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Diagrammatic expansion for positive spectral functions beyond GW :
Application to vertex corrections in the electron gas
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We present a diagrammatic approach to construct self-energy approximations within many-body perturbation
theory with positive spectral properties. The method cures the problem of negative spectral functions which arises
from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of
a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams
and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting
self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are
time-ordered Green’s functions, whereas those of the other half are anti-time-ordered Green’s functions, and
the lines joining the two halves are either lesser or greater Green’s functions. The theory is developed using
noninteracting Green’s functions and subsequently extended to self-consistent Green’s functions. Issues related
to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed.
As a major application of the formalism we derive the minimal set of additional diagrams to make positive
the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions.
The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a
combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate
the diagrams.
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I. INTRODUCTION

Many-body perturbation theory (MBPT) has provided a
systematic way to study electron-electron (electron-phonon)
interactions in various systems ranging from molecules to
solids [1,2]. Within MBPT the interaction effects are included
via a self-energy term which is treated perturbatively. One
of the widely used self-energy approximations is the GW

approximation [3] which consists of replacing the bare inter-
action with the screened interaction in the first-order exchange
diagram. Diagrammatically the GW approximation can be
viewed as an infinite summation of polarization diagrams.
It is well known that for solids the GW approximation
(usually not implemented self-consistently) tends to give
band gap values close to the experimental values, thus
improving over the density functional calculations (which
instead underestimate the values for the band gaps) [4]. In
spite of some improvements over complementary theories,
the self-consistent GW approximation is known to have a
number of deficiencies like the washing out of plasmon
features and broadened bandwidths in the electron-gas-like
metals [5]. For many decades the common argument has then
been that the inclusion of vertex corrections would act as
a balancing force for the self-consistency [6–9], thus, e.g.,

hampering the washing out of plasmon satellites. Several
people have worked on this issue on various levels [10–16],
but the most interesting result from our point of view is that
the straightforward inclusion of vertex corrections beyond the
GW level yields negative spectra in some frequency regions, as
noticed by Minnhagen for the electron gas [10]. This deficiency
not only prohibits the usual probability interpretation of the
spectral function but also generates Green’s functions with
the wrong analytic properties. In particular, the latter feature
prevents an iterative self-consistent solution of the Dyson
equation since the analytic properties deteriorate with every
self-consistency cycle. This unpleasant situation is not limited
to the electron gas as it has also been observed in a study of
vertex corrections in finite systems [17,18]. As we will explain
in depth in this work the problem lies in the structure of the
vertex correction and therefore the solution must be sought in
the way we use MBPT. There has been very little work on
how to generate positive spectral functions from MBPT. The
only work on the issue of positivity that we are aware of has
been done by Almbladh but in the context of photoemission.
Almbladh showed that the positivity of the photocurrent was
guaranteed by expressing the photoemission triangle diagrams
as a square of half-diagrams [19]. This, however, was done
only for a certain selection of low-order diagrams and it was
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not indicated how the idea could be applied to the spectral
function.

In this paper we put forward a diagrammatic approach
to generate self-energy approximations beyond GW yielding
positive spectral functions. We start from an expression of
the self-energy derived by Danielewicz [20] and use the
Keldysh formalism [21] to extract the lesser/greater compo-
nents (these components are needed to construct the spectral
function). Every lesser/greater diagram is partitioned into
different contributions, each with internal times integrated
over either the forward or the backward branch of the Keldysh
contour. The full lesser/greater diagram corresponds to the
sum of all possible partitions. We then factorize each partition
into half-diagrams by using the Lehmann representation of
the Green’s function [22,23], where the one half of the
partition consists of time-ordered quantities and the other half
consists of anti-time-ordered quantities. The partitioning can
be seen as cutting the diagram in half along the lesser/greater
Green’s function lines. A similar cutting procedure is used
in high-energy physics to calculate the imaginary part of
diagrams contributing to the scattering amplitudes [24–29].
Our cutting rules agree with those of high-energy physics
but our derivation is based on the Keldysh formalism, which
allows us to advance the theory further. In fact, the positivity
of the spectral function entails that the sum of the products
of the half-diagrams is the sum of perfect squares. In some
situations the MBPT approximation is already a sum of perfect
squares, like for the GW approximation. For other self-energy
approximations we instead need to add missing half-diagrams
to complete the square, like for the GWGGW self-energy,
i.e., the lowest-order vertex correction. We acknowledge here
that Danielewicz [30] also studied a cutting procedure for the
lesser/greater self-energy diagrams and derived a manifestly
positive exact formula for the spectral function in terms of
retarded/advanced n-point functions, but the issue of how to
cure negative spectral functions of approximate self-energies
was not discussed in his work. The focus of our work is to study
approximate MBPT self-energies and give simple drawing
rules to decide whether or not the approximation generates
a positive spectral function. If not we provide extra, but still
simple, drawing rules to extend to a minimal set of diagrams the
MBPT approximation and turn the spectral function positive.

This paper is organized as follows. In Sec. II we derive the
Lehmann form of the lesser/greater self-energy and relate it to
a diagrammatic representation in terms of half-diagrams. Then
we describe how to construct a self-energy approximation with
a positive spectral function from a given MBPT approximation
by a minimal selection of additional self-energy diagrams. The
theory is developed using noninteracting Green’s functions
and subsequently extended to self-consistent Green’s func-
tions. In Sec. III we illustrate the formalism with text-book
examples. In Sec. IV we derive the simplest self-energy
with vertex corrections and screened interaction yielding a
positive spectral function. We then apply the theory to the
three-dimensional homogeneous electron gas in Sec. V. We
evaluate the self-energy diagrams by using a combination of
analytical frequency integrations and numerical Monte Carlo
momentum integrations, and show how the minimal selection
of additional diagrams cures the problem of negative spectra.
We finally present our conclusions and outlooks in Sec. VI.

