]2 + 2

∞∑
ν=1

[Jν(κ)]2

1 + (νωcτ )

}
, (2)

where the cyclotron frequency ωc ≡ eBz/m∗c ≡ ωc0 cos θ , τ

is the mean free time, and the interlayer conductivity without
magnetic field

σ 0
zz = e2ρF

〈
v2

z

〉
τ = 2e2t2

z m∗τd/π�
4, (3)

where ρF = m∗/π�
2d is the 3D density of states (DoS) at

the Fermi level in the absence of magnetic field per two
spin components, and the mean squared interlayer electron
velocity 〈v2

z 〉 = 2t2
z d2/�

2. Here e is the electron charge, m∗
is the effective electron mass, Bz is the component of the
magnetic field perpendicular to conducting layers, and c is the
light velocity. Equation (2) agrees with the result of Yamaji
at ωcτ → ∞. A microscopic calculation [17] of quasi-2D
AMRO also gives Eq. (2) when the number of filled Landau
levels (LLs) nF

LL 
 1.
Equation (2) describes the dependence of conductivity on

the polar tilt angle θ of the magnetic field only, because
it assumes an isotropic in-layer dispersion ε2D(kx,ky). Its
generalization for the anisotropic in-plane dispersion also
within the τ approximation was considered analytically in
Refs. [18–20]. and numerically in Refs. [8–11], which gives
the azimuthal-angle dependence of magnetoresistance (MR).

The calculations of AMRO in Refs. [15–21] assume a
well-defined 3D electron dispersion (1), i.e., that the LL
separation �ωc and broadening � = �/2τ are much less
than tz. In these works the electron mean free time is taken
to be constant and the same as without magnetic field:
τ = τ0. The inverse “weakly incoherent” limit tz � �0 with
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the momentum-conserving “coherent” interlayer hopping was
studied in Ref. [22], where the interlayer conductivity was
calculated as a tunneling conductivity between two adjacent
conducting layers, again resulting in Eq. (2). The calculations
in Refs. [17,22] also assume that the electron self-energy
Im  = �0 = �/2τ0 is independent of energy and magnetic
field. This assumption, being almost equivalent to the τ

approximation, is incorrect in 2D or strongly anisotropic quasi-
2D layered compounds with tz,�0 � �ωc, i.e., in the presence
of strong magnetic quantum oscillations (MQO) [23–33]. Even
if MQO are suppressed by temperature, which smears the
Fermi distribution function [34–36], these MQO produce the
monotonic growth [29–33,37] of the longitudinal interlayer
magnetoresistance Rzz(Bz) = 1/σzz and of the LL broad-
ening � = �(Bz), which changes the angular dependence
Rzz(θ ) [29].

In Ref. [29] a semi-phenomenological amendment to
Eq. (2) in the limit tz � �0 was proposed (see Eq. (36) of
Ref. [29]). This amendment includes the renormalization of
the prefactor,

σ 0
zz → σ 0

zz(Bz) ≈ σ 0
zz[1 + (2ωcτ0)2]−1/4, (4)

and the similar renormalization of the effective mean scattering
time in Eq. (2):

τ → τ (Bz) ≈ τ0[1 + (2ωcτ0)2]−1/4. (5)

However, the calculation in Ref. [29] has several drawbacks.
First, the derivation of Eq. (2) and all previous calculations of
AMRO disregard the additional “quantum” term, coming from
MQO and first obtained in Refs. [25–27] for magnetic field
perpendicular to the conducting layers. For tilted magnetic
field this “quantum” term is given by the second term in the
curly brackets in Eq. (6) below or in Eq. (29) of Ref. [29].
Second, and more importantly, Eq. (2) is derived assuming
the Lorentzian LL shape. In strongly anisotropic quasi-2D
layered metals with tz � �ωc and in high magnetic field; i.e.,
at ωcτ 
 1, the actual LL shape is not Lorentzian but rather
Gaussian [33], similar to that in 2D conductors [24,38–46].

The question about the influence of the LL shape on
the angular dependence of magnetoresistance has not been
addressed so far, and all previous AMRO calculations were
performed for the Lorentzian LL shape. The present report
is mostly aimed to fill this gap of knowledge. Below we
show by direct calculation that AMRO appreciably depend
on the LL shape, i.e., on the DoS profile of each LL. This is
important for analyzing the experimental data on AMRO and
for extracting the ωcτ value from these data. We also derive
the analytical formula for AMRO in the case of Gaussian
LL shape [see Eq. (34)], which replaces Eq. (2) in the limit
tz � �ωc. In addition, we show [see Eq. (17)] that the usually
neglected “quantum term” does not considerably affect the
angular dependence of the monotonic part of MR, contributing
only to MQO.

The present theoretical study is also motivated by the
appreciable discrepancy in AMRO amplitude between Eq. (2)
and the experiments in various organic metals. For example,
consider the AMRO data reported in Fig. 1 of Ref. [47]. Taking
the reported value τ ≈ 5 ps, and substituting the effective mass
m∗ = 1.3me for this compound at pressure ∼ 6 kbar, we obtain
ωcτ ≈ 0.34 for the dirty sample in Ref. [47] at B = 0.5 T.
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FIG. 1. (Color online) The angular dependence of normalized
interlayer conductivity, calculated using Eqs. (18) and (19) for the
Lorentzian LL shape with four different values of ωcτ0 = 10 (thin
solid green curve), 10/3 (dashed red curve), 5/3 (dotted blue curve),
and 1 (dash-dotted purple curve). The other parameters are kF d = 3,

μ = 605 K, T = 3 K, and B0 ≈ 11.6 T, which for cyclotron mass
m∗ = me and for θ = 0 corresponds to �ωc = 10 K.

According to Eq. (2) at ωcτ ≈ 0.34 AMRO should not be
visible at all. Even at ωcτ = 1 AMRO are not visible (see Fig. 1
of Ref. [22]). This prediction contradicts the experimental data
in Fig. 1 of Ref. [47], where at least first two AMRO maxima
are clearly observed at B = 0.5 T. Possibly, this discrepancy
can be attributed to the different ωcτ values, which enter the
formulas for the amplitudes of MQO and of AMRO. However,
a theoretical study of AMRO for the non-Lorentzian LL
shape is need for better understanding this issue. The clearly
non-Lorentzian LL shape was demonstrated in the quasi-2D
organic metal α-(BEDT-TTF)2KHg(SCN)4 by analyzing the
damping of various harmonics of MQO [33].

In Sec. II we write down the formulas for AMRO which
are valid for arbitrary LL shape. In Sec. III we obtain explicit
results for the Lorentzian, Gaussian, and dome-like LL shapes.
In Sec. IV we analyze the general angular dependence of
magnetoresistance and the ratio σzz(θ → ±90◦)/σzz(θ = 0)
for various LL shapes. We will show that the field dependence
of σzz(θ → ±90◦) provides useful information about the τ0

value, which may considerably differ from the τ value obtained
from AMRO amplitude or from Dingle temperature. In Sec. V
we study the spin current, which is produced by AMRO and
Zeeman splitting. Section VI gives concluding remarks.

