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Origin of high-Tc superconductivity in doped Hubbard models and their extensions:
Roles of uniform charge fluctuations
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The doped Hubbard model is a simple model for high-Tc cuprate superconductors, while its ground state remains
a challenge. Here, by performing state-of-the-art variational Monte Carlo calculations for the strong-coupling
Hubbard model, we find evidence that the d-wave superconducting phase emerges always near the phase
separation region and the superconducting order has one-to-one correspondence with the enhancement of charge
compressibility. The order as well as the phase separation are vulnerable to realistic intersite Coulomb interaction,
while the superexchange interaction enhances both. An appropriate combination of these two widens the stable
superconducting phase.
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I. INTRODUCTION

The discovery of high-Tc superconductivity in copper
oxides [1] triggers studies of the superconductivity induced by
strong electronic correlations. After an enormous number of
studies, the intrinsic phase diagram of the copper oxides is still
not a completely resolved issue. Most of the superconducting
copper oxides have the dome structure of the critical tempera-
ture Tc as a function of the hole doping concentration δ centered
at the optimum value, ∼0.15, after the quick disappearance of
the antiferromagnetic order upon doping to the Mott insulator
of the mother materials.

However, the multilayer compound shows a wide coex-
istence region of superconductivity and antiferromagnetic
order [2]. Recently the interface of La2CuO4/La2−xSrxCuO4,
which is expected to realize purely two-dimensional supercon-
ductivity, has strikingly shown a pinning of Tc at a constant
value of ∼40 K [3], in marked contrast with the dome structure
in bulk, which supports that the intrinsic nature of the copper
oxides is described by an extended region of the phase
separation (PS), if the long-ranged Coulomb interaction is
screened by the interlayer screening. At the interface, the
phase separation may occur between layers. The intrinsic
phase diagram of the copper oxides without impurity and
long-ranged Coulomb effects are still an actively debated
issue.

One of the most fundamental models to describe high-Tc

superconductivity is the Hubbard model on the square lattice,
which only considers the nearest-neighbor hopping t and
on-site Coulomb repulsion U of electrons (details are shown
in Sec. II). A large number of theoretical works, including
analytical and numerical calculations, have been devoted
to the Hubbard model [4–16]. (A detailed comparison of
previous studies is given in Appendix A.) Many works suggest
that the superconductivity appears near half band filling for
sufficiently large U/t [6–15,17]. However, numerically exact
or high-precision calculations [4,5,16] do not necessarily
show clear evidence of high-Tc superconductivity. Thus, the
relation between strong electronic correlations and high-Tc

superconductivity still remains an unresolved issue, although
there are many proposals as to the origin of the high-Tc

superconductivity [4,8,10,13,14,17–27]. The Hubbard model
tremendously simplifies the real materials. However, the

prolonged controversy implies the significance of clarifying
the superconductivity in the doped Hubbard models to under-
stand the fundamental origin of the high-Tc superconductivity,
provided that reliable theoretical calculations are performed.

In this paper, by performing state-of-the-art calculations,
we show a direct and quantitative one-to-one correspondence
between superconductivity and enhanced uniform charge
susceptibility, which clearly shows that the tendency for
the PS is the origin of the d-wave superconductivity. The
present result also offers an intriguing implication to the recent
interface experiment [3]. We further reveal roles of intersite
Coulomb repulsion V that reduce both the superconducting
phase and uniform charge fluctuations, as well as the roles of
the superexchange interaction J that enhances both of them.

II. MODEL, METHOD, AND DEFINITIONS OF
PHYSICAL QUANTITIES

We employ the standard Hubbard model on the square
lattice, defined by the Hamiltonian

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + U

∑
i

ni↑ni↓,

where c
†
iσ (ciσ ) is the creation (annihilation) operator on the

ith site with spin σ , and niσ = c
†
iσ ciσ is the number operator.

The transfer integral t is only taken for nearest-neighbor sites.
We take Ns = L × L sites with periodic-periodic (PP) and
antiperiodic-periodic (AP) boundary conditions. We define
the doping rate δ as δ = 1 − Ne/Ns, where Ne = ∑

i,σ niσ .
We add the off-site Coulomb and superexchange interactions
defined as

HV = V
∑
〈i,j〉

ninj ,

HJ = J
∑
〈i,j〉

Si · Sj ,

where Si = 1/2
∑

σ,σ ′ c
†
i,σσ σ,σ ′ci,σ ′ and ni = ni↑ + ni↓.

To study the ground state of the doped Hubbard model,
we employ a many-variable variational Monte Carlo (mVMC)
method combined with the quantum-number projection. Our
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variational wave function is defined as

|ψ〉 = PGPJPex
d−hLK=0LS=0|φpair〉, (1)

where PG, PJ, Pex
d−h are the Gutzwiller [28], Jastrow [29,30],

and doublon-holon correlation factors [31], respectively [32].
The Gutzwiller factor punishes the double occupation of
electrons on the same site through the variational parameters
g, defined as

PG = exp

(
−g

∑
i

ni↑ni↓

)
.

The Jastrow factors are defined as

PJ = exp

⎛
⎝−1

2

∑
i,j

vij ninj

⎞
⎠ ,

where the long-range part drives the distinction between
the metal and insulator [30]. The doublon-holon correlation
factors [31] are defined as

Pex
d–h = exp

[
−

2∑
m=0

∑
�=1,2

α
(�)
(m)

∑
i

ξ
(�)
i(m)

]
,

where ξ
(�)
i(m) is a many-body operator which is diagonal in the

real-space representations. When a doublon (holon) exists
at the ith site and m holons (doublons) surround at the
�th nearest neighbor, ξ

(�)
i(m) gives 1. Otherwise, ξ

(�)
i(m) gives 0.

The spin (momentum) quantum number projection operator
LS=0 (LK=0) restores SU(2) spin symmetry (translational
symmetry) with the total spin S = 0 (total momentum
K = 0). These projections substantially improve the accuracy
of cluster properties, make the size dependence smaller, and
the extrapolation to the thermodynamic limit easier [32].

The one-body part |φpair〉 is the generalized pairing wave
function defined as

|φpair〉 =
⎡
⎣ Ns∑

i,j=1

fij c
†
i↑c

†
j↓

⎤
⎦

Ne/2

|0〉, (2)

where fij denotes the variational parameters. (For details of
fij , see Refs. [32–34]). In this study, we allow fij to have a
2 × 2 sublattice structure or equivalently, we have 2 × 2 × Ns

independent variational parameters for the one-body part.
All the variational parameters are simultaneously optimized
by using the stochastic reconfiguration method [32,35]. The
variational function |ψ〉 in Eq. (1) can flexibly describe
paramagnetic metals, the antiferromagnetic phase, and su-
perconducting phases as well as their fluctuations and/or
coexistence. It is important to fully optimize the long-range
part of fij to realize states with strong fluctuations and well-
developed, short-ranged order as well as strongly renormalized
metals, as we detail later. Actually, by extending the 2 × 2
sublattice structures of the variational parameters fij , we
confirmed that the accuracy of the energy is improved.

Furthermore, by applying the power Lanczos method [36],
we can also substantially improve the energy. In the N th-step
power Lanczos method, we multiply the Hamiltonian to the
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FIG. 1. (Color online) Distance (r) dependence of superconduct-
ing correlation for δ ∼ 0.14, J = V = 0, and U/t = 10. The system
size is Ns = 16 × 16, and the AP boundary condition is used. Results
of first-step Lanczos method are shown by (light blue) closed circles.

variational wave functions as follows:

|ψn〉 =
(

1 +
N∑

n=1

αnH
n

)
|ψ〉, (3)

where αn are the variational parameters. By choosing αn

to lower the energy, we can systematically improve the
variational wave functions, as we see later in Fig. 7. However,
through the careful examination of such extensions, we
confirmed that estimates of the physical properties (super-
conducting correlations, antiferromagnetic correlations, etc.)
change little (for example, see Fig. 1). In addition, the
numerical cost of such extensions is demanding. Therefore,
to perform the comprehensive calculations for the doped Hub-
bard with additional intersite interactions, we have used the
present tractable variational wave functions. Nevertheless, we
again emphasize that the estimates of the physical properties
themselves are accurate enough and our conclusions do not
change.