II. THEORETICAL FRAMEWORK

Within the realm of Green’s function theory the most
common techniques to study equilibrium problems are either
the zero-temperature formalism or the Matsubara formalism.
These are two special cases of the more general Keldysh
formalism which is usually applied in the context of nonequi-
librium physics beyond linear response. In this work we show
that the Keldysh formalism is also the natural tool to develop
a diagrammatic theory for positive-definite spectral functions
of systems in equilibrium. We consider a system of interacting
fermions with Hamiltonian

Ĥ =
∫

dx ψ̂†(x)h(x)ψ̂(x)

+ 1

2

∫
dxdx′ψ̂†(x)ψ̂†(x′)v(x,x′)ψ̂(x′)ψ̂(x), (1)

where the field operator ψ̂ (ψ̂†) with argument x = rσ
annihilates (creates) a fermion in position r with spin σ . In the
Keldysh formalism the field operators evolve on the time-loop
contour C shown in Fig. 1. Operators on the minus branch are
ordered chronologically while operators on the plus branch are
ordered antichronologically. Letting z1 and z2 be two contour
times, the Green’s function G(x1z1,x2z2) can be divided into
different components Gαβ(x1t1,x2t2) depending on the branch
α,β = +/− to which z1 and z2 belong. For α = β = − we
have the time-ordered Green’s function

G−−(x1t1,x2t2) = −i〈T [ψ̂H (x1t1)ψ̂†
H (x2t2)]〉. (2)

In this expression T is the time-ordering operator and the
symbol 〈· · · 〉 implies a trace with some density matrix ρ̂. For
systems at zero temperature the trace reduces to a ground-state
average. The subscript “H” attached to a general operator Ô

signifies that the operator is in the Heisenberg picture

ÔH (t) = Û(t0,t)Ô Û(t,t0), (3)

where Û is the time-evolution operator and t0 is an arbitrary
initial time. The time-ordered G−− in Eq. (2) is the building
block of the zero-temperature formalism and the object
calculated in most MBPT codes.

Reversing the time arrow the G−− is converted into the
anti-time-ordered Green’s function

G++(x1t1,x2t2) = −i〈T̄ [ψ̂H (x1t1)ψ̂†
H (x2t2)]〉, (4)

where T̄ orders the operators antichronologically. Finally,
choosing z1 and z2 on different branches we have

G−+(x1t1,x2t2) = i〈ψ̂†
H (x2t2)ψ̂H (x1t1)〉, (5a)

G+−(x1t1,x2t2) = −i〈ψ̂H (x1t1)ψ̂†
H (x2t2)〉. (5b)

+∞
−∞ t−

t+

FIG. 1. The closed time-loop contour C. The (forward) minus
branch is denoted with a “−” label while the (backward) plus branch
is denoted by a “+” label.
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These two last components are equivalently written as G−+ =
G< (lesser Green’s function) and G+− = G> (greater Green’s
function), and describe the propagation of an added hole (G<)
or particle (G>) in the medium. In frequency space and at zero
temperature −iG<(ω) is the spectral function below the Fermi
energy and zero otherwise, whereas iG>(ω) is the spectral
function above the Fermi energy and zero otherwise.

The four Green’s functions Gαβ are not independent of each
other. The G−− and G++ are indeed given in terms of G≶

according to the equations below (omitting the position-spin
variables):

G−−(t1,t2) = θ (t1 − t2)G>(t1,t2) + θ (t2 − t1)G<(t1,t2),

G++(t1,t2) = θ (t1 − t2)G<(t1,t2) + θ (t2 − t1)G>(t1,t2).

Thus the four Green’s functions can all be extracted from the
spectral function.

A. Positive semidefiniteness of the exact self-energy

In equilibrium the Green’s function Gαβ depends on the
time difference only. Omitting the dependence on the position
and spin coordinates x1 and x2 the spectral function is defined
according to

A(ω) = i[G>(ω) − G<(ω)], (6)

where here and in the following Gαβ(ω) denotes the Fourier
transform of the Green’s function with respect to the time
difference. From the Lehmann representation it is easy to show
that iG>(ω) and −iG<(ω), as matrices in the x space, are
positive semidefinite (PSD). From the Dyson equation on the
Keldysh contour one can also show that [2]

G≶(ω) = GR(ω)	≶
c (ω)GA(ω), (7)

where

GR/A(ω) = i

∫
dω′

2π

G>(ω′) − G<(ω′)
ω − ω′ ± iη

(8)

are the retarded/advanced Green’s function and 	c is the
correlation self-energy. Since GA(ω) = [GR(ω)]† the PSD
of ∓iG≶ implies that ∓i	

≶
c is PSD and vice versa. Even

though one can prove the PSD property of the self-energy
using the corresponding property of the Green’s function and
the Dyson equation, a direct proof starting from a Lehmann
representation is not possible since 	c is not the average of a
correlator.

In this section we use the Keldysh formalism to provide an
alternative proof of the PSD property of 	c. For the proof we
derive a Lehmann-like representation of 	

≶
c and highlight the

connection with the diagrammatic expansion. This connection
will be extremely useful to generate approximate PSD self-
energies from diagrammatic theory. We advance that the
diagrammatic rules to evaluate a lesser/greater diagram will
differ from the standard zero-temperature diagrammatic rules
to evaluate a time-ordered diagram. A time-ordered diagram
is entirely expressed in terms of time-ordered G’s, whereas a
lesser/greater diagram is expressed in terms of the four Green’s
functions Gαβ .