II. CALCULATIONS FOR ARBITRARY
LANDAU-LEVEL SHAPE

To calculate the interlayer conductivity σzz, we apply the
two-layer model as in Refs. [22,29]. It includes two adjacent
conducting layers with short-range impurities and with a
coherent interlayer electron hopping, which conserves the
in-plane electron momentum (see Eqs. (8)–(11) of Ref. [29]).
This model is applicable when the interlayer transfer integral tz
is less than the LL broadening [32]. The interlayer conductivity
can be calculated using the Kubo formula, which for one spin
component gives Eq. (29) of Ref. [29]. It contains an extra
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“quantum term” as compared to Eq. (50) of Ref. [22], and
after the addition of the summation over spin index s = ±1, it
becomes

σzz = e2t2
z d

π�

∑
s=±1

∫
dε[−n′

F (ε)]

×
∫

d2r{|〈G(r,εs)〉|2 cos(qy)

− Re[〈G(r,εs)〉〈G(−r,εs)〉eiqy]}. (6)

Here n′
F (ε) = −1/{4T cosh2 [(ε − μ)/2T ]} is the derivative

of the Fermi distribution function, μ is the chemical poten-
tial, r ≡ {x,y}, εs = ε + sμBB, μB is the Bohr magneton,
q ≡ eBd sin θ/�c, and 〈G(r,ε)〉 = 〈G(r1,r1 + r,ε)〉 is the
retarded electron Green’s function as function of coordinate
and energy, averaged over impurity positions. The impurity
averaging of each Green’s function in Eq. (6) is performed
separately, because the vertex corrections have the next order
of smallness in the parameter tz and because the impurities
are short-range. For short-range impurities in the noncrossing
approximation the averaged electron Green’s function is given
by [24,29]

G(r1,r2,ε) =
∑
n,ky

�∗
n,ky

(r2)�n,ky
(r1)G (ε,n) , (7)

where n is the LL number,

G (ε,n) = 1

ε − ε2D(n) −  (ε)
, (8)

and the 2D electron dispersion in a magnetic field, ε2D(n) ≡
εn = �ωc (n + 1/2). In the noncrossing approximation the
electron self-energy part  (ε) depends only on energy ε

(see Appendix of Ref. [29]), being a periodic function with
the period �ωc, and Eq. (7) contains the bare electron wave
functions

�n,ky
(r) = �n

(
x − l2

Hky

)
exp(ikyy), (9)

where

�n (x) = exp
(−x2/2l2

H

)
Hn (x/lH )(

πl2
H

)1/4
2n/2

√
n!

, (10)

Hn (x/lH ) is the Hermite polynomial, and lH = √
�c/eBz is

the magnetic length.
In strong magnetic field �ωc 
 �0 the electron Green’s

function G (ε,n) can be calculated by restricting to only one LL
at ε ≈ ε2D(n), which in the noncrossing approximation gives a
dome-like rather than Lorentzian LL shape [24]. The inclusion
of diagrams with the intersection of impurity lines adds the
exponential tails in the electron DoS ρ (ε) = − Im G (ε,n) /π

for each LL [38]. Since MR depends on the LL shape, we first
calculate Eq. (6) without restriction to any particular form of
the electron Green’s function, and then compare the results for
various LL shapes.

Now we substitute the electron Green’s function from
Eq. (7) to Eq. (6). The first term in curly brackets, coinciding
with Eq. (50) of Ref. [22] and responsible for the so-called
“classical” GRGA part of conductivity σzz, is rewritten as (see

Appendix A)

Cl ≡
∫

d2r|G(r,ε)|2 cos (qy)

= gLL

∑
n,p∈Z

[ReG(ε,n)ReG(ε,n + p)]

+ ImG(ε,n)ImG(ε,n + p)] Z(n,p), (11)

where the LL degeneracy per unit area gLL = 1/2πl2
H =

eBz/2π�c,

Z(n,p) = exp

(
− (qlH )2

2

) (
(qlH )2

2

)p

×
[
Lp

n

(
(qlH )2

2

)]2 (
n!

(n + p)!

)
, (12)

and L
p
n (x) is the Laguerre polynomial. The second term in

curly brackets in Eq. (6), which is absent in Refs. [16,22] and
responsible for the so-called “quantum” part of conductivity
σzz, is rewritten as (see Appendix B)

Q ≡ Re

[∫
d2r 〈G(r,ε)〉2 exp (iqy)

]

= gLL

∑
n,p∈Z

[ReG(ε,n)ReG(ε,n + p)

− ImG(ε,n)ImG(ε,n + p)] Z(n,p). (13)

When many Landau levels (LL) are filled, i.e. at n ∼
nF

LL ≡ �μ/�ωc� 
 1, one can use the asymptotics of Laguerre
polynomials,

Lα
n(z) ≈ �(α + n + 1)

n!

[(
n + α + 1

2

)
z

]− α
2

(14)

× exp
( z

2

)
Jα

(
2

√(
n + α + 1

2

)
z

)
,

which gives at 0 � p � n

Z(n,p) ≈ J 2
p (

√
2n + 1qlH ). (15)

Equation (15) can be further simplified using√
2nF

LL + 1qlH ≈ kF d tan θ and that Z(n,p) has a weak
dependence on n:

Z(n,p) ≈ Z(nF
LL,p) ≈ J 2

p (kF d tan θ ) ≡ J 2
p (κ) . (16)

Now we can answer the question how the additional
“quantum” term affects AMRO of the monotonic part of
interlayer conductivity. Substituting Eqs. (16) and (8) into
Eq. (13) and applying the Poisson summation formula for
the summation over n, we obtain for the zeroth harmonic of Q

Q̄ ≈
∑
p∈Z

J 2
p (kF d tan θ )

(�ωc)2

×
∫ ∞

−∞

dn[(n − u)(n + p − u) − v2]

[(n − u)2 + v2][(n + p − u)2 + v2]
= 0, (17)

where u ≡ [ε − Re (ε)] /�ωc − 1/2 and v ≡ Im  (ε) /�ωc.
The integral over n in Eq. (17) is zero for each p, because
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the residues in the poles at n = u + iv and n = u − p + iv

cancel each other for each p �= 0, while at p = 0 the residue
is zero, which can be checked by a direct calculation. Hence,
when many LL are filled so that Eq. (16) is valid, Q̄ ≈ 0.
One can show, taking the dependence Z(n,p) in Eq. (12) into
account, that Q̄ is smaller than the classical part Cl by a factor
∼p dZ(n,p)/dn ∼ p/n � 1. This statement does not depend
on the LL shape, because Eq. (17) is valid for arbitrary  (ε).