To discuss the condensation energy, we generate two
different wave functions, i.e., normal and superconducting
wave functions, by choosing proper initial states. We employ
the noninteracting Fermi sea for the normal state, and the BCS
d-wave superconductivity state for the superconducting phase
as the initial states [32]. By optimizing these initial states,
we obtain normal and superconducting states. In the strong-
coupling region, the antiferromagnetic order appears near half
filling as the normal state as a result of the optimization,
although we do not assume the antiferromagnetic order as an
initial state, which means that the paramagnetic normal state
is unstable.

To determine the ground state of the doped Hubbard
model, we calculate the spin structure factor and the equal-
time superconducting correlation. The spin structure factor is
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defined as

S(q) = 1

3Ns

∑
i,j

〈Si · Sj 〉eiq·(r i−rj ),

and the equal-time superconducting correlations are defined
as

Pα(r) = 1

2Ns

∑
r i

〈	†
α(r i)	α(r i + r) + 	α(r i)	

†
α(r i + r)〉.

In actual calculations, to reduce numerical cost, we restrict the
summation with respect r i to r i = 0. Superconducting order
parameters 	α(r i) are defined as

	α(r i) = 1√
2

∑
r

fα(r)
(
cr i↑cr i+r↓ − cr i↓cr i+r↑

)
.

Here fα(r) is the form factor that describes the symmetry of
the superconductivity. For dx2−y2 superconductivity, we define

fdx2−y2 (r) = δry ,0
(
δrx ,1 + δrx ,−1

) − δrx ,0
(
δry ,1 + δry,−1

)
,

where δi,j denotes the Kronecker delta and r = (rx,ry).
We define the long-range average of the superconducting
correlation as

P̄dx2−y2 = 1

M

∑
2<r=|r|<L−1

Pdx2−y2 (r),

where M is the number of vectors satisfying 2 < r < L − 1.
As shown in Fig. 1, the criterion r > 2 is, within the present
purpose, practically a sufficient probe to see whether the
pairing order-parameter correlation is saturated to a nonzero
value and offers a good measure for the square of the order
parameter in the long-range ordered superconducting state. We
also note that the first-step power Lanczos method does not
essentially change the superconducting correlations, as we see
in Fig. 1.

We also calculate the chemical potential by using the
relation

μ(N̄ ) = {E(N1) − E(N2)}/{N1 − N2} − U

2
, (4)

where E(N1) is the total energy at filling N1 and N̄ = (N1 +
N2)/2. To directly compare with previous calculations [4,37],
we subtract the constant value U/2. To reduce the finite-size
effects, we perform calculation only at the electron densities
that satisfy the closed-shell condition in the noninteracting
case [4,37].

The nonzero condensation energy 	E = (ESC −
ENormal)/Ns is defined when the superconducting (with
energy ESC) and normal states (ENormal) exist as local
minima. The normal state is not necessarily the paramagnetic
state but can be another symmetry-broken state such as the
antiferromagnetically ordered state, if it has a lower energy
than the paramagnetic state. It is remarkable that in the present
calculation, if the superconducting state with a nonzero order
parameter exists, it always has a normal state as local minima
as well. The transition from the normal to the superconducting
states by reducing the doping concentration from the
overdoped region is always a weak first-order transition where
the superconducting order parameter jumps from zero to a
small nonzero value in the ground state. For instance, as
we show later, at (V/t = 0,J/t = 0), (V/t = 0,J/t = 0.5),

(V/t = 1,J/t = 0.5), and (V/t = 2,J/t = 0.5), the
superconducting state emerges as a metastable state at
δ ∼ 0.25,0.33,0.29,0.28 while it becomes the ground
state only for δ � 0.22,0.31,0.27,0.28, respectively. The
first-order jump decreases with the increase in V/t ,
suggesting an existence of the tricritical point at around
(V/t = 2, J/t = 0.5). Toward half filling, the order
parameter of the superconducting state becomes continuously
zero, before the emergence of the antiferromagnetic Mott
insulator. Here, again, the nonsuperconducting state continues
to exist as a metastable excited state.

In connection with the experimental measurement of the
condensation energy by the specific heat or the upper critical
field, the present definition is not exactly identical with each
other because the normal state in the experiment usually
excludes the magnetic order as the normal state, for instance.
This means that the experimental value overestimates the
true condensation energy. However, the present definition
certainly gives a more useful criterion to determine whether
the superconducting state is the true ground state or not.

The normal state is defined as the state that has vanishing
superconducting order within the numerical accuracy. It does
not exclude the possibility of a state with a tiny order parameter
expected from the Kohn-Luttinger mechanism [38]. In addi-
tion, the normal state we obtained has a robust and developed
superconducting correlation with the extended s-wave order
parameter with the form factor cos kx + cos ky , which scales
to zero in the thermodynamic limit within numerical accuracy.

A Monte Carlo sampling of real space configurations of the
electrons is employed to calculate physical quantities follow-
ing the standard procedure [32]. The number of Monte Carlo
samples for the calculation of physical quantities is typically
128 000. The statistical error of the Monte Carlo sampling
estimated from a number of independent computations is
indicated in the last parentheses in the numerical data, as well
as error bars in the plots in figures.

III. RESULTS

A. Simple Hubbard model (V = J = 0)

To examine the origin of high-Tc superconductivity in the
Hubbard model, we employ the mVMC method [32]. (For the
validity of the method, see Appendix B.) This method enables
us to perform high-precision calculations under spatial and
temporal fluctuations of spin and charge on equal footings with
a sufficient flexibility of wave functions, which are important
in strongly correlated systems.

Figure 2 shows the doping dependence of several physical
properties for U/t = 10: the peak value of the spin structure
factor S(qpeak)/Ns, which is the square of the antiferromag-
netic ordered moment, and average value of superconducting
correlation P̄dx2−y2 at long distance with the dx2−y2 symmetry,
corresponding to the square of the superconducting order
parameter. We also plot the condensation energy 	E.

We find the dx2−y2 -wave superconducting phase only in
the strong-coupling region U/t � 6, which is consistent with
previous studies [4–6,8,10,11,15]. For instance, at U/t = 10,
the d-wave superconductivity emerges for δ � 0.2, as shown in
Fig. 3. Both 	E and P̄d

x2−y2 have dome structures around δ ∼

115137-3



TAKAHIRO MISAWA AND MASATOSHI IMADA PHYSICAL REVIEW B 90, 115137 (2014)

 0.00

 0.02

 0.04

 0.06

 0.02

 0.04

 0.06

 0.08

 0.10

4

2

-4

-2

0

δ
0.30.20.1 0.0

 0.00

AF

SC

PS

PS

(a)

(b)

S
(q

pe
ak

 )/
N

s
ΔE

/t

12×12

14×14

16×16

12×12

14×14

16×16

12×12

14×14

16×16 P
d

x    -y
2 

2

10
-3

FIG. 2. (Color online) (a) Doping (δ) dependence of averaged
dx2−y2 -wave superconducting correlations P̄x2−y2 and peak values of
spin structure factors S(qpeak) for U/t = 10 and V = J = 0. Doping
rate δ is defined as δ = 1 − Ne/Ns, where Ne (Ns) represents the
number of electrons (system size). We note that the incommensurate
spin orders or stripe phases are not found in the relevant doping
region δ � 0.2, even when we employ large sublattice structures.
We also note that the charge structure factors have no significant
peak at q 	= 0. (b) Doping dependence of condensation energy 	E.
The condensation energy is defined as 	E = (ESC − ENormal)/Ns,
where ESC (ENormal) is the total energy of the superconducting
phase (normal phase). The calculations are performed for sizes of
Ns = 12 × 12,14 × 14,16 × 16 on the square lattice, and we confirm
that the finite-size effects are negligibly small. The shaded region
denotes the PS region and the black dashed line represents the
spinodal point. Details of PS are shown in the main text and Fig. 3.
The superconducting phase without PS remains only in the yellow
region. In the present plots and the plots in the later figures, the
error bars indicate the estimated statistical errors of the Monte Carlo
sampling.