The starting point is the following expression [2,20] for 	<
c

and 	>
c :

	<
c (x1t1,x2t2) = i〈γ̂ †

H (x2t2)γ̂H (x1t1)〉irr , (9a)

	>
c (x1t1,x2t2) = −i〈γ̂H (x1t1)γ̂ †

H (x2t2)〉irr , (9b)

where the operator γ̂ is defined according to

γ̂ (x1) ≡
∫

dx v(x1,x) ψ̂†(x)ψ̂(x)ψ̂(x1), (10)

and the subscript “irr” signifies that only one-particle irre-
ducible diagrams should be retained. That is, the expansion
of the self-energy (9) contains all the diagrams of the two-
particle–one-hole correlation function [31] in which the en-
trance and exit channels cannot be separated by cutting one
Green’s function line [32,33]. Unlike the definitions (5) of the
Green’s functions G≶, Eq. (9) are not averages of a correlator
due to the exclusion of reducible diagrams. Nevertheless a
Lehmann-like representation for the self-energy can be derived
using diagrammatic methods.

Let us study, e.g., 	<
c , as the same reasoning applies to 	>

c .
For simplicity we restrict the discussion to systems at zero
temperature and assume a nondegenerate ground state 0.
Using Eq. (3) and introducing the short-hand notation 1 =
x1t1, 2 = x2t2, etc. we can rewrite Eq. (9a) as

	<
c (1,2) = i〈0|Û(t0,t2)γ̂ †(x2)Û(t2,t0)

× Û(t0,t1)γ̂ (x1) Û(t1,t0)|0〉irr . (11)

Next we assume that 0 can be obtained by evolving
backward the noninteracting ground state �0 from a distant
future time τ (with τ → ∞) to the arbitrary initial time t0
using an interaction which is switched-on adiabatically, i.e.,
|0〉 = Û(t0,τ )|�0〉, where the evolution operator is calculated
with the time-dependent interaction eη|t−t0|v (η being an
infinitesimal negative energy). This is the standard assumption
of the zero-temperature Green’s function formalism. Then
Eq. (11) becomes (the limit τ → ∞ is implied)

	<
c (1,2) = i

[ ∑
i

〈�0|Û(τ,t2)γ̂ †(x2)Û(t2,τ )|χi〉

× 〈χi |Û(τ,t1)γ̂ (x1)Û(t1,τ )|�0〉
]

irr

, (12)

where we inserted a completeness relation
∑

i |χi〉〈χi | =
1 (the sum runs over all states χi in Fock space)
and used the group property Û(t1,t0)Û(t0,τ ) = Û(t1,τ ) and
Û †(t0,τ )Û(t0,t2) = Û(τ,t2). Let ĉk , ĉ

†
k denote the annihilation

and creation operators of a fermion in the kth eigenstate of
the noninteracting problem. In Eq. (12) only states |χi〉 of the
form

ĉ†qN
· · · ĉ†q1

ĉpN+1 · · · ĉp1 |�0〉 ≡ ∣∣χ (N)
pq

〉
(13)

contribute since the operator γ̂ (γ̂ †) annihilates (cre-
ates) a fermion. The indices p = (p1, . . . ,pN+1) and q =
(q1, . . . ,qN ) in χ (N)

pq specify the quantum numbers of the ĉ

and ĉ† operators, respectively. We conclude that Eq. (12) does
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not change under the replacement

∑
i

|χi〉〈χi | →
∞∑

N=0

1

(N + 1)!N !

∑
pq

∣∣χ (N)
pq

〉〈
χ (N)

pq

∣∣. (14)

Here the inner sum denotes integrations or summations over
sets of p and q quantum numbers with the restriction that p

integration runs over the occupied and q integration runs over
the unoccupied states, respectively. The prefactor stems from
the inner product of the intermediate states, i.e.,

〈
χ (N)

pq

∣∣χ (N ′)
p′q ′

〉 = δN,N ′
∑

P∈πN+1

∑
Q∈πN

(−)P+QδP (p),p′δQ(q),q ′ ,

where P and Q run over all possible permutations of N + 1
and N indices with parities (−)P and (−)Q, respectively. We
further denoted the permutation group of N elements by πN .

Defining the amplitudes

S∗
N,pq(1) ≡ 〈

χ (N)
pq

∣∣Û(τ,t1)γ̂ (x1)Û(t1,τ )|�0〉,
SN,pq(2) ≡ 〈�0|Û(τ,t2)γ̂ †(x2)Û(t2,τ )

∣∣χ (N)
pq

〉
,

the lesser self-energy takes the following compact form:

	<
c (1,2) = i

⎡
⎣ ∞∑

N=0

1

(N + 1)!N !

∑
pq

SN,pq(2)S∗
N,pq(1)

⎤
⎦

irr

. (15)

To proceed further we need to analyze the amplitudes S and
their complex conjugate S∗. Under the adiabatic assumption
the evolution of the noninteracting ground state �0 from −τ

to τ yields �0 up to a phase factor, i.e.,

Û(τ, − τ )|�0〉 = eiα|�0〉, (16)

with eiα = 〈�0|Û(τ, − τ )|�0〉. Therefore, we can write

S∗
N,pq(1) = 〈�0|ĉ†p1

· · · ĉ†pN+1
ĉq1 · · · ĉqN

Û(τ,t1)γ̂ (x1)Û(t1, − τ )|�0〉e−iα

= 〈�0|T
{
e−i

∫ τ

−τ
dtĤ (t)ĉ

†
p1 (τ+) · · · ĉ†pN+1 (τ+)ĉq1 (τ ) · · · ĉqN

(τ )γ̂ (x1t1)
}|�0〉

〈�0|T
{
e−i

∫ τ

−τ
dtĤ (t)

}|�0〉
, (17)

where the time argument in the operators specifies their position along the interval (−τ,τ ). The time τ+ is infinitesimally greater
than τ , which assures the correct ordering of the operators. Taking into account that the operator γ̂ (x1t1) is composed of an
annihilation operator in x1, a density operator in some internal point x, and an interaction line connecting x1 to x, see Eq. (10),
we see that the amplitude S∗