Interlayer conductivity

σzz (T ) = 1

2

∑
s=±1

∫
dε[−n′

F (ε)]σzz (ε + sμBB) , (18)

where σzz (ε) = (Cl − Q) 2e2t2
z d/π�, which gives

σzz (ε)

σ 0
zz

= 2�0�ωc

π

∑
n,p∈Z

Z(n,p)ImG(ε,n)ImG(ε,n + p),

(19)

and the interlayer conductivity in the absence of mag-
netic field is given by Eq. (3): σ 0

zz = 2e2gLLt2
z d/�

2ωc�0 =
2e2τ0m

∗t2
z d/π�

4. Equation (19) is valid for arbitrary electron
Green’s function G(ε,n) and will be used in Sec. III to analyze
AMRO for various LL shapes.

At �ωc � T � μ, i.e., when the MQO are damped by
temperature, the integration over energy in Eq. (18) is
equivalent to the averaging over the period of MQO:

σzz(T ) = 1

2

∑
s=±1

∫
dε[−n′

F (ε)]σzz(ε + sμBB) ≈ σ̄zz, (20)

where

σ̄zz =
∫

�ωc(nF +1)

�ωcnF

σzz (ε)
dε

�ωc

. (21)

Substituting Eq. (16) into Eqs. (19)–(21), we obtain

σ̄zz

σ 0
zz

= 2�0

π

∫
�ωc(nF +1)

�ωcnF

dε
∑

n,p∈Z

J 2
p (κ)

× ImG(ε,n)ImG(ε,n + p)

= 2�0

π

∫ ∞

−∞
dε

∑
p∈Z

J 2
p (κ) ImG(ε,n)ImG(ε,n + p).

(22)

III. AMRO FOR VARIOUS LL SHAPES

In a strong magnetic field, �ωc 
 �, the details of AMRO
may essentially depend on the LL shape, determined by the
Green’s function G(ε,n) or, equivalently, by the function  (ε).
The commonly used formula for AMRO, given by Eq. (2), is
derived for the Lorentzian LL shape. However, in 2D and
strongly anisotropic quasi-2D layered compounds in a strong
magnetic field, when ωcτ 
 1, the LL shape is not Lorentzian
[24,33,38–46]. Below, using Eqs. (18) and (19) valid for
arbitrary LL shape, we calculate and compare AMRO for three
microscopically derived and generally used LL shapes.

A. AMRO for the Lorentzian LL shape

In 3D metals the impurity scattering leads to the Lorentzian
broadening of electron levels [35,36]. Therefore, in the limit
4tz 
 �0,�ωc the broadening of electron levels is also close
to Lorentzian. Moreover, in the limit �0 
 �ωc at arbitrary tz
the quantum oscillations of the electron self-energy  (ε) in
SCBA are predicted to be much weaker than its average value
[26,37], which also corresponds to the Lorentzian shape of
LLs.

For the Lorentzian LL shape in Eq. (8) the electron self-
energy  (ε) = i� = i�/2τ is independent of ε, and the DoS
of each LL is given by

D (E) = |ImG (E)|
π

= �/π

E2 + �2
, (23)

where E = ε − ε2D(n) − Re  (ε). This approxima-
tion/assumption has been used in Refs. [22,29], and for
the monotonic part σ̄ L

zz of interlayer conductivity one confirms
Eq. (2) with τ = �/2�. The monotonic field dependence of
electron self-energy Im  (ε) = �(Bz), included in Ref. [29],
only leads to the renormalization of σ 0

zz and τ according to
Eqs. (4) and (5).

The derivation of Eq. (2) for the Lorentzian LL shape using
Eq. (22) is much simpler than in Ref. [22]. Substituting Eq. (23)
into Eq. (22) and taking the integral∫ ∞

−∞
dE |ImG(E)| |ImG(E + p�ωc)|

=
∫ ∞

−∞
dE

�

E2 + �2

�

(E + p�ωc)2 + �2

= π

2�

1

1 + (p�ωc/2�)2
,

we obtain

σ̄zz

σ 0
zz

= �0

�

∑
p∈Z

J 2
p (κ)

1 + (p�ωc/2�)2
, (24)

which coincides with Eq. (2).
In Fig. 1 we plot the angular dependence of normalized

interlayer conductivity, calculated using Eqs. (18) and (19)
for the Lorentzian LL shape with four different values of
�0 = �/2τ0: �0 = 0.5 K (thin solid green curve), �0 = 1.5 K
(dashed red curve), �0 = 3.0 K (dotted blue curve), and
�0 = 5.0 K (dash-dotted purple curve). The other parameters
are kF d = 3, μ = 605 K, T = 3 K, and B0 ≈ 11.6 T, which
for cyclotron mass m∗ = me and for θ = 0 corresponds to
�ωc = 10 K. Hence, the four curves in Fig. 1 correspond to
four values of ωcτ0 = 10, 10/3, 5/3, and 1, when the magnetic
field is perpendicular to conducting layers. In a tilted field
the perpendicular-to-layers component of the magnetic field
Bz decreases: Bz = B0 cos θ , and the values of ωcτ0 also
decrease ∝ cos θ . In the Lorentzian Green’s function we use
the renormalized �(Bz) = �0[1 + (2ωcτ0)2]1/4, corresponding
to Eq. (5) and Ref. [29]. Then the renormalization of σzz(Bz),
given by Eq. (4), appears automatically from the calculation.
Except for the fast quantum oscillations, the curves in Fig. 1
coincide with the AMRO curves calculated using Eqs. (2), (4),
and (5) and shown in Ref. [29].
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FIG. 2. The Dyson equation for the irreducible self-energy in the
self-consistent Born approximation. The double solid line symbolizes
the exact electron Green’s function.

B. AMRO in the self-consistent Born
and noncrossing approximations

The analytical solution for the impurity-averaged electron
Green’s function in the potential of point-like randomly
distributed impurities can be obtained in a strong magnetic
field, when �ωc 
 �/τ,tz, so that one can consider a single
LL [23,24,38,39]. If the short-range elastic impurities are
taken into account in the self-consistent Born approximation
(SCBA), shown in Fig. 2, the LL shape is a semicircle [23]
(see also Eq. (22) of Ref. [37]):

D (E) = |ImG (E)|
π

=
√

4�ωc�0/π − E2

2�0�ωc

≡ 2

π

√
�2

B − E2

�2
B

, (25)

where the energy E = ε − εnF
− niU is counted from the

highest occupied LL nF , shifted by the average impurity
potential niU , where ni is the 3D impurity concentration and U

is the strength of each short-range impurity potential Vi (r) =
Uδ3 (r − r i). The noncrossing approximation, which includes
the summation of all diagrams without intersection of impurity
lines, improves the self-consistent Born approximation by
replacing the Born scattering amplitude by the total scattering
amplitude on each impurity (see Fig. 3). This improvement is
important only when the scattering amplitude by each impurity
a ≡ mU/2π�

2 is larger than the interlayer distance d. The
noncrossing approximation gives a slightly asymmetric but
also a dome-like DoS shape [24]:

D (E) =
√

(E − E1) (E2 − E)

2π
∣∣Eg

(
E + ciEg

)∣∣ . (26)

Equation (26) is identical to Eq. (2.11) of Ref. [24] with slightly
different notation of E = ε − εnF

− niU = ε − εnF
− ciEg .