0.1. The antiferromagnetic quantum critical point (AFQCP)
where the antiferromagnetic spin fluctuations diverge appears
at δ ∼ 0.18. The d-wave superconductivity coexists with the
antiferromagnetism in the ground state for δ � 0.18. The
coexistence has been theoretically studied before in several
different contexts [8,10,39,40]. The coexistence is basically
consistent with the multilayer cuprates [2], where the PS may
be suppressed by the interlayer self-doping.

To examine the effects of charge fluctuations, the doping
dependence of the chemical potential μ is shown in Fig. 3,
where the uniform charge susceptibility χc ≡ dn/dμ monitors
the charge fluctuation. (See Appendix E for the charge
structure factor in the PS region.) The spinodal point of doping
(δs), where charge fluctuations diverge (χ−1

c = 0), is found
to increase at larger U . Accordingly, the PS region becomes
wider by increasing U/t . If we enforce the charge uniformity,
the superconducting correlation has a maximum at around

QMC,U/t=4
U/t=4
U/t=6
U/t=8
U/t=10 U/t=10
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δ
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FIG. 3. (Color online) Doping dependence of chemical poten-
tial for U/t = 4,8,6,10, V = J = 0, and system sizes L =
6,8,10,12,14,16, where Ns = L × L. We note that different size
results are essentially on the same curve. For U/t = 4, our mVMC
successfully reproduces the results of quantum Monte Carlo (QMC)
represented by black crosses [4]. By fitting the chemical potential
with the second-order polynomials, we estimate the spinodal point,
where (dn/dμ)−1 = 0. We also estimate the PS region (δ < δ1st)
by performing Maxwell’s construction using the fitted second-order
polynomials. Maxwell’s construction for U/t = 10 is shown by the
(black) dotted line. For U/t = 10, we estimate that the PS occurs
for δ < δ1st ∼ 0.195. We also estimate that the spinodal point, in
which the charge compressibility diverges (χ−1

c = 0), is located at
δs ∼ 0.178 for U/t = 10. To ensure the existence of the PS, we
further perform the first-step power Lanczos calculations (see Fig. 19
in Appendix F) and confirm that the Lanczos step changes μ little.
This result indicates that little improvement of energy affects the PS
region.

δs ∼ 0.14 (the spinodal point depicted by the dashed black line
in Fig. 2) for U/t = 10. This indicates that the enhanced charge
fluctuations stabilize the superconducting phase at around half
filling.

However, if the long-range Coulomb interaction is sup-
pressed as in the Hubbard model, the present result indicates
that in a wide region of the nominal doping concentration, the
system undergoes a real-space PS into the antiferromagnetic
Mott insulator and the superconducting region with the pinned
Tc. This prediction is in striking agreement with the recent
interfacial superconductivity [3].

B. Effects of intersite interactions

Here, to control the charge fluctuations, we
introduce nearest-neighbor Coulomb interactions V

(HV = V
∑

〈i,j〉 ninj ), which inevitably exit in real materials.
(See also Appendix A for previous studies.) As we see in
Fig. 4, although a small V/t = 1 drastically shrinks the PS
region (gray shaded region), the antiferromagnetic ordered
moment and the AFQCP do not change appreciably. Although
the superconducting correlations show a peak around the
AFQCP, the condensation energy is largely reduced to almost
zero, as shown in the inset of Fig. 4. This result supports
the fact that the superconducting phase is predominantly
stabilized by the enhanced charge fluctuations. We note that
the next-nearest hopping t ′ destabilizes the superconductivity
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FIG. 4. (Color online) (a) Doping dependence of P̄x2−y2 and
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phase. In the inset, condensation energy 	E is plotted as a function
of δ. For comparison, we plot results of U/t = 10 and V/t = 0 by
broken lines. The calculation has been done up to 20 × 20 lattices.
Notations are the same as Fig. 2.

in accordance with the shrinkage of the PS, which corroborates
this conclusion (see also Appendix D).

It is also an intriguing issue to examine whether the
instability toward the phase separation at the wave number
q = 0 can be converted into the instability toward charge
ordering at nonzero q, observed in some cases of the cuprates
by employing realistic off-site Coulomb interactions. In this
calculation, we do not find any signatures of the charge
ordering, as shown in Fig. 18 in Appendix E.

To further understand the interplay of spin fluctuations
and the instability toward the PS, by keeping V = 0, we
introduce the nearest-neighbor superexchange interactions
J (HJ = J

∑
〈i,j〉 Si · Sj ) that do not follow the standard

relation Jeff ∼ 4t2/U . In reality, J can be induced by the d-p
hybridizations in cuprate superconductors beyond the single-
band framework [41–43]. It has been repeatedly discussed
in the literature that the superexchange interaction is derived
from the three-band d-p model for the cuprate superconductors
in a nontrivial fashion without resorting to the single-band
Hubbard model. Indeed, the Zhang-Rice singlet [41] produces
the superexchange term J , which is rather independent of the
expectation from the single-band Hubbard model in the strong-
coupling limit. There exist several attempts to understand
spin-dependent residual interactions within the single-band
description but beyond the Hubbard model, with a finite
U but with an additional J [42,43], while it is not well
settled how the residual spin-dependent interaction should
emerge quantitatively within the single-band approach. In
this circumstance, it is helpful and insightful to understand
the role of residual superexchange-type interaction in the
mechanism of superconductivity by taking the amplitude of
J as a parameter.

As illustrated in Fig. 5(a), finite J/t = 0.5 largely enhances
the PS region, while the antiferromagnetic order does not
change appreciably. Accompanied by the enhanced charge
fluctuations, the condensation energy becomes an order of
magnitude larger. Because the AFQCP is close to the spinodal
point, as shown in Fig. 5(b), this significantly enhanced
superconducting phase may be understood from the synergetic
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FIG. 5. (Color online) (a) Doping dependence of P̄x2−y2 and
S(qpeak) for V/t = 0,1,2 and fixed U/t = 10 and J/t = 0.5. Ad-
ditional J significantly enhances the superconducting correlations
(see also Fig. 13). The shaded region and the blue line in the
bottom panel represent the PS region and the position of the AFQCP,
respectively. (b) Condensation energy as a function of δ. In the PS
region, condensation energy is plotted by gray symbols. The positions
of the spinodal point (δs) and the AFQCP (δQCP) are also plotted. Solid
and broken curves are guides for the eyes.

effects of spin and charge fluctuations. We later emphasize the
importance of short-ranged fluctuations; however, this phase
is again preempted by the PS.

In addition to J/t , we again add V . As we see in
Fig. 5(a), by increasing V/t , locations of AFQCP do not
change appreciably, while locations of the spinodal point
rapidly approach half filling. In connection with the suppressed
charge fluctuations, the condensation energy is significantly
reduced, again suggesting the key role of the proximity of
the PS in establishing high-Tc superconductivity. However,
it is remarkable that, for the coexisting J and V , the
superconducting phase with a substantial condensation energy
survives in a wide range (0.1 � δ � 0.3 for V/t = 2) outside
the PS region.