N is an interacting time-ordered (N + 2)-Green’s function multiplied by v(x1,x) and integrated over
x. Therefore, S∗

N can be expanded in powers of the interparticle interaction v by means of Wick’s theorem. The generic term
of the expansion is a connected diagram of noninteracting time-ordered Green’s functions g−− with external vertices 1 = x1t1
and p, q at time τ , and the general structure of this diagram is represented on the left-hand side of Fig. 2. Here the gray region
symbolizes scattering processes of arbitrary complexity occurring between N + 2 particles. Following the same steps it is easy
to show that

SN,pq(2) = 〈�0|T̄
{
ei

∫ τ

−τ
dτĤ (t)γ̂ †(x2t2)ĉ†qN

(τ ) · · · ĉ†q1 (τ )ĉpN+1 (τ+) · · · ĉp1 (τ+)
}|�0〉

〈�0|T̄
{
ei

∫ τ

−τ
dtĤ (t)

}|�0〉
, (18)

which can also be expanded using Wick’s theorem, and the
generic term of the expansion is a connected diagram of
noninteracting anti-time-ordered Green’s functions g++ with
external vertices 2 = x2t2 and p, q at time τ , see right
diagram in Fig. 2. Let us investigate the result of multiplying
a diagram of S∗

N,pq(1) by a diagram of SN,pq(2) and then sum

...
N+1

...
N

p1
p2

pN+1

q1
q2

qN

21

FIG. 2. (Color online) Diagrammatic structure of the functions
S∗(1) and S(2) for the lesser self-energy. The external vertex points 1
and 2 have times on the minus and plus branch, respectively. Green’s
functions are denoted by the lines with arrows, while wavy lines
correspond to the bare interparticle interaction.

over p and q. In a diagram of S∗
N,pq the outgoing Green’s

functions with q labels and the ingoing Green’s functions
with p labels are calculated at the latest possible time τ .
Therefore,

g−−
qx (τ,tx) = g>

qx(τ,tx),

g−−
xp (tx,τ ) = g<

xp(tx,τ ),

where (x,tx) is an internal space-spin-time vertex and we
introduced the short-hand notation gij for the matrix ele-
ments of g between two spin-orbital states i and j , hence
gαβ(x1t1,x2t2) = g

αβ
x1x2 (t1,t2). Similarly in a diagram of SN,pq

the ingoing Green’s functions with q labels and the outgoing
Green’s functions with p labels are calculated at the latest
possible time τ and therefore,

g++
yq (ty,τ ) = g>

yq(ty,τ ),

g++
py (τ,ty) = g<

py(τ,ty).

Thus the multiplication of a S diagram by a S∗ diagram
and the subsequent sum over p and q involves the sum over
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q of g>
qxg

>
yq and the sum over p of g<

xpg<
py. The noninteracting

lesser/greater Green’s functions can be expanded in the
basis of the noninteracting one-particle eigenstates according
to [2]

g<
ij (t,t ′) = i

∑
p

f (εp)e−iεp(t−t ′)〈i|p〉〈p|j 〉, (19)

g>
ij (t,t ′) = −i

∑
q

f̄ (εq)e−iεq (t−t ′)〈i|q〉〈q|j 〉, (20)

where εp is the energy of the one-particle eigenstate |p〉, f is
the zero-temperature Fermi function, and f̄ = 1 − f . Taking
into account that f 2(εp) = f (εp) and f̄ 2(εq) = f̄ (εq) one can
easily verify that∑

q

g>
yq(ty,τ )g>

qx(τ,tx) = −ig>
yx(ty,tx), (21)

∑
p

g<
xp(tx,τ )g<

py(τ,ty) = ig<
xy(tx,ty). (22)

When taking the product of the left and the right half-diagram
in Fig. 2 we can use relation (21) to replace each of the N

products of g> functions by a single g> connecting two internal
times in each half-diagram. Similarly we can use relation (22)
to replace each of the N + 1 products of a g< by a single
g<. The result of this gluing procedure is a diagram with
external vertices 1 and 2. The structure of the diagram is
such that all internal vertices to the left of the glued lines
have time labels on the minus branch and all internal vertices
to the right of the glued lines have time labels on the plus
branch. The gluing procedure can be reversed by cutting all
Green’s function lines between a vertex labeled − and a vertex
labeled +. We will refer to this procedure as the cutting rule for
a diagram.

At this point we observe that the self-energy in Eq. (15) is
not the sum of all possible S-S∗ diagrams due to the subscript
irr. This means that from the diagrams obtained by the gluing
procedure we still have to remove the reducible diagrams,
i.e., the diagrams which fall apart into two disjoint pieces
by cutting a single Green’s function line. An obvious case
of a reducible diagram is when there is only a single line
to glue in Fig. 2. This happens when N = 0 and we only
have the single label p1. This case is easily taken care of by
letting the sum in Eq. (15) start at N = 1 instead. For N > 1
the gluing procedure leads to reducible diagrams whenever
the S diagram can be separated into a piece which contains
only vertex 1 and a piece which contains the pq vertices by
cutting a single Green’s function line. We call these S diagrams
reducible and define S̃ as the sum of irreducible S diagrams.
Note that the S̃ diagrams can be separated into two disjoint
pieces by cutting a single Green’s function line, but then one
of the pieces would contain 1 and some of the pq vertices.
For instance, half-diagrams with a self-energy insertion on the
lines we glue together belong to S̃. An example is shown in
Fig. 3 where a tadpole is inserted into one of the p lines.
This half-diagram can be separated into disjoint pieces by a
single cut but then the vertex 1 would not be isolated from
all the pq. Consequently this half-diagram belongs to S̃ and
produces irreducible diagrams for the self-energy. From this

FIG. 3. (Color online) Minimal example of irreducible S∗ dia-
gram with self-energy insertions. When glued with some irreducible
S diagram it yields an irreducible self-energy diagram. Notice that
this diagram is reducible in the “correlation function” sense because
cutting a single Green’s function line produces disconnected pieces.

analysis we conclude that the self-energy can be written as

	<
c (1,2) = i

∞∑
N=1

1

(N + 1)!N !