As in Ref. [24], Eg = V0/2πl2
H is the normalized strength

of the point-like impurity potential, V0 = U |ψ (zi)|2 is the
2D analogue of the 3D strength U of the point-like impurity

FIG. 3. The Dyson equation for the irreducible self-energy,
corresponding to the noncrossing (self-consistent single-site) approx-
imation. The double solid line symbolizes the exact electron Green’s
function.

potential: Vi (x,y) = V0δ (x − xi) δ (y − yi), ψ (zi) is the
value of the out-of-plane electron wave function at the impurity
position zi , and the dimensionless quantity ci is the ratio of
impurity concentration to the electron density on one LL per
one spin component:

ci = nid/gLL = 2πl2
Hnid. (27)

The boundaries of the DoS dome in Eq. (26) are given by

E1 = Eg(1 − 2
√

ci), E2 = Eg(1 + 2
√

ci). (28)

Both in the self-consistent Born and in noncrossing approxi-
mations the LL half-width is

�B ≡ (E2 − E1) /2 = 2Eg

√
ci =

√
4�ωc�0/π ∝

√
Bz,

(29)

and the boundaries of the DoS of each LL are sharp. At ci 
 1,
which corresponds to the typical experimental situation in
various systems including high-Tc layered superconductors,
both the SCBA and noncrossing approximations give the same
DoS. This can be proved by taking the limit ci 
 1 in Eq. (26),
which gives Eq. (25) after making use the notations in Eq. (29).
Therefore, below we calculate AMRO for the symmetric DoS
in Eq. (25).

The crossover from the low-field value �0 to high-field
dependence �B of the LL width in Eq. (29) and the similar
crossover of the interlayer MR were studied in Ref. [37] in
SCBA. Within the SCBA this crossover is sharp and takes
place at �ωc = π�0.

Due to the dependence V0 = U |ψ (zi)|2, in addition to
the integration over xi and yi , averaging over the impurity
positions ri = {xi,yi,zi} also includes the integration over zi ,
which is approximately equivalent to the integration over the
weighted strength V0 of each impurity [41,42]. This lifts the LL
degeneracy even at low impurity concentration, because there
are still many impurities at a large distance from the electron
state, which produce a weak scattering potential. In addition,
this may change the LL shape, especially at low impurity
concentration [41]. However, to consider this effect one also
needs the impurity distribution function ni (z) in the interlayer
direction, which is usually unknown. Below we consider the
case of large impurity concentration ni > 1/2πl2

H d, equivalent
to ci > 1, when one can keep only the impurities within the
conducting layers. These impurities produce almost equal 2D
scattering potential of the strength V0 ≈ U |ψ (0)|2 ≈ U/d,
and one can use Eq. (25) without additional integration
over zi .

At �ωc > 2�B , i.e., when the LLs do not overlap and
Eq. (25) is valid, substituting Eq. (25) into Eq. (19) we
find that the sum over p in Eq. (19) contains only one term
p = 0. All other terms with p �= 0 vanish, because the product
ImG(ε,n)ImG(ε,n + p) = 0 for p �= 0 gives the overlap of
different LLs. At �ωc > 2�B and nF

LL 
 1, substituting
Eq. (16) into Eq. (19) we obtain a simple formula for AMRO:

σzz (ε,θ )

σ 0
zz

= 2�0�ωc

π
J 2

0 (κ)
∑
n∈Z

[ImG(ε,n)]2 . (30)

At �ωc � T � μ, when the MQO are damped by
temperature, substituting Eqs. (25), (30), and (29)
into Eq. (21) and performing the integration over E,
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FIG. 4. (Color online) AMRO for the same parameters as in
Fig. 1 but for the dome-shaped DoS of LLs, corresponding to
the self-consistent Born approximation and given by Eq. (25). The
AMRO are much stronger than for the Lorentzian LL shape, shown
in Fig. 1.

we obtain

σ̄zz (μ)

σ 0
zz

= J 2
0 (κ)

2�0�ωc

π

∫ �B

−�B

4dE

�ωc

⎛
⎝

√
�2

B − E2

�2
B

⎞
⎠

2

= J 2
0 (κ)

2�B

�ωc

4

3
= 16 J 2

0 (κ)

3
√

π

√
�0

�ωc

. (31)

At low temperature T � �ωc the sum over n in Eq. (30)
reduces to one term n = nF

LL, corresponding to the last
occupied LL for each spin component, because other terms
with n �= nF

LL acquire an exponentially small factor n′
F (ε) after

substitution into Eq. (18).
Angular dependence of interlayer conductivity for the

dome-like LL shape, calculated numerically using Eqs. (18)
and (19), is shown in Fig. 4.

C. AMRO for Gaussian LL shape

The sharp boundaries in Eqs. (25) and (26) are not physical,
being the consequence of the noncrossing approximation.
Unlike the 3D case, in 2D this approximation does not have a
rigorous substantiation. However, the calculations which take
into account the diagrams with intersection of impurity lines
[38], as well as the nonperturbative solutions [39,42,43,45],
show that the neglected diagrams with intersection of impurity
lines only produce the exponentially decreasing tails of the
DoS dome given by Eqs. (25) or (26). In particular, the
solution of self-consistent equations containing the diagrams
of point-like impurity scattering for up to four impurity sites
[38] gives the DoS a shape intermediate between dome-like
(obtained in SCBA) and Gaussian (see Fig. 7 of Ref. [38]).
The width of such a quasi-Gaussian LL shape follows Eq. (29)
in a strong magnetic field. For the ground LL the Gaussian
LL shape for the short-range disorder was confirmed by
nonperturbative solutions [39]. However, according to the
calculation in Ref. [38], with the increase of LL number n

the contribution of diagrams with the intersection of impurity
lines from m sites becomes smaller according to (2n)−(m−1).
Thus, for high Landau levels and point-like impurities the

SCBA gives quite accurate results. The exponential tails of the
DoS per each LL contain only a small part of the total DoS
and, hence, only slightly affect the interlayer conductivity,
calculated in Sec. III B. The interparticle interaction may
additionally modify the DoS shape, e.g., increasing the DoS
tails. This is an open question yet, and in metals with many
filled LLs the electron-electron interaction is assumed to be
small.