The large condensation energy is ascribed mainly to
two local sources: One is that the double occupancy D is
largely reduced in the superconducting phase than that in
the normal phase, which leads to the gain in the on-site
Coulomb energy. This is because, the d-wave pair prohibits the
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double occupation strictly by symmetry, which is particularly
effective when D remains larger in the normal phase (as
around δ ∼ 0.1). (Figure 12 shows how the reduced D in the
superconducting state enhances 	E.) This mechanism cannot
be captured by the t-J model. If J > 0, the other source is
the antiferromagnetic correlation Si · Sj . The superconducting
order enhances the underlying nearest-neighbor “antiferro-
magnetic” correlations even when J = 0, which provides
the energy gain immediately when J > 0 (see Appendix C).
The long-range part of antiferromagnetic correlation does not
directly contribute to this gain.

The strong-coupling nature of high-Tc superconductivity
emerges not from the long-ranged part and the quantum
criticality, but rather from the local binding, as expected
when approaching the regime of BEC. This local attractive
interaction leads to Cooper pairing but does not necessarily
lead to PS. This is because the PS signaled by the convex curve
with a peak structure in the chemical potential as in Fig. 3 is
mainly caused by the contribution of the kinetic-energy part
in the chemical potential, which is evidenced in Fig. 14 of
Appendix C. This peak in the kinetic energy is efficiently
suppressed by V rather independently of the emergence of
the local attractive interaction. While V suppresses PS, some
choices of V and J largely strengthen the energy gain from
D because of the enhanced D in the normal state. This is the
reason why an appropriate combination of V and J stabilizes
the high-Tc superconductivity without PS in an extended
region. This implies that the superconducting stability is not
a universal property but largely relies on material details. It
requires a reexamination of the conditions for the emergence
of high-Tc superconductivity. The necessity of both V and J

also requires careful analyses regarding how they are derived
quantitatively from first principles.

To see the relation between enhanced uniform charge
fluctuations and the stability of superconductivity, we plot in
Fig. 6 the relation between the maximum value of P̄d

x2−y2

and the width of the PS region in various cases of the
superconducting state (main panel). A wider PS region
indicates that charge fluctuation becomes more enhanced. The
relation shows a clear correlation between max(P̄d

x2−y2 ) and
the PS region, indicating that the enhanced charge fluctuation
stabilizes the superconductivity [26]. In the inset we plot
the doping concentration dependence of the superconducting
correlation and χ−1

c for two typical examples. In addition to
the correspondence between max(P̄d

x2−y2 ) and the PS region,
in all the cases we studied, the peaks of P̄d

x2−y2 are located at
concentrations close to the spinodal points (crosses), indicating
again the one-to-one correspondence between P̄d

x2−y2 and the
charge fluctuation.

IV. SUMMARY

To summarize, the origin of the high-Tc superconducting
phase in the doped Hubbard model is found primarily as
arising from the phase separation instability. This conclusion
suggests that the high-Tc superconductivity is not necessarily
a generic property of the doped Mott insulators but depends
sensitively on the material specific parameters, particularly on
the intersite interactions, which gives a clue to understand
the strong material dependence of Tc. Realistic intersite
Coulomb repulsions V alone, which are often ignored in
the literature, are severely destructive to superconductivity.
However, they significantly contribute to widening the high-Tc

superconducting region without phase separation, if properly
combined with the antiferromagnetic correlations such as
superexchange J .

Controlling the charge fluctuation through the off-site
interactions, possibly by tuning a screening layer adjacent to
the conducting layer, and control of the dielectric constant
offers a possible way to stabilize the high-Tc superconducting
phase. Though it is not so easy, an interesting future issue is
to find a way to suppress the ratio of the off-site to on-site
interactions by keeping a large on-site interaction in real
materials with the help of ab initio calculations [44]. In this
respect, the recently studied interfacial superconductivity [3]
offers a promising solution and supports the relevance of the
present phase diagram, with an extended region of PS as a
genuine property of CuO2 plane, if the long-ranged Coulomb
interaction is screened on a single layer by capacitor formation
with the neighboring metallic layers.
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APPENDIX A: COMPARISON WITH PREVIOUS STUDIES

In Table I, we summarize the previous numerical studies
on the doped Hubbard model. We summarize estimates of
Tc, the region of the superconducting (SC) phase, and the
antiferromagnetic (AF) phase. We also summarize information

on phase separation (PS) and condensation energy 	E. In the
first column, the results of the present study are summarized.
In the second column, we show several Monte Carlo, i.e.,
auxiliary-field quantum Monte Carlo (QMC) and Gaussian-
basis quantum Monte Carlo (GBMC), as well as path-integral
renormalization group (PIRG) calculations. We note that these
methods do not restrict the form of the wave function a priori
and give accurate estimates of the energy among various
numerical schemes, if the interaction is from a weak to
intermediate coupling region (U/t � 6). The accuracy of the
PIRG has been benchmarked to be accurate [50] and applied
to various cases [50–52]. The GBMC has been benchmarked

TABLE I. List of previous studies on the doped Hubbard model. SC, AF (AFM/AFI), PS, TABC, and GS represent superconductivity,
antiferromagnetic (antiferromagnetic metal/insulator), phase separation, twist-averaged boundary condition, and ground state, respectively.

Authors [Method] Tc U/t SC AF PS 	E

Present study [mVMC] –(GS) 4–12 δ � 0.2a δ � 0.18 δ � 0.19b ∼ 0.004t

Furukawa and Imada (1992) [4] [QMC] –(GS) 4 No SC No AF No PS
Watanabe and Imada (2004) [46] [PIRG]c –(GS) 4 No SC No AF No PS
Aimi and Imada (2007) [5] [GBMC] –(GS) 4–6 No SC No AF

Maier et al. (2004) [7] [DCA] ∼0.02t 4 δ ∼ 0.1
Khatami et al. (2010) [9] [DCA] ∼0.02t 8 δ � 0.2 QCP at δ ∼ 0.9
Capone and Kotliar (2006) [10] [CDMFT] –(GS) 4–16 δ � 0.15d δ � 0.15 0.05 � δ � 0.15e ∼0.01t f

Aichhorn et al. (2007) [8] [VCA] g –(GS) 4–12 δ � 0.2h δ � 0.15 0.05 � δ � 0.15i

Gull and Millis (2012) [12] [DCA] ∼0.016t 4–6.5 δ � 0.15j ∼0.01t

Sordi et al. (2012) [11] [CDMFT] ∼0.02t 5.2–6.2 δ � 0.08k 0.04 � δ � 0.06l

Giamarchi and Lhuillier (1991) [40] [VMC] –(GS) 10 δ � 0.4 δ � 0.2m

Yokoyama et al. (2004,2012) [6,47] [VMC] –(GS) 0–30 δ � 0.2n δ � 0.15 δ � 0.1 ∼0.01t

Eichenberger and Baeriswyl (2009) [15] [VMC] –(GS) 6 δ � 0.2 δ � 0.1? ∼0.01t

Neuscamman et al. (2012) [23] [VMC]o –(GS) 4 δ � 0.15p

Zhang et al. (1997) [16] [CPMC]q –(GS) 2–8 No SC
Chang et al. (2008, 2010) [21,48] [CPMC]r –(GS) 2–12 δ � 0.1s δ � 0.1t