∑
pq

S̃N,pq(2)S̃∗
N,pq(1). (23)

Equation (23) is the Lehmann-like representation of the self-
energy and the main result of this section. The irreducible part
of products in Eq. (15) has been transformed into products
of irreducible parts in Eq. (23). The product of a S̃ diagram
and a S̃∗ diagram yields an irreducible self-energy diagram in
which the internal times are either integrated over the minus
branch or over the plus branch. We call this product a partition
of the self-energy diagram. It is now easy to show that the
Fourier transform of −i	<

c has the PSD property. Fourier
transforming S̃ and S̃∗ and omitting the dependence on the
position-spin variables we find

− i	<
c (1,2) =

∞∑
N=1

1

(N + 1)!N !

∫
dω

2π

dω′

2π

× e−iωt2+iω′t1
∑
pq

S̃N,pq(ω)S̃∗
N,pq(ω′). (24)

In this equation the Fourier transform of S̃(t2) [and similarly
of S̃∗(t1)] is performed over the time argument t2 and not over
the time difference t2 − τ , which is ill-defined for τ → ∞.
For the right-hand side to depend only on t1 − t2 the following
property:

∞∑
N=1

1

(N + 1)!N !

∑
pq

S̃N,pq(ω)S̃∗
N,pq(ω′) = F(ω)δ(ω − ω′)

has to be fulfilled. Since for ω = ω′ the left-hand side is the
sum of modulus squares we have that F(ω) � 0, and inserting
this result back into Eq. (24) we see that F(−ω) is the Fourier
transform of the function −i	<

c (1,2) with respect to the time
difference t1 − t2.

So far we have restricted ourselves to the exact self-
energy. In the following section we will explain how a given
approximate diagrammatic expression for the self-energy can
be extended, if necessary, to a similar form as in Eq. (23) by
an appropriate selection of additional half-diagrams, thereby
ensuring the positivity of its spectral function.
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B. Diagrammatic theory of positive spectral functions

The Lehmann-like representation of Eq. (23) brings to light
a general and simple rule to calculate the lesser component
of a self-energy diagram. A diagram for 	<

c (1,2) has two
external vertices, one with time t1 on the minus branch and the
other with time t2 on the plus branch, and a certain number of
internal vertices with times to be integrated over the Keldysh
contour. If we assign to each internal vertex a − or a + sign
to signify that the corresponding time is integrated over the
minus or plus branch then we obtain a division of the original
self-energy diagram, and the full self-energy diagram is the
sum of all of them. Since the two-particle interaction is local
in time, i.e.,

v(x1t1,x2t2) = v(x1,x2)δ(t2 − t1),

it only connects two vertices with times on the same branch of
the Keldysh contour. Since the external vertices are fixed there
are 2n−2 divisions (n � 2) for a diagram with n interaction
lines. However, not all such divisions contribute. As shown
in Fig. 2 and in Eq. (23) the only divisions appearing in the
expansion of the self-energy are those in which one side of
the diagram only contains “−” vertices and the other side of
the diagram only contains “+” vertices. All other divisions
can therefore be discarded since they sum up to zero. These
are the divisions for which we get a piece disconnected
from the external vertices 1 and 2 upon cutting the +/− g

lines (hence these divisions cannot be written as the product
of a S̃-S̃∗ diagram). The number of contributing divisions
clearly depends on the topological structure of the diagram. In
Sec. II A we called such divisions partitions. As an example
consider the 	<

c diagram shown in Fig. 4. The third division
vanishes since we get a piece disconnected from 1 and 2 upon
cutting the +/− g lines. This simple diagrammatic rule to
extract the lesser self-energy can be viewed as a generalization
of the Langreth rules [34] to diagrams which are neither a
product nor a convolution of Green’s functions [13]. The same
diagrammatic rule can alternatively be derived by working in
frequency space and by taking into account the conservation
of energy at each vertex [25,26]. As a side remark we observe
that according to this diagrammatic rule there exists only one
partition in a time-ordered diagram (i.e., a diagram where

1 2

= +

+ +

FIG. 4. (Color online) An example of the distribution of + and
− labels over the internal vertices of a lesser fourth-order self-energy
diagram. Divisions with lines v+− or v−+ vanish due to the time
locality of the interaction and therefore are not shown. The third
term after the equality sign must be discarded because it contains
an isolated island of plus signs upon cutting the +/− g lines (see
explanation in the text).

the times of the external vertices 1 and 2 are both −). In
fact, a division with one or more vertices on the plus branch
inevitably generates disconnected pieces. Only the division
with all internal vertices on the minus branch is a partition,
and consequently in this partition all internal Green’s functions
are time-ordered G’s. We thus recover the standard rule of
the zero-temperature formalism. Such simplification does not
occur in lesser (or greater) diagrams where all four Green’s
functions Gαβ are needed.

There remains one issue to address before introducing our
diagrammatic theory of PSD spectral functions: How many
S̃-S̃∗ diagrams do lead to the same partition of a self-energy
diagram? To answer this question we need to investigate
the expansion of S̃ in terms of Feynman diagrams. Due to
the anticommutation rules for the creation and annihilation
operators it follows from the definition of SN,pq in Eq. (18)
that a permutation P of the labels p and a permutation Q of
the labels q simply changes the sign of SN,pq , and hence also

S̃N,pq , by a factor (−1)P+Q. Therefore, if we let {D(j )
pq } with

j ∈ IN be the set of all topologically inequivalent diagrams
for S̃N,pq that differ by more than a permutation of the p or q

labels, then we can write

S̃N,pq =
∑
j∈IN

∑
P ∈ πN+1
Q ∈ πN

(−)P+QD
(j )
P (p)Q(q), (25)

where P and Q run over all permutations πN+1 and πN of
N + 1 and N indices, respectively. Inserting Eq. (25) back
into Eq. (23) we find

	<
c (1,2) = i

∞∑
N=1

∑
j1,j2∈IN

∑
P1,P2 ∈ πN+1
Q1,Q2 ∈ πN

(−)P1+Q1+P2+Q2

(N + 1)!N !