At finite range of impurities the LL shape is closer to Gaus-
sian. For a Gaussian correlator of the disorder potential U (r),
〈U (0) U (r)〉 ∝ exp

(−r2/2d2
)

with d 
 lH , nonperturbative
theory predicts the Gaussian LL shape (see Eqs. (41) and (5)
of Ref. [45]; for a review see also Ref. [44]):

|ImG(ε,n)| = (
√

2π/�) exp[−2(ε − εn)2/�2]. (32)

The LL width � may depend on magnetic field and even on
the LL number n for various models of disorder. At d � Rc ∼
lH

√
2nF

LL + 1 and in a strong magnetic field � = �(Bz) is still
given by Eq. (29), while at d 
 Rc the LL width � in Eq. (32)
is approximately independent of B [45]. If disorder on adjacent
conducting layers is uncorrelated, i.e., it is short-range in the z

direction, and the in-plane electron Green’s function is given
by Eq. (7), the formulas derived in Sec. II remain valid, and
one can use the Gaussian Green’s function given by Eq. (32)
to calculate the interlayer conductivity. Although the Gaussian
LL shape has never been derived theoretically for high LLs
and short-range disorder, for completeness, in this section we
analyze the angular dependence of interlayer conductivity also
for the Gaussian LL shape given by Eq. (32).

At �ωc � T � μ, i.e. when the MQO are damped by
temperature or by the long-range variations of the chemical
potential, we can obtain an analytical formula for AMRO,
similar to Eq. (2) but for Gaussian LL shape. Substituting
Eq. (32) into Eq. (22) and taking the integral∫ ∞

−∞
dE |ImG(E)| |ImG(E + p�ωc)|

=
∫ ∞

−∞
dE

2π

�2
exp

[
−2E2

�2
− 2(E + p�ωc)2

�2

]

= π
√

π

�
exp

[
− (p�ωc)2

�2

]

we obtain

σ̄zz

σ 0
zz

= 2
√

π�0

�

∞∑
p=−∞

J 2
p (κ) exp

[
− (p�ωc)2

�2

]
. (33)

For short-range disorder at �ωc 
 �0 = �/2τ0, � = �B ∝√
Bz is given by Eq. (29), and Eq. (33) becomes

σ̄zz

σ 0
zz

= π√
2ωcτ0

∞∑
p=−∞

J 2
p (κ) exp

[
−πp2ωcτ0

2

]
, (34)

where ωc = ωc0 cos θ . If � in Eqs. (32) and (33) is independent
of Bz, from Eq. (33) one obtains

σ̄zz (θ )

σ̄zz (θ = 0)
=

∞∑
p=−∞

J 2
p (κ) e−(2pωcτ )2

. (35)
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FIG. 5. (Color online) The same as in Figs. 1 and 4 but for
Gaussian LL shape. The AMRO are much stronger, and the saturation
value of σzz at θ → ±90◦ is considerably smaller than for the
Lorentzian LL shape.

In both cases, for Gaussian LL shape the damping of p �= 0
terms is exponential and much stronger than the quadratic
damping given by Eq. (2) for the Lorentzian LL shape.

At � � �ωc � T � μ, neglecting all exponentially small
terms in Eq. (33) and substituting Eq. (29), we obtain

σ̄zz/σ
0
zz = πJ 2

0 (κ)
√

�0/�ωc, (36)

which is very close to Eq. (31) for a dome-like LL shape.
In Fig. 5 we plot the calculated AMRO for the Gaussian LL

shape for four different values of �0 = �/2τ0 = 0.5, 1.5, 3.0,
and 5.0 K, corresponding to ωcτ0 = 10, 3.33, 1.67, and 1.0
respectively at θ = 0. Comparing Figs. 4 and 5 one sees that
the AMRO for these two shapes are very close. Because of the
sharp edges of the dome-like LL shape, the corresponding
AMRO are slightly stronger for the same values of ωcτ0.
However, the tails of the Gaussian LLs are exponentially small,
which diminishes the difference between AMRO in Figs. 4
and 5. Since the Gaussian and dome-like LL shapes give
quite close results for AMRO, the simple analytical formula
in Eq. (33) for AMRO derived for Gaussian LL shape can be
approximately applied for dome-shaped LLs with the same
width.

On the other hand, the comparison of Fig. 1 with Figs. 4
and 5 shows that for the Lorentzian LL shape the same
value of �0 suppresses AMRO much stronger. In particular,
at finite � � �ωc the minima of conductivity at the Yamaji
angles are much deeper for the dome-like and Gaussian LL
shapes than for the Lorentzian shape. Moreover, the minima
of conductivity quickly tend to saturation with increasing of
ωcτ in Figs. 4 and 5, while for Lorentzian LL shape in Fig. 1
this saturation is very slow. This difference can be easily
understood by comparing the analytical formulas (2), (31),
and (34) for AMRO at various LL shapes. This difference
between AMRO for Lorentzian and Gaussian or dome-like LL
shapes cannot be attributed to the different definitions of �0.
To illustrate this, in Fig. 6 we plot AMRO for Lorentzian LL
shape for several values of �0 = 0.05, 0.15, 0.3, and 0.5 K,
which are 10 times smaller than those in Figs. 1, 4, and 5 and
correspond to ωcτ0 = 100, 33.3, 16.7, and 10. We see that even
the tenfold increase of ωcτ0 does not countervail the difference

50 50
θ degrees

0.2

0.4

0.6

0.8

1.0

σ zz θ σ zz 0

FIG. 6. (Color online) The angular dependence of normalized
interlayer conductivity, calculated using Eqs. (18)-(19) for the
Lorentzian LL shape with four different values of �0 = �/2τ , which
are 10 times less than in Figs. 1, 4 and 5: �0 = 0.05 K (thin solid
green curve), �0 = 0.15 K (dashed red curve), �0 = 0.3 K (dotted
blue curve), and �0 = 0.5 K (dash-dotted purple curve). The other
parameters are the same as in Figs. 1,4 and 5: kF d = 3, μ = 605K,

T = 3 K, and B0 ≈ 11.6 T, which for cyclotron mass m∗ = me and
for θ = 0 corresponds to �ωc = 10 K.

between the Lorentzian and the Gaussian or dome-like LL
shapes. On the other hand, the twofold decrease of � is more
than enough to make the Lorentzian DoS maximum narrower
than the dome-like or Gaussian DoS maxima (see Fig. 7).
Disregarding the shown dependence of AMRO amplitude on
the LL shape may lead to the incorrect determination of ωcτ

from the experimental data on AMRO.
To illustrate this point further, in Fig. 8 we plot the con-

ductivity σ̄zz(θYam)/σzz(θ = 0), calculated from Eqs. (2) and
(33), in the first Yamaji angle θYam (conductivity minimum)
as function of ωcτ0 for the Lorentzian (solid green curve)
and Gaussian (dashed red curve) LL shapes. The dotted
blue curve gives the same ratio σ̄zz(θYam)/σzz(θ = 0) for the

0.2 0.1 0.1 0.2

E
ωC

0.2

0.4

0.6

0.8

D E

FIG. 7. (Color online) The normalized DoS at �ωc/� = 10 for
various LL shapes: Lorentzian given by Eq. (23) (solid green curve),
dome-like given by Eq. (25) (dashed red curve), and Gaussian given
by Eq. (32) (dotted blue curve). The dash-dotted purple curve gives
the normalized DoS for Lorentzian LL shape at twice larger value
�ωc/� = 20.
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FIG. 8. (Color online) Calculated value of conductivity
σ̄zz(θYam)/σzz(θ = 0) in the first Yamaji angle θYam (conductivity
minimum) as function of ωcτ for the Lorentzian (solid green curve)
and Gaussian (dashed red curve) LL shapes. The dotted blue curve
gives the solid green curve twice shrunk along the abscissa axis,
which corresponds to σ̄zz(θYam)/σzz(θ = 0) for Lorentzian LL shape
at twice smaller �0 value in the same magnetic field.