Sorella (2011) [22] [VMC]u –(GS) 4 No PS
Becca et al. (2000) [49] [GFMC] –(GS) 4–10 No PS
Tocchio et al. (2013) [25] [VMC] –(GS) 6 No PS -

aOnly for U/t � 8. It is absent for U/t � 6.
bU/t = 10 (SC-AFI).
ct ′/t = 0 and −0.2.
dU/t = 4–16.
eU/t = 16 (AF-SC).
fSC-AFM, U/t = 16.
gt ′/t = −0.3, where t ′ is the next-nearest-neighbor transfer.
hU/t = 4–12.
iU/t = 8 (SC-SC+AF).
jU/t = 4–6.5.
kU/t = 5.2–6.2.
l(Metal-metal).
mSC+AF.
nU/t = 5–30.
oNs = 8 × 8, TABC.
p(Metal-AFI?).
qNs � 16 × 16, PP.
rNs = 8 × 8–16 × 16, TABC.
sIncommensurate spin structures.
tFor U/t � 8, a spatially inhomogeneous state is obtained.
uNs = 98.
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with the preprojection method [5], which substantially relaxes
the limitation and eliminates the origin of the errors (boundary
terms) [53] and then gives good agreement with the QMC
results. The (high-Tc) superconducting phase does not appear
in the region of U/t � 6 in all of these methods. The absence
is consistent with the present mVMC result, i.e., we confirm
that the superconducting phase is not stabilized for U/t � 6,
as shown in the first column. This is consistent with some
other results [15,47] as well as the constrained-path Monte
Carlo (CPMC) studies[16].

At U/t = 4, the divergence of the compressibility is sug-
gested at δ ∼ 0 [4,22], which means that the phase separation
is absent but the system is close to the marginal quantum
critical point [26,54]. The absence of the phase separation or
restriction at most to a tiny region δ < 0.06 [4,22,37,46,55] is
well consistent with the present study. The phase separation is
clearly observed in a wide region of the doping concentration
in the present study for the strong-coupling region (U/t > 6),
which has not been well studied before by quantitatively
accurate methods.

In the third column, we mainly show the results obtained by
dynamical mean-field theory (DMFT) calculations with cluster
extension, such as the dynamical cluster approximation (DCA)
and cellular DMFT (CDMFT). We also show the results of
variational cluster approximations (VCA).

All of these works suggest that the d-wave superconducting
phase appears at around δ ∼ 0.1. The absence of the supercon-
ductivity for U � 6 observed in the present study is not con-
sistent with DMFT and its extensions [7,8,10–12], which may
be attributed to the overestimation of the superconductivity in
DMFT because of the mean-field approximation. We note that
the presence or absence of the superconductivity is determined
only by the long-ranged part of the pairing correlation, while
such spatial correlations and fluctuations are not captured by
the DMFT.

Some works suggest that the first-order phase transition
between two metal phases occurs, i.e., phase separation occurs
between metals [9]. This type of phase separation is only found
in DMFT calculations and is not observed in other calculations
such as VMC and CPMC, as shown in the fourth and fifth
columns.

In the fourth column, we show several previous VMC
calculations. In the previous VMC calculations, the form of
wave functions is limited and they use different wave functions
to describe the Fermi liquid, antiferromagnetic phase, d-wave
superconducting phase, and their coexistence phase [40],
respectively.

We typically obtain a 5% lower energy compared to early
VMC results [47]. For example, for U/t = 10, L = 10,
δ = 0.88, and AP boundary conditions, Yokoyama et al. [47]
obtain E/Ns ∼ −0.60t while we obtain E/Ns ∼ −0.625t .
Recent VMC studies implemented a number of additional
improvements to reach better accuracy [22,25], which are
comparable to the present study in energy. In contrast to
most of the earlier studies, we employ a flexible one-body
part of the wave functions defined in Eq. (2). By optimizing
the long-range part of fij , this wave function can describe
insulators to antiferromagnetic metals, superconducting
phases, strongly correlated metals and their competitions
or coexistence on an equal footing in a single framework.

It is important for VMC results to benchmark the accuracy
by comparing with the available accurate results obtained
without assuming biased forms of wave functions as those
listed in the second column. By comparing with established
results, we show in Appendices B and G that our wave
functions allow precise estimations of physical properties.

In the fifth column, the results of VMC and CPMC methods,
which mainly study the normal state properties and instability
toward PS, are shown. Neuscamman et al. [23] used a
variational wave function with a large number of variational
parameters, which is similar to our model. However, their
estimate of the phase separation region in the doped Hubbard
model extends to a larger doping concentration δ ∼ 0.15,
even at U/t = 4. This contradicts other previous and the
present estimates. The reason for the overestimation of the
phase separation in Ref. [23] is unclear for now. The CPMC
studies also suggest a phase separation up to δ ∼ 0.1 at
U/t = 4 [21] (or incommensurate antiferromagnetic order
instead [48]). This has been criticized in Ref. [22] by taking
into account the coexisting antiferromagnetic and BCS guiding
functions, which give, more or less, the absence of the phase
separation. Many works, including those using numerically
exact methods such as QMC, suggest that PS does not occur in
the weak-coupling region (U/t � 8) and our present work is
consistent with them. Although Becca et al. [49] claim that PS
does not occur even in the strong-coupling region (U/t = 10)
due to the charge structure factor by using Green’s-function
Monte Carlo (GFMC) method, the charge structure factor is not
a proper quantity to detect the PS, as we show in Appendix E.
For the case with the next-neighbor hopping t ′ = −0.4t , the
phase separation is observed at strong coupling U/t = 10 [25].

Our result on the PS is consistent with most of the former
studies where the PS occurs in the strong-coupling region.
However, the relation between the PS and superconductivity,
clarified as a key in the present work, has not been well studied
in the literature.

Here we discuss the previous studies on the extended
Hubbard model. In the strong-coupling region, the effects of
intersite interactions such as V/t and J/t are studied by using
VMC and CDMFT [56,57]. They showed that the intersite
Coulomb interaction V reduces the superconducting order
parameter; however, they do not study the competitions with
other phases such as the antiferromagnetic phase.

Thus, it is not clear whether the superconducting phase is
robust against intersite Coulomb interactions. By performing
calculations that treat the superconducting phase and the
antiferromagnetic phase or strongly correlated metal on an
equal footing, we show that the superconducting phase
becomes unstable for small V (V/U = 0.1). This fragility of
the superconducting phase is not clarified in previous studies.

In addition, we again note that the CDMFT often overesti-
mates the stability of the superconducting phase because of its
mean-field nature.

APPENDIX B: BENCHMARK OF THE PRESENT
MVMC METHOD

To show the accuracy of the present mVMC method, we
compare our results with those of the exact diagonalization
(ED), auxiliary-field QMC, and GBMC for the Hubbard model
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TABLE II. [U/t = 4] Comparison of energy, peak value of spin
structure S(qpeak)/Ns, its wave number qpeak, and nearest-neighbor
spin correlation 〈Si · Sj 〉 between the exact diagonalization (ED)
results and those of mVMC, where mVMC(2 × 2) means that the
number of the variational parameters for fij is 2 × 2 × Ns . The
parentheses denote the error bars in the last digit.