×
∑
pq

D
(j2)
P2(p)Q2(q)(2)D(j1)∗

P1(p)Q1(q)(1). (26)

This expression can be simplified further by noticing that the
composite permutations P ◦ Pi and Q ◦ Qi with i = 1,2 yield
the same contribution as the permutations Pi and Qi , i.e.,

D
(j2)
P◦P2(p)Q◦Q2(q)(2)D(j1)∗

P◦P1(p)Q◦Q1(q)(1)

= D
(j2)
P2(p)Q2(q)(2)D(j1)∗

P1(p)Q1(q)(1), (27)

since the effect of P and Q is equivalent to a relabeling of the
p and q. There are N !(N + 1)! such relabelings and they all
give the same contribution. We can therefore simplify Eq. (26)
to

	<
c (1,2) = i

∞∑
N=1

∑
j1,j2∈IN

∑
P1 ∈ πN+1
Q1 ∈ πN

(−)P1+Q1

×
∑
pq

D(j2)
pq (2)D(j1)∗

P1(p)Q1(q)(1). (28)

Every term of the form
∑

pq D
(j2)
pq (2)D(j1)∗

P1(p)Q1(q)(1) in Eq. (28)
corresponds to a unique partition of a 	<

c diagram. Vice
versa, every partition of a 	<

c diagram can be written as the
product of a unique D-D∗ diagram, otherwise there should
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+

FIG. 5. (Color online) An approximate self-energy of many-
body perturbation theory.

exist more than one way to cut the self-energy along the +/− g

lines.
Equation (28) is an exact rewriting of 	<

c in terms of D

diagrams. MBPT approximations to the self-energy consist
of the sum of a (finite or infinite) subset of diagrams. An
exotic approximation could be, e.g., the one of Fig. 5. Each
diagram contains four interaction lines (n = 4) and, therefore,
it is divided in 2n−2 = 4 different ways. It is a simple exercise
to see that the left diagram is the sum of three partitions with
three +/− g lines and one partition with five +/− g lines,
whereas the right diagram is the sum of two partitions with
three +/− g lines and two partitions with five +/− g lines.
In Fig. 6 we display, e.g., all partitions with five +/− g lines
[N = 2 in Eq. (28)] and how to write them as D-D∗ diagrams.
There are two different D diagrams, say D(a) and D(b), which
are glued as

∑
pq

[
D(a)

p1p2p3q1q2
(2)

(
D(b)∗

p1p2p3q1q2
(1) − D(b)∗

p1p2p3q2q1
(1)

)

−D(b)
p1p2p3q1q2

(2)D(a)∗
p1p2p3q2q1

(1)
]
.

The products of the half-diagrams is represented in the same
order as they appear in this mathematical expression in Fig. 6
after the equality sign. The diagrams D(b) in the first line differ
only in a permutation of the labels q1 and q2 as shown in the left

+ +

= +

+

p1 p1

p3 p3

q2
q2p2
p2

q1

q1

p1 p1

q2 q2

p3

p3

q1

q1

p2

p2

p1 p1

p2 p2

q2 q2

p3
p3

q1 q1

FIG. 6. (Color online) Partitions of the self-energy diagrams of
Fig. 5 with five +/− g lines and decomposition in terms of D-D∗

diagrams.

half-diagrams of Fig. 6. Furthermore, the right half-diagram
of the first term (D(a)) and the left half-diagram of the last
term (D(a)∗ ) have the same topological structure but differ in
the labeling of q1 and q2.

This example is instructive since it highlights the general
structure of a MBPT approximation to the self-energy. The
partitioning leads to an expression of the form of Eq. (28)
where the domains of the summation indices and the set of
permutations are restricted. The couple (j1,j2) runs over a
subset IN ⊂ IN × IN of the product set of the topologically
inequivalent half-diagrams. In the example of Fig. 6 we
have I2 = {(a,b),(b,a)}. Given the couple (j1,j2) ∈ IN the
permutations P1 and Q1 run over a subset π

(j1j2)
N+1,p ⊂ πN+1

and π
(j1j2)
N,q ⊂ πN of the permutation groups πN+1 and πN .

In the example of Fig. 6 for the couple (b,a) (the first two
terms after the equality sign) we have the subsets π

(ba)
3,p = {1}

and π
(ba)
2,q = {1,Q} with Q(q1,q2) = (q2,q1), whereas for the

couple (a,b) (the last term after the equality sign) we have the
subsets π

(ab)
3,p = {1} and π

(ab)
2,q = {Q}. In Fig. 6 we considered in

detail the D-D∗ diagrams of the self-energy of Fig. 5 belonging
to the set I2. The set I1 in which we cut three +/− g lines can
be analyzed similarly. All other sets IN with N > 2 are empty
in this case. In general, however, we have for an approximate
MBPT self-energy

	<
c (1,2) = i

∞∑
N=1

∑
(j1,j2)∈IN

∑
P1 ∈ π

(j1j2)
N+1,p

Q1 ∈ π
(j1j2)
N,q

(−)P1+Q1

×
∑
pq

D(j2)
pq (2)D(j1)∗

P1(p)Q1(q)(1), (29)

where the sets IN may contain zero, a finite, or an infinite
number of elements.