Lorentzian LL shape but for a twice larger value of ωcτ0 (twice
shrunk along the abscissa axis). We see that the change from
Lorentzian to Gaussian LL shape has much stronger effect on
AMRO than the two-times increase of ωcτ0.

Using the identity
∑∞

p=−∞ J 2
p (κ) = 1, at zero field

�ωc/� = 0 from Eq. (33) one obtains σ̄zz (B = 0) /σ 0
zz =

2
√

π�0/�. Since without a magnetic field one expects
σ̄zz (θ = 0) = σ 0

zz, for consistency one naively could write
� (B = 0) = 2

√
π�0, which implies that the change of the

electron DoS from Lorentzian given by Eq. (23) to Gaussian
given by Eq. (32) must be accompanied by the 2

√
π -times

increase of the zero-field level broadening �0. The angular
dependence of MR for a Gaussian LL with 2

√
π -times

increased �0 value becomes much closer to that for a
Lorentzian LL shape (compare Figs. 9 and 1), and only the
Yamaji minima of conductivity are still much sharper for
Gaussian LL shape at ωcτ0 > 1. However, this renormalization
of �0 is not correct, because the condition σ̄zz (θ = 0) = σ 0

zz

with σ 0
zz given by Eq. (3) assumes Lorentzian DoS, while

Eq. (33) is derived only for Gaussian broadening of electron
levels. In a weak magnetic field ωcτ0 � 1, even at tz � �ωc,
the LL shape is not Gaussian but closer to Lorentzian, because
 (ε) ≈ const [26,37]. Hence, in addition to the dependence
�(Bz), the increase of magnetic field in quasi-2D metals leads
to the crossover of the LL shape from Lorentzian to Gaussian.

At � � �ωc, Eqs. (33)–(35) give exponentially small
values of σG

zz ∼ σ 0
zz exp[−(�ωc/2�)2] in the Yamaji angles.

However, in experiments the interlayer conductivity in the
Yamaji angles may saturate at finite value with increasing
magnetic field. Besides the finite LL broadening �, MR in
the Yamaji maxima is limited by the additional “incoherent”
mechanisms of interlayer transport, such as interlayer hopping
via resonance impurities [47–49] and dislocations, or boson-
assisted tunneling [50,51]. Approximately, the contribution of
the incoherent channels to σzz does not depend on the tilt
angle θ of the magnetic field and gives a constant upward
shift of the curves in Figs. 1, 4–6, 8, and 9. These incoherent
channels determine the interlayer conductivity at the Yamaji

50 50
θ degrees
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0.8

1.0

σ zz θ σ zz 0

FIG. 9. (Color online) The angular dependence of normalized
interlayer conductivity, calculated using Eqs. (18) and (19) for the
Gaussian LL shape with four values of �0 = �/2τ0, which are 2

√
π

times greater than in Figs. 1, 4, and 5: �0 = √
π K (thin solid green

curve), �0 = 3
√

π K (dashed red curve), �0 = 6
√

π K (dotted blue
curve), and �0 = 10

√
π K (dash-dotted purple curve). The other

parameters are the same as in Figs. 1, 4, and 5: kF d = 3, μ = 605 K,
T = 3 K, and B0 ≈ 11.6 T, which for cyclotron mass m∗ = me and
for θ = 0 corresponds to �ωc = 10 K.

angles in a very strong magnetic field. However, the incoherent
channels of interlayer electron transport may depend on the Bz

component of the magnetic field if they involve the in-plane
electron motion, as in the model of Ref. [47].

IV. HIGH TILT ANGLE

From Figs. 1 and 5 one observes that not only the AMRO
amplitude but also the ratio σzz (θ → ±90◦) /σzz (θ = 0) de-
pend on the LL shape: the saturation value of σzz at θ → ±90◦
looks considerably smaller for the Gaussian LL shape than
for the Lorentzian. However, the calculated absolute values of
σzz (θ → ±90◦) /σ 0

zz depend only on ωc0τ · kF d but not on the
LL shape. These values agree well with Eq. (10) of Ref. [21],
which predicts

σzz (θ → ±90◦) /σ 0
zz = 1/

√
1 + (kF dωc0τ )2, (37)

where ωc0 = eB0/m∗c. In Ref. [21], Eq. (37) was obtained
in the τ approximation using the quasiclassical electron
trajectories along the well-defined 3D Fermi surface. The τ

approximation does not work in a strong perpendicular-to-
layers magnetic field, but it may work properly when the
magnetic field is along the conducting layers so that Bz → 0.
One can also expect that the LL shape is not important in
the limit θ → ±90◦ and Bz → 0. To check this, we now
calculate σzz (θ → ±90◦) /σ 0

zz for the Lorentzian and Gaussian
LL shapes without the use of a 3D Fermi surface and of the
τ -approximation.

At high tilt angle the argument of the Bessel’s functions in
Eq. (16) κ ≡ kF d tan θ 
 1, and one can use its asymptotic
expansion, which gives

Z(n,p) ≈ (2/πκ) cos2 (κ − πp/2 − π/4)

= [1 + cos (2κ − πp − π/2)] /πκ. (38)
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The square brackets contain a sum of the monotonic and
alternating terms as a function of p. At Bz → 0, when the
LL separation �ωc � �, the factor Im G(ε,n + p) in Eq. (19)
depends very weakly on p, and the alternating term gives a
negligible contribution to Eq. (19). Substituting only a constant
term from Eq. (38) into Eq. (19) gives at θ → ±90◦

σzz (ε)

σ 0
zz

≈ 2�0�ωc

π2κ

∑
n,p∈Z

ImG(ε,n)ImG(ε,n + p). (39)

At �ωc ≡ �eBz/m∗c � � one can replace the summations
over n and p by the integrations. For the Lorentzian LL shape
this gives

σzz (ε)

σ 0
zz

≈
∫ ∫ ∞

−∞

dpdn�0�ωc�
2(2/π2κ)

[(ε − εn)2 + �2][(ε − εn+p)2 + �2]

= 2�0/κ�ωc = (ωc0τ0kF d)−1 (40)

in agreement with Eq. (14) of Ref. [22]. For Gaussian LL shape
at θ → ±90◦ we obtain the same result:

σzz (ε)

σ 0
zz

≈ 2�0�ωc

πκ�2

∫ ∞

−∞
dn exp

[
− (ε − εn)2

�2

]

×
∫ ∞

−∞
dp exp

[
− (ε − εn+p)2

�2

]
= 2�0

κ�ωc

. (41)

Thus, the ratio σzz (θ → ±90◦) /σ 0
zz = (ωc0τkF d)−1 is the

same for Lorentzian and Gaussian LL shapes. This result is
natural, because when θ → ±90◦ and Bz is small, so that
� 
 �ωc, the LLs are smeared and their shape is not important.
However, σ 0

zz �= σzz (θ = 0), and σzz (θ = 0) depends on the
LL shape.