Physical properties mVMC(2 × 2) ED

4 × 4(PP), n = 1
Energy per site −0.8500(1) −0.8513
S(qpeak)/Ns 0.0575(2) 0.0569
qpeak (π ,π ) (π,π )
〈Si · Sj 〉 −0.2063(14) −0.2063

4 × 4(PP), n = 0.625
Energy per site −1.2196(1) −1.22380
S(qpeak)/Ns 0.0130(1) 0.01300
qpeak (π/2,π ) (π/2,π )
〈Si · Sj 〉 −0.0704(5) −0.0683

4 × 4(AP), n = 1
Energy per site −0.9081(1) −0.9120
S(qpeak)/Ns 0.0414(1) 0.039698
qpeak (π ,π ) (π,π )
〈Si · Sj 〉 −0.1591(8) −0.1537

4 × 4(AP), n = 0.75
Energy per site −1.1504(1) −1.1607
S(qpeak)/Ns 0.0179(2) 0.0179
qpeak (π ,0) (π,π/2)
〈Si · Sj 〉 −0.0944(7) −0.0936

on the square lattice, since they generally provide us with
the best estimates of the energy, as well as other physical
properties. A weak point of the QMC and GBMC methods is
that they are applicable only in the region up to the intermediate
coupling. However, they give accurate energies and physical
properties and are useful for the benchmark. In fact, the QMC
is a numerically exact method within the statistical error, and
the GBMC is well established to give very good agreement
with the QMC and ED results in the range U � 6 [5].

In Tables II and III, we show the results of mVMC and
ED at half filling as well as the doped case for U/t = 4 and
U/t = 10. To see the boundary effects, we calculate both PP
and AP boundary conditions. For the doped case, we choose
the closed-shell filling for PP and AP boundary conditions.
The total energy is well consistent with the values of ED,
and the relative errors, δE = 1 − EmVMC/EED, are typically
less than 1%, even for the strong-coupling regime (U/t = 10).
Peak values of the spin structure factor are also well consistent
with the exact values in all the cases. We also confirm that
nearest-neighbor spin correlations 〈Si · Sj 〉 are well consistent
with the results of ED.

We also perform the first- and second-step power Lanczos
method for U/t = 4 at half filling. In Fig. 7, we plot the
energy as a function of the variance, which is defined as 	var =
(〈H 2〉 − 〈H 〉2)/〈H 〉2. As shown in Fig. 7, the power Lanczos
steps systematically improve the energies. Since the energy
difference from the exact ground-state energy is linearly

TABLE III. [U/t = 10] Comparison of energy, peak value of spin
structure S(qpeak)/Ns, its wave number qpeak, and nearest-neighbor
spin correlation 〈Si · Sj 〉. The method is the same as Table II. The
parentheses denote the error bars in the last digit.

Physical properties mVMC(2 × 2) ED
4 × 4(PP), n = 1
Energy per site −0.43632(5) −0.43931
S(qpeak)/Ns 0.0860(3) 0.0835
qpeak (π ,π ) (π,π )
〈Si · Sj 〉 −0.3010(9) −0.3057

4 × 4(PP), n = 0.625
Energy per site −1.0444(3) −1.0564
S(qpeak)/Ns 0.01505(7) 0.01508
qpeak (π/2,π ) (π/2,π )
〈Si · Sj 〉 −0.0818(5) −0.0754

4 × 4(AP), n = 1
Energy per site −0.4422(1) −0.4457
S(qpeak)/Ns 0.0852(2) 0.0819
qpeak (π ,π ) (π,π )
〈Si · Sj 〉 −0.2994(17) −0.3044

4 × 4(AP), n = 0.75
Energy per site −0.9022(3) −0.9255
S(qpeak)/Ns 0.0261(3) 0.0216
qpeak (π ,0) (π,π/2)
〈Si · Sj 〉 −0.1087(15) −0.1073

proportional to 	var for sufficiently small variance [35], we
can estimate more precise ground-state energy by performing
the linear fitting of the energies as a function of 	var. Since
the studies with the Lanczos step require substantially heavier
computational costs and the physical quantities change little
after the Lanczos step, as in Figs. 1 and 19, we have performed
the Lanczos calculation only for a small number of examples,
which is sufficient to confirm the validity of the result.
Systematic studies of the effects of further power Lanczos
steps are beyond the scope of this paper and are left for future
studies.

-0.852

-0.850

-0.848

 0  0.001  0.002

E/
N

s

ED

4by4, PP, U/t=4, half filling

Δvar

1step Lanczos

2step Lanczos

No Lanczos

FIG. 7. (Color online) Variance 	var dependence of energies for
zero-, first-, and second-step power Lanczos calculations. Solid line
represents the result of linear fitting of energies. We employ the PP
boundary condition.
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TABLE IV. Comparison of total energy between mVMC results
and those of numerically well-benchmarked accurate methods. The
parentheses denote the error bars in the last digit.

QMC GBMC mVMC

8 × 8 (PP), n = 50/64
U/t = 4 −72.80(6) −72.51(5) −71.417(4)
U/t = 6 −63.64(12) −62.553(9)

10 × 10 (PP), n = 82/100
U/t = 4 −109.7(6) −107.51(1)
U/t = 6 −92.07(22) −91.91(1)

12 × 12 (PP), n = 122/144
U/t = 4 −151.4(14) −150.14(2)

In Table IV, we compare the results of mVMC with
available QMC and GBMC at different fillings for U/t = 4
and U/t = 6. The PP boundary condition is employed. In
large systems, our mVMC offers consistent results with the
QMC and GBMC calculations. These results also confirm the
accuracy of our mVMC method. We also note that the accuracy
of the GBMC compared with the available QMC results has
well been benchmarked in physical properties, including the
superconducting correlations [5].

In Figs. 8 and 9, we show the pairing correlations Pdx2−y2 (r)
calculated by mVMC and ED for the doped case. Our mVMC
method well reproduces the exact superconducting correlation
for all the distances. We note that the deviation from the exact
value is large for U/t = 10 at r = √

2 in Fig. 8. This deviation
of the short-range part is not significant because the long-range
part of Pdx2−y2 (r) is essential to detect the appearance of the
superconducting phase. For larger system sizes (Ns = 8 × 8),
we compare the pairing correlations obtained by mVMC with
those by GBMC. As shown in Fig. 10, our mVMC method
well reproduces the exact superconducting correlation for all
the distances.

 0  1  2  3

mVMC

ED
mVMC

ED

r

(b) U/t=10(a) U/t=4

P       (r)d

10
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 0  1  2  3
r

FIG. 8. (Color online) Distance dependence of dx2−y2 -wave su-
perconducting correlation Pd

x2−y2 (r) at n = 10/16 = 0.625 for PP
boundary condition. For U/t = 4 and U/t = 10, mVMC well
reproduces the exact values. In the present plots and the plots in
the later figures, the error bars indicate the estimated statistical errors
of the Monte Carlo sampling (see Sec. II).
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FIG. 9. (Color online) Superconducting correlation Pd
x2−y2 (r)

for dx2−y2 -wave symmetry as a function of distance r at n = 12/16 =
0.75 for 4 × 4 lattice with the AP boundary condition. For both
U/t = 4 and U/t = 10, mVMC well reproduces the exact values
(ED).

We also show doping dependence of the spin structure
factor S(qpeak) for U/t = 4 in Fig. 11. Our mVMC well
reproduces the QMC results. The accuracy and applicability
of the mVMC method in general have also been examined in
the literature [32,58–60].

APPENDIX C: DETAILS OF CONDENSATION ENERGY

In this section we show the details of condensation energy,
i.e., kinetic-energy gain 	Ekin and potential-energy gain 	EU ,
which are defined as

Ekin = −t
∑
〈i,j〉

〈c†iσ cjσ + H.c.〉,

EU = U
∑

i

〈ni↑ni↓〉,
(C1)

	Ekin = (Ekin,SC − Ekin,Normal)/Ns,

	EU = (EU,SC − EU,Normal)/Ns.

 0  1  2  3  4  5  6
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P
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U/t=4, mVMC
U/t=4, GBMC

8   8,δ~0.22

FIG. 10. (Color online) Superconducting correlation Pd
x2−y2 (r)

for dx2−y2 -wave symmetry as a function of distance r for δ = 1 −
50/64 ∼ 0.22 and U/t = 4 at Ns = 8 × 8 (PP boundary condition).
It is confirmed that mVMC well reproduces the essentially exact
results of GBMC.
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FIG. 11. (Color online) Doping dependence of spin structure
factor S(qpeak) for U/t = 4 and several different system sizes (PP
boundary condition). QMC results [4] are shown by black crosses.
Black solid line is a guide for the eyes.