An important remark to be made regarding Eq. (29) is that
it does not, in general, fulfill the PSD property. Our analysis
shows, however, how to formulate the diagrammatic rules
to transform a MBPT self-energy into a PSD self-energy by
adding the minimal number of partitions. For the PSD property
to be fulfilled the self-energy should have the structure of
Eq. (23) with some approximate S̃N,pq . Let ĨN ⊂ IN be the
smallest subset such that

ĨN × ĨN ⊃ IN, (30)

and π̃N+1,p and π̃N,q be the smallest subgroups of the
permutation groups πN+1 and πN with the property

π̃N+1,p ⊃
⋃

(j1,j2)∈IN

π
(j1j2)
N+1,p , (31)

π̃N,q ⊃
⋃

(j1,j2)∈IN

π
(j1j2)
N,q . (32)

Mathematically π̃N+1,p and π̃N,q are given by the intersection
of all subgroups containing the subsets π

(j1j2)
N+1,p and π

(j1j2)
N,q . The
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self-energy

	<
c,PSD(1,2) = i

∞∑
N=1

∑
j1,j2∈ĨN

∑
P1 ∈ π̃N+1,p

Q1 ∈ π̃N,q

(−)P1+Q1

×
∑
pq

D(j2)
pq (2)D(j1)∗

P1(p)Q1(q)(1) (33)

contains all partitions of Eq. (29) plus other partitions, and
each partition is counted only once. Furthermore, taking into
account that π̃N+1,p and π̃N,q are two subgroups, Eq. (27) is
valid for all P ∈ π̃N+1,p and Q ∈ π̃N,q . Hence we can rewrite
Eq. (33) to bring out its product structure. We have

	<
c,,PSD(1,2) = i

∞∑
N=1

∑
j1,j2∈ĨN

∑
P1,P2 ∈ π̃N+1,p

Q1,Q2 ∈ π̃N,q

(−)P1+Q1+P2+Q2

dN+1,pdN,q

×
∑
pq

D
(j2)
P2(p)Q2(q)(2)D(j1)∗

P1(p)Q1(q)(1), (34)

where dN+1,p and dN,q are the dimensions of the subgroups
π̃N+1,p and π̃N,q respectively. The self-energy in Eq. (34) has
the same mathematical structure of the exact self-energy in
Eq. (26). Since the Fourier transform is a sum of modulus
squares the self-energy in Eq. (34) is PSD. It is also clear that
any reduction of the sets ĨN , π̃N+1,p, and π̃N,q would either
not include the original MBPT diagrams or would not fulfill
the PSD property [35]. Thus Eq. (34) contains the minimal
number of partitions of self-energy diagrams to correct the
MBPT self-energy.

This concludes the diagrammatic theory to generate PSD
spectral functions. In the next sections we work out explic-
itly some textbook examples and derive the leading PSD
self-energy diagrams with vertex corrections and screened
interaction, thus going beyond the GW approximation.

C. Self-consistency

Before we discuss some examples in detail we would first
like to address the issue of self-consistency which plays an
important role in the so-called conserving approximations
[2,36]. So far we used the noninteracting Green’s functions
g to evaluate the diagrams. Suppose that a specific selection of
partitions guarantees the positivity of the spectral function
for 	

≶
c,PSD[g], where we indicate explicitly the functional

dependence of the self-energy on g. Then we can use this
self-energy in the Dyson equation to evaluate a new Green’s
function, which we may call G to distinguish it from the
noninteracting g. In the next step we can evaluate our
approximate diagrammatic expression for the self-energy in
terms of G, i.e., we evaluate 	

≶
c,PSD[G]. The natural question

to ask then is whether 	
≶
c,PSD[G] still has the PSD property. We

now demonstrate that this is indeed the case by a modification
of the derivation in Secs. II A and II B.

The largest modification involves relations (21) and (22)
since they are not valid anymore for general dressed Green’s
functions. This is, for example, easily demonstrated for the
exact interacting lesser Green’s function of an N -particle
system with ground state energy E0, which has the Lehmann

representation

G<
xx′ (t,t ′) = i

∑
α

e−i�α (t−t ′)fα(x)f ∗
α (x′). (35)

Here α labels the many-body eigenstates α,N−1 with energy
Eα,N−1 of the system with N − 1 particles, �α = Eα,N−1 −
E0,N are the removal energies, and fα(x) = 〈α,N−1|ψ̂(x)|0〉
are the so-called Dyson orbitals. Although the Lehmann
representation (35) looks formally identical to the expansion
in Eq. (19) for g, it does not allow us to derive Eq. (21)
anymore since the nonvanishing fα(x) form an overcomplete
and nonorthonormal one-particle basis set [in a noninteracting
system most fα(x) are zero and the nonvanishing ones form
an orthonormal basis set]. Our strategy, therefore, is to replace
Eqs. (19) and (20) with a different relation that still allows us
to formulate a cutting rule. Crucial in our reasoning is that a
PSD self-energy generates a PSD spectral function for G, as
was explained just below Eq. (8). This implies that G< has the
form

G<
xx′ (t,t ′) = i

∫
dω

2π
A<

xx′ (ω) e−iω(t−t ′),

where the removal part of the spectral function A<
xx′ (ω) ≡

f (ω)Axx′(ω) is a self-adjoint and PSD matrix in the one-
particle indices for every ω. Denoting by 〈x|ai(ω)〉 the
eigenstates of A<

xx′ (ω) with eigenvalue ai(ω), the spectral
representation of this matrix can be written as

A<
xx′ (ω) =

∑
i

〈x|ai(ω)〉 ai(ω)〈ai(ω)|x′〉.