At �0 � �ωc � T � μ, substituting Eq. (23) to Eqs. (20)
and (21) and taking the integral∫ �ωc

2

− �ωc
2

dE

�ωc

|ImG(E)|2 =
∫ ∞

−∞

dE

�ωc

�2

(E2 + �2)2
= π/2

�ωc�
,

we obtain at � = �B = √
4�ωc�0/π for the Lorentzian LL

shape

σ̄zz

σ 0
zz

= J 2
0 (κ)

�0

�
= J 2

0 (κ)

√
π

2

√
�0

�ωc

, (42)

which is 2
√

π ≈ 3.5 times smaller than in Eqs. (33) and
(36) for Gaussian LL shape. Therefore, in Fig. 5 the ratio
σzz (θ = 0) /σzz (θ → ±90◦) is 2

√
π times larger than in

Fig. 1. In a weak magnetic field, i.e., at �ωc � �0, for all
LL shapes σzz (θ = 0) = σ0. In a strong magnetic field, i.e.,
at �ωc 
 �0, again for all three LL shapes σ̄zz (θ = 0) /σ0 =
C /

√
ωcτ0, but the numerical coefficient C in this dependence

is different for different LL shapes. Therefore, the decrease
of σ̄zz(Bz) is faster for the Gaussian and dome-like than for
Lorentzian LL shapes. The crossover from weak to strong-field
behavior of σ̄zz(Bz) in SCBA at θ = 0 was studied numerically
in Ref. [37].

In Fig. 6 ωcτ0 is 10 times larger than in Fig. 1.
However, contrary to Eqs. (37) and (40), the ratio
σzz (θ = 0) /σzz (θ → ±90◦) in Fig. 6 is only

√
10 times larger

than in Fig. 1, because the value σzz (θ = 0) ∝ 1/
√

ωcτ0. For
this reason, the ratio σzz (θ = 0) /σzz (θ → ±90◦) in Figs. 9

and 1 is different in spite of the 2
√

π -times increased �0 value
in Fig. 9.

On experiment one can measure both the ratios
σzz (θ = 0) /σzz (θ → ±90◦) and σzz (θ → ±90◦) /σ 0

zz, which
also provides the information about the LL shape. The
value kF d is usually known from the AMRO period, and
ωc0 (determined by the effective mass m∗) is known from
the MQO period. Hence, the experimentally obtained ratio
σzz (θ → ±90◦) /σ 0

zz provides a tool to determine τ0 with high
accuracy, which may considerably differ from the τ value
obtained from the Dingle temperature.

V. SPIN CURRENT AND THE INFLUENCE
OF ZEEMAN SPLITTING ON AMRO

The spin current, being a key object of spintronics, attracts
a great attention for its present-day and potential applications
(see, e.g., Refs. [52,53] for reviews). In our system, the nonzero
spin current conductivity szz ≡ σzz↑ − σzz↓ appears because
the electrons with opposite spin orientations give nonequal
contributions to σzz. The Fermi energy of spin-up and -down
electrons differs by the Zeeman energy gμBB, which leads to
nonequal values of kF and κ in Eqs. (2), (16), and (33)–(36)
and, hence, to different angular dependence of conductivity
for opposite spin orientations. The corresponding difference
δκ in the argument of the Bessel functions in Eq. (16) is

δκ = gμBB0 tan θ d/�vF ≈ 2μBB0m
∗d tan(θ )/(�2kF ).

(43)

The monotonic part s̄zz of the spin-current conductivity,
determined as the difference between the monotonic parts of
conductivities with spin up and down as

s̄zz = σ̄zz(μ + gμBB) − σ̄zz(μ) = σ̄zz(κ + δκ) − σ̄zz(κ),

(44)

for the Lorentzian LL shape in the first order in κ � 1 is given
by

s̄zz

σ 0
zz

≈
{

2J0 (κ) J ′
0 (κ) + 4

∞∑
ν=1

[Jν (κ) J ′
ν (κ)]

1 + (νωcτ )2

}
δκ

= −δκ

∞∑
ν=−∞

Jν (κ) [Jν+1 (κ) − Jν−1 (κ)]

1 + (νωcτ )2 , (45)

where we have applied 2J ′
ν (κ) = Jν−1 (κ) − Jν+1 (κ). In a

field B0 = 10 T and for the parameters d = 20 Å, kF =
0.14 Å−1, and m∗ ≈ 2me, corresponding to the organic metal
α-(BEDT-TTF)2KHg(SCN)4 (see Ref. [54]), δκ ≈ 0.1 tan θ

is not negligible. For these parameters, in Fig. 10 we plot the
angular dependence of s̄zz/σ

0
zz, calculated without expansion in

δκ , i.e., from Eqs. (44) and (2), corresponding to the Lorentzian
LL shape with three different values of �, independent of Bz

and corresponding to ωcτ = 10 (solid green line), 1 (dashed
red line), and 0.5 (dotted blue line). We also checked that
the first-order expansion in δκ ≈ 0.1 tan θ , given by Eq. (45),
works very well for |θ | < 86◦.

In the Yamaji angles σzz (θ ) /σ 0
zz � 1, and the spin current

for these angles can be comparable to the charge current, being
also considerably smaller than for other angles at ωcτ 
 1.
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FIG. 10. (Color online) The angular dependence of the mono-
tonic part of the spin-current conductivity s̄zz/σ

0
zz, calculated from

Eq. (44) for Lorentzian LL shape with four different values of
ωcτ0 = 10 (solid green line), 2.0 (dashed red line), 1.0 (dotted blue
line), and 0.5 (dash-dotted purple curve).

Note that at ωcτ 
 1 the monotonic part of spin current
changes sign in the proximity of the Yamaji angles from “−”
to “+”, and it changes its sign back in the extremum of σzz (θ ).
In heterostructures the spin current can be considerably larger
than shown in Fig. 10, because of a larger value of δκ , which
is proportional to the interlayer distance d.