We also show the nearest-neighbor spin correlation 	S, which
is defined as

Snn = 〈Si · Sj 〉,
(C2)

	S = (Snn,SC − Snn,Normal),

where i and j represent the nearest-neighbor sites.
In Fig. 12 we show the doping dependence of 	Ekin and

	EU for several choices of parameters. In the simple Hubbard
model, i.e., without V and J , the superconducting phase is
stabilized by the energy gain of the potential energy in the
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FIG. 12. (Color online) Doping dependence of kinetic- and
potential-energy gains in superconducting phase.
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FIG. 13. (Color online) Doping dependence of (a) nearest-
neighbor spin correlations in superconducting phase (Snn,SC) and
(b) 	S = Snn,SC − Snn,Normal.

entire doping region. By introducing V and J , the energy gain
of the potential energy becomes large while the energy loss
of kinetic energy also becomes large. This is because stronger
pairing disturbs the single-particle motion and at the same time
the d-wave pairing strictly excludes the double occupation of
the paired electron by symmetry, which contributes to the gain
in the interaction energy and the loss in the kinetic energy. It
was claimed that the kinetic-energy gain exists in the strong-
coupling region [12,47]. However, this gain was calculated
in the superconducting state without the antiferromagnetic
order or correlations, while in reality the superconducting
phase largely coexists with the antiferromagnetic order or
at least with its well developed short-range correlations in
the ground state. This coexistence leads to a large gain
in the interaction energy and a loss in the kinetic energy in
the superconducting state in comparison to the state with the
antiferromagnetic correlations only. Because the energy gain
arising from the short-range singlet correlation exists for finite
J , total condensation energy becomes large compared to the
simple Hubbard model. As shown in Fig. 13, short-range
singlet correlation does not largely depend on interaction
parameters.

In Fig. 14 we show the kinetic (potential) part of chemical
potential μkin (μU ) for U/t = 10, defined as

μkin(N̄ ) = {Ekin(N1) − Ekin(N2)}/{N1 − N2},
μU (N̄ ) = {EU (N1) − EU (N2)}/{N1 − N2}−U

2
,
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-5
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-3

 0  0.1  0.2  0.3

μ

δ

μU

μkin δ1st

/t
/t

/t

FIG. 14. (Color online) Doping dependence of kinetic (potential)
part of chemical potential μkin (μU ) for U/t = 10 and Ns = 16 × 16.
Solid lines are guides for the eyes. We also show total chemical
potential μ for U/t = 10, which is the same one as shown in Fig. 3
in the main text. Black dashed line represents the line that is used for
Maxwell’s construction. For comparison, we shift μkin by −U/2.

where N̄ = {N1 + N2}/2. The kinetic part of the chemical
potential shows the convex doping dependence, while μU

is nearly independent of the doping. This convex doping
dependence of μkin suggests that PS is mainly caused by the
kinetic energy.

A strong crossover from the states with Mott proximity
in the underdoped region to the overdoped region takes
place in a twofold way: the charge instability represented
by divergence of charge compressibility at δ = δs, and the
magnetic instability represented by divergence of antiferro-
magnetic susceptibility at δ = δQCP. This “soft” fluctuating
region provides the grounds for the gain in the condensation
energy.

APPENDIX D: RESULTS WITH
NEXT-NEAREST-NEIGHBOR HOPPING t ′ = −0.3t

In this section we examine the effects of next-nearest-
neighbor hopping. To directly compare with the case of
t ′/t = 0, we employ the same on-site Coulomb repulsion,
i.e., U/t = 10. When the next-nearest-neighbor hopping t ′ =
−0.3t is present following the realistic parameter of the
cuprate superconductors, the condensation energy is strongly
suppressed, as we see in Fig. 15(a). Concomitantly with this
suppression, the phase separation also disappears, as we see
Fig. 16. The antiferromagnetically ordered region changes
little, as we see in Fig. 15(b). The results are not well
consistent with the experimental results of the hole-doped
copper oxides expected from the material dependence of the
parameters in the following points: (1) The suppression of the
superconductivity at larger −t ′/t does not follow the relation
between the expected material dependence of t ′/t and the
critical temperature Tc [61]. (2) A wide antiferromagnetically
ordered region is not consistent with quick destruction of the
antiferromagnetic order upon hole doping. The origin of the
discrepancy is unclear at the moment. Possible origins are
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FIG. 15. (Color online) (a) Doping dependence of condensation
energy 	E for U/t = 10,t ′/t = −0.3. Broken red line represents
the condensation energy for U/t = 10,t ′/t = 0. (b) Doping (δ)
dependence of averaged dx2−y2 -wave superconducting correlations
P̄x2−y2 and peak values of spin structure factors S(qpeak) for U/t = 10
and t ′/t = −0.3. For comparison, we plot P̄x2−y2 of U/t = 10,t ′/t =
0 by the broken line.

the following: (1) A realistic value of the on-site Coulomb
repulsion is smaller than the present value U/t = 10. (2) A
combination of V and J expected in the effective low-energy
model is required to stabilize the superconductivity. (3) Single-
band models are not sufficient to reproduce the quantitative
aspect of the copper oxides. (4) Small but finite impurities
immediately destroy the antiferromagnetic order.

-10
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-6

-4

-2

 0

 0.0  0.1  0.2  0.3  0.4

t’/t =0.0, U/t=10
PP
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t’/t =0.0, U/t=10
t’/t =-0.3, U/t=10

FIG. 16. (Color online) Doping dependence of chemical poten-
tial μ for t ′/t = 0 and t ′/t = −0.3.
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APPENDIX E: AMPLITUDE OF CHARGE STRUCTURE
FACTOR IN MACROSCOPIC PHASE-SEPARATED PHASE

In this section, we estimate the amplitude of the charge
structure factor allowed in finite-size systems when the
phase separation occurs as a macroscopic phase. In the
canonical ensemble, the charge structure factor, N (q) =
1
Ns

∑
i,j 〈ninj 〉eiq·(r i−rj ), at q = 0 must be zero because total

charge should be conserved, while one may expect the growth
of N (q) at the lowest possible wave number as the signature
of the Bragg peak at q = 0, expected for the phase separation
region. However, here we show that the growth is in practice
suppressed by the energy loss caused by the domain wall
formation in numerically accessible system sizes.

We first roughly estimate the energy cost caused by the
density modulation imposed in a metal with the period of
system size (namely, at the nonzero and lowest possible wave
number in the periodic boundary condition) necessary to
simulate the energy cost by the domain wall formation between
two different density phases. (Note that this estimate is valid
if the density modulation from the uniform phase is small,
which is justified later.) For this purpose, we consider the
noninteracting Hamiltonian H0 = ∑

k,σ εkc
†
kσ ckσ , where k is

the momentum vector and εk is band dispersion, respectively.
The ground state of this Hamiltonian is a Fermi-sea state
(with of course uniform density), which is defined as |φ0〉 =∏

|k|<kF ,σ c
†
kσ |0〉, where kF is Fermi wave number. Here we

calculate the energy loss in the charge-modulated (CM) phase
|φCM〉, which is defined as

|φCM〉 = ρ̂|φ0〉,
ρ̂ = 1 + γ n̂q,

n̂q =
∑
r i ,σ

c†r i σ
cr i σ eiqr i =

∑
k

c
†
k+qσ ckσ , (E1)

where q is the wave number of charge modulation. For simplic-
ity, we consider a square lattice [εk = −2t∗(cos kx + cos ky)],
q = (qx = 2π/L,0) (L is the linear dimension of system), and
half filling [see Fig. 17(a)]. Note that q is the lowest possible
wave number of the density modulation. First, we calculate
the local density at site l as follows:

〈c†lσ clσ 〉 = 〈φCM|c†lσ clσ |φCM〉
〈φCM|φCM〉

= Ne

2Ns

+ 2γ

L

cos 2πl
L

1 + M|γ |2 , (E2)

where Ne is number of total electrons and M =
〈φ0|n̂†

q n̂q |φ0〉 = ∑
k∈R,σ ∼ 2L [definition of R, see

Fig. 17(a)]. Therefore, by assuming M|γ |2 � 1, the
amplitude of charge modulation η is approximately given as

η ∼ 2 × 2γ

L
, (E3)

where factor 2 comes from the spin degrees of freedom. Here
we define mean charge modulation η̄ as

η̄ = 1

L
×

∫ L

0
η

∣∣∣∣ cos
2π

L
x

∣∣∣∣dx = 2

π
η. (E4)
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FIG. 17. (Color online) (a) Schematic picture of Fermi surface
(red and blue thick line). Region D denotes the inside of the Fermi
surface and R(L) denotes the right (left) edge of the Fermi surface,
respectively. (b) Doping dependence of the total energy for U/t =
10,V = J = 0 for several system sizes. AP boundary condition is
used. For clarity, we subtract f (δ), which is a linear function of δ.
The solid line is a guide for the eyes. From this, we estimate the energy
gain of phase separation as 	EPS = 0.5 × 10−3t × δ/0.1, when the
density difference of the phase-separated two phases is 2δ.

Then the energy loss within the first order with respect to q is
calculated as follows:

Eq = 〈φCM|H0|φCM〉
〈φCM|φCM〉

=
∑

k∈D,σ

εk + |γ |2
1 + M|γ |2

[
−

∑
k∈R,σ

εk +
∑

k∈R,σ

εk+q

]

∼
∑

k∈D,σ

εk + |γ |2qx

1 + M|γ |2
∑

k∈R,σ

∂εk

∂kx

. (E5)

From this, we evaluate the energy loss arising from the density
modulation 	ECM as

	ECM ≡ Eq − Eq=0

= |γ |2qx

1 + M|γ |2
∑

k∈R,σ

2t∗ sin kx

∼ 16|γ |2t∗, (E6)

where we again assume M|γ |2 � 1.
If the energy loss 	ECM is smaller than the energy gain of

the phase separation 	EPS, the spatially inhomogeneous phase
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becomes stable. As shown in Fig. 17(b), from the mVMC
calculations for a typical case (U/t = 10,V = J = 0), we
determine that the energy gain by the phase separation with
the amplitude 0.1 (in the unit of the doping concentration
δ) is at most 5 × 10−3t . Then we have roughly estimated
the energy gain in the case of the density modulation η̄ as
5 × 10−3t × η̄/0.1, simply by approximating the curve in
Fig. 17(b) by a linear function. Thus, the condition that the
spatially inhomogeneous phase becomes stable is given by

	ECM

Ns
∼ 16|γ |2t∗

Ns
< 	EPS ∼ 5 × 10−3t × η̄

0.1
. (E7)

Given that this condition is satisfied and by assuming that
t∗ is the same as t , we can evaluate the maximally allowed
amplitude of the charge modulation as

|η| < 0.03 (E8)

in finite-size systems. Thus, even when the phase separation is
the correct solution in the infinite-size system, the amplitude
of charge structure factor N (q) at the lowest possible wave
number for Ns = 16 × 16 = 256 is given as

N (q) = 1

Ns

∑
i,j

ninj e
iq(r i−rj ) = Ns × |η|2 ∼ 0.2. (E9)

Although the present estimate is rough, the order estimate
of enhancement is expected to be correct. Around q ∼ 0, we
indeed see N (q) in the order of 0.1, as shown in Fig. 18, but
it is buried in the background structure. Thus, it is difficult
to see a clear signature of the phase separation from N (q)
in the available system size. In contrast to this, the doping
dependence of the chemical potential μ offers a reliable
estimation of the phase separation region in relatively small
systems, because they can be correctly calculated by the
uniform density state. Further analysis, such as performing
calculations for larger system sizes, is an intriguing issue but
left for future study.

 0

 0.1

 0.2

 0.3

Γ M X Γ

U/t=10, V/t=0, J/t=0
U/t=10, V/t=1.0, J/t=0

Ns=16  16
δ~0.14

N
(q

)

 × 

FIG. 18. (Color online) Momentum dependence of the charge
structure factor N (q) at δ ∼ 0.14 for U/t = 10,V/t = 0,J/t = 0
and U/t = 10,V/t = 1.0,J/t = 0. The system size is Ns = 16 × 16,
and the AP boundary condition is employed.
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 0.0  0.1  0.2  0.3  0.4

δ

-7

-6

-5

-4

-3

-2

-1

 0

μ/
t

PA
U/t=10, No Lanczos

PP
U/t=10, No Lanczos

FIG. 19. (Color online) Doping dependence of chemical poten-
tial μ for U/t = 10 after the first power Lanczos step. For compari-
son, we show the doping dependence of μ for no Lanczos step.

APPENDIX F: DOPING DEPENDENCE OF CHEMICAL
POTENTIAL AFTER LANCZOS STEP

Here we show how the Lanczos step affects the doping
dependence of the chemical potential μ. In Fig. 19, we show
the doping dependence μ after the first Lanczos step for
U/t = 10 and J = V = 0. From this, although the Lanczos
step largely improves the energies, we find that it changes
the doping dependence of μ little, which is defined by
the difference of the energies for different δ values [see
Eq. (4)]. At this stage, due to the heavy numerical cost, we
cannot perform the further Lanczos calculation and systematic
variance extrapolation. Thus, precise estimation of the phase
separation region by systematic power Lanczos calculation is
left for future study.
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FIG. 20. (Color online) Doping dependence of e(δ) for J/t =
0.4. We employ antiperiodic-periodic boundary conditions. Since e(δ)
increases monotonically, the absence of PS is concluded [62].
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APPENDIX G: BENCHMARK RESULTS
FOR THE t- J MODEL

The t-J model on the square lattice is defined as

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + J

∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
,

where the double occupancy is completely prohibited. In the
t-J model, it is suggested that the phase separation does not
occur for sufficiently small J [62]. To benchmark the accuracy
of our variational wave function, we perform the calculations
for the t-J model at J/t = 0.4. We use basically the same

wave function defined in Eq. (1), except that we completely
prohibit double occupancy by using the Gutzwiller factors. We
note that the doublon-holon correlation factors are omitted. We
plot e(δ) = [E(δ)/Ns − E(0)/Ns]/δ in Fig. 20, which can be
directly compared with Fig. 1 in Ref. [62]. Although values of
e(δ) themselves are slightly different from those in Ref. [62],
our calculation supports the absence of the PS consistently
with Ref. [62]. In the Heisenberg limit (δ = 0), we compare
our result with the quantum Monte Carlo method [63] and we
obtain |1 − EmVMC/EQMC| ∼ 0.002 for Ns = 12 × 12. This
result again confirms that our variational wave function has
sufficient accuracy to discuss the existence of PS.

[1] J. G. Bednorz and K. A. Müller, Z. Phys. 64, 189 (1986).
[2] H. Mukuda, Y. Yamaguchi, S. Shimizu, Y. Kitaoka, P. Shirage,

and A. Iyo, J. Phys. Soc. Jpn. 77, 124706 (2008).
[3] J. Wu, O. Pelleg, G. Logvenov, A. T. Bollinger, Y.-J. Sun,
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