For Gaussian and dome-like LL shapes the AMRO are
sharper, and the spin current is larger than in Fig. 10. To
show this, in Fig. 11 we plot the angular dependence of the
spin current calculated using Eq. (34) for the same values
of ωcτ as in Fig. 10. We see that the saturation of spin
current as ωcτ increases is much faster for Gaussian LL
shape, similar to the charge current AMRO. From Eqs. (44)
and (33) for the Gaussian LL shape and δκ � 1 we ob-
tain the analytical formula for the spin current [compare

50 50
θ

0.02

0.01

0.01

0.02

szz θ σ zz 0

FIG. 11. (Color online) The angular dependence of the mono-
tonic part of the spin-current conductivity s̄zz/σ

0
zz, calculated from

Eq. (34) for Gaussian LL shape with the same four different values
as in Fig. 10 of ωcτ0 = 10 (solid green line), 2.0 (dashed red line),
1.0 (dotted blue line), and 0.5 (dash-dotted purple curve).

to Eq. (45)]

s̄zz

σ 0
zz

≈ δκ
4
√

π�0

�

∞∑
ν=−∞

Jν (κ) J ′
ν (κ) exp

[
− (ν�ωc)2

�2

]
.

(46)

VI. CONCLUSIONS

In this paper we present the quantum-mechanical calcu-
lations of the angular dependence of interlayer magnetore-
sistance in quasi-2D layered metals. Most previous calcula-
tions of AMRO neglected the magnetic quantum oscillations
(MQO) from the beginning [17,22], or even used the semi-
classical Boltzmann transport equation in the constant-τ ap-
proximation [16,18–20]. However, even if MQO are not seen,
being damped by temperature or long-range disorder, they may
strongly influence the interlayer conductivity and its angular
dependence in a strong magnetic field, when �ωc 
 tz,�

[29–32]. In the present theoretical study we take MQO into
account and consider their influence on the angular dependence
of interlayer conductivity. Our calculation is applicable for
various shapes of the Landau levels, thus generalizing the
calculations in Refs. [17,22,29]. This is important, because
when the interlayer transfer integral tz and the LL broadening
� are less than the LL separation �ωc, the LL shape is
not Lorentzian [24,33,38–44] We also take into account the
so-called “quantum term” in the magnetoresistance [25–27],
originating from MQO and neglected in the previous studies
[17,22,29].

Our calculation shows that the LL shape is important for
the angular dependence of magnetoresistance. The AMRO
amplitude is stronger for the Gaussian or dome-like LL shapes,
corresponding to the microscopic models at tz � � � �ωc,
than for traditionally used Lorentzian LL shape (compare
Figs. 1 and 4 or 5 ). With increasing magnetic field, the
saturation of interlayer conductivity values in the AMRO
minima, corresponding to the Yamaji angles, is much faster
for Gaussian or dome-like LL shapes than for Lorentzian
(see Fig. 8). The ratio σzz (θ = 0) /σzz (θ → ±90◦) for the
Gaussian or dome-like DoS is also several times larger than for
Lorentzian LL shape. However, the ratio σzz (θ → ±90◦) /σ0

does not depend on the LL shape and provides a tool to
determine the zero-field mean free time value τ0, which may
considerably differ from the τ value obtained from the Dingle
temperature. For arbitrary LL shape one can use Eqs. (18) and
(19) with Z(n,p) given by Eq. (12) or by Eqs. (15) or (16).
At �ωc � T � μ these formulas simplify to Eqs. (20)–(22).
In the high-field limit, when the LL shape is not Lorentzian
but closer to dome-like or Gaussian, we derive simple explicit
formulas (33)–(36) for σzz (θ ), which replace the traditionally
used Eqs. (2)–(5) derived only for Lorentzian LL shape.

We also estimated the spin current, which appears because
of AMRO. For typical parameters of the organic metal
α-(BEDT-TTF)2KHg(SCN)4 and in the field B ∼ 10 T the
spin current is about 2% of the zero-field charge current
[see Eqs. (45), (46) and Figs. 10, 11], but it may almost
reach the charge current for special tilt angles of magnetic
field. In heterostructures the spin current can be considerably
larger. The angular oscillations of the spin current are stronger
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and shifted by the phase ∼π/2 as compared to the usual
charge-current AMRO.
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APPENDIX A: CLASSICAL PART OF CONDUCTIVITY

Substituting Eq. (7) into the first line of Eq. (11) one obtains

Cl =
∫

dy2dy1dx2dx1 cos [q(y2 − y1)]

×
∑

p,n,ky ,k′
y

�∗
n,k′

y
(r1)�n,k′

y
(r2)G(ε,n)

×�∗
n+p,ky

(r2)�n+p,ky
(r1)G∗(ε,n + p),

where the wave functions are given by Eqs. (9) and (10).
Integration over y2, y1 (in a unit square) gives

Cl = 4π2Re
∫

dx2dx1

∑
p,n,ky ,k′

y

�∗
n+p

(
x2 − l2

Hky

)

× �n+p

(
x1 − l2

Hky

)
�∗

n

(
x1 − l2

Hk′
y

)
�n

(
x2 − l2

Hk′
y

)
× G∗(ε,n + p)G(ε,n)δ(ky + q − k′

y). (A1)

Summation over k′
y cancels the δ function. Then we use the

identity ∫ ∞

−∞
dx e−c2x2

Hn(a + cx)Hn+p(b + cx)

= 2n
√

πn!bp

c
Lp

n (−2ab), 0 � p. (A2)

Using Eqs. (A2) and (10) one may get∫ ∞

−∞
dx�n+p

(
x − l2

Hky

)
�n

(
x − l2

H (ky + q)
)

= exp

(
− (qlH )2

4

) (
qlH√

2

)p

Lp
n

(
(qlH )2

2

) √
n!

(n + p)!
.

(A3)

The integration over x1,x2 in Eq. (A1) is performed using
Eq. (A3). Then, making the summation over ky , which just
gives the LL degeneracy gLL = 1/2πl2

H = eBz/2π�c, we
obtain Eq. (11).

APPENDIX B: QUANTUM PART OF CONDUCTIVITY

Substituting Eq. (7) into the first line of Eq. (13) gives

Q =
∫

dy2dy1dx2dx1 exp [iq(y2 − y1)]

×
∑

p,n,ky ,k′
y

�∗
n,k′

y
(r1)�n,k′

y
(r2)G(ε,n)

×�∗
n+p,ky

(r2)�n+p,ky
(r1)G(ε,n + p),

which after the substitution of Eq. (9) and integration over
y1,y2 becomes

Q = 4π2Re
∫

dx2dx1

∑
p,n,ky ,k′

y

�∗
n+p

(
x2 − l2

Hky

)

× �n+p

(
x1 − l2

Hky

)
�∗

n

(
x1 − l2

Hk′
y

)
�n

(
x2 − l2

Hk′
y

)
× G(ε,n + p)G(ε,n)δ(ky + q − k′

y).

The integration over x1,x2 is similar to that in Eq. (A1) and
can be easily done using Eq. (A3). Summation over ky gives
the LL degeneracy. Performing these integrations we obtain
Eq. (13).
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