Without loss of generality we shall assume that the eigenstates
|ai(ω)〉 form an orthonormal basis set for every ω. Due to the
PSD property of A< the eigenvalues ai � 0, and therefore we
can define the square root of the spectral function according to

√
A<

xx′ (ω) =
∑

i

〈x|ai〉√
ai 〈ai |x′〉,

where for notational convenience we suppressed the ω depen-
dence of the eigenvalues and eigenvectors. Correspondingly
we can define the square root of the lesser Green’s function
according to

√
G<

xx′ (t,t ′) = i

∫
dω

2π

√
A<

xx′ (ω) e−iω(t−t ′).

This function has the property that

iG<
xx′ (t,t ′) =

∫
dydt̄

√
G<

xy(t,t̄)
√

G<
yx′ (t̄ ,t ′) (36)

as follows from a quick calculation using the definitions above.
Similarly G> is the integral over a positive spectral function,
and we can therefore define the square root

√
G> with the

property that

−iG>
xx′ (t,t ′) =

∫
dydt̄

√
G>

xy(t,t̄)
√

G>
yx′ (t̄ ,t ′). (37)

The relations (36) and (37) provide a new cutting rule for a self-
energy diagram with a dressed Green’s function. Whenever
we cut a self-energy diagram we obtain half-diagrams with
outgoing lines

√
G< and

√
G>. Using these modified half-

diagrams we obtain an equation that is identical in structure
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to Eq. (33). The only thing that changes in Eq. (33) is that
the sums over pq are replaced by integrals over y’s and t̄’s.
However, this does not change the quadratic structure of the
equation. We therefore conclude that 	<

c,PSD[G] also is PSD.
From this new self-energy we can use the Dyson equation
to calculate a new Green’s function which has again a PSD
spectral function and can be decomposed as in Eqs. (36)
and (37), thereby yielding yet another PSD self-energy. By
repeating the procedure we obtain a series of PSD Green’s
functions. If this series converges to a limiting Green’s function
then we have solved the Dyson equation self-consistently for
our approximate 	<

c,PSD in which both the Green’s function
and the self-energy are PSD.

The conclusion of this analysis is that our diagrammatic
approach to PSD spectral functions also applies to self-
consistent perturbation theory. Of course, in order to avoid
double countings, the partitions of which 	<

c,PSD is made
of should be skeletonic, i.e., should not contain self-energy
insertions [2]. An important approximation that has this
structure is the GW approximation which we study in more
detail below. In general, however, it should be emphasized
that a PSD self-energy made exclusively of all the partitions
of conserving diagrams is rare. In fact, approximations which
are simultaneously conserving and PSD are exceptional.

III. EXAMPLES

In this section we apply the formalism developed in Sec. II
to some illustrative examples.

A. Single bubble diagram

Let us first consider the first bubble diagram shown in
Fig. 7(a). The lesser component of this self-energy reads

	<
c (1,2) =

∫
dx3

∫
dx4v(x1,x3)g<

x1x2
(t1,t2)

× g<
x3x4

(t1,t2)g>
x4x3

(t2,t1)v(x2,x4), (38)

which can be partitioned in only one way. Upon cutting along
the +/− g lines we find

	<
c (1,2) = i

∑
pq

D(a)
p1p2q1

(2)D(a)∗
p1p2q1

(1), (39)

where the D diagram reads

D(a)∗
p1p2q1

(1) =
∫

dx3v(x1,x3)g<
x1 p1

(t1,τ )

× g<
x3 p2

(t1,τ )g>
q1 x3

(τ,t1). (40)

Equation (39) is already of the form in Eq. (33) and therefore
the first bubble diagram produces a PSD spectrum.

B. Second-order exchange

The exchange diagram of the first bubble diagram is shown
in Fig. 7(b) and the application of the formalism is more
interesting. The lesser component of the self-energy now reads

	<
c (1,2) = −

∫
dx3

∫
dx4v(x1,x3)g<

x1x4
(t1,t2)

× g>
x4x3

(t2,t1)g<
x3x2

(t1,t2)v(x4,x2).

=
1 2 p1 p1

p2 p2

q1 q1

=1 2

p1 p1

p2

q1q1

p2

p1

p2

q1

p1

p2

q1

p2

p1

q1

+

= +

(a)

(b)

(c)

FIG. 7. (Color online) (a) Partition of the first bubble diagram
and the resulting half-diagrams. (b) Partition of the second-order
exchange diagram and the resulting half-diagrams. (c) In order to
form a a complete square with the second-order exchange diagram
we need to add the right half-diagram with permuted p1 and p2 labels.
This yields the 2B approximation.

This diagram too can be partitioned in only one way. However,
upon cutting the +/− g lines we find a product of D diagrams
differing by a permutation P (p1,p2) = (p2,p1),

	<
c (1,2) = i

∑
pq

(−)P D(a)
p1p2q1

(2)D(a)∗
p2p1q1

(1),

where D(a)
p1p2q1

is the same as in Eq. (40). Thus the second-
order exchange self-energy is not PSD. This is the simplest
example of a conserving self-energy which is not PSD,
see the discussion in the last paragraph of Sec. II C. The
smallest subgroup of π2 which contains P is π2 itself and
the domain j1 = a and j2 = a is already of the form Ĩ1 × Ĩ1.
Therefore, we can form a PSD self-energy by taking Ĩ1 = {a},
π̃2,p = π2, and π̃1,q = {1} = π1. In this way we end up with
the diagrams shown in Fig. 7(c). This is the second-Born (2B)
approximation, which we have now shown to give a PSD
spectrum. The second-order exchange diagram is particularly
instructive since it shows that the PSD outcome of the sum
of MBPT diagrams is not the sum of the PSD outcome
of the MBPT diagrams taken separately. Indeed the PSD
outcome of the first-bubble diagram is the first-bubble diagram
itself, whereas the PSD outcome of the second-order exchange
diagram is the 2B approximation. This implies that if we had
summed the PSD outcomes of these two separate diagrams
we would have counted the first-bubble diagram twice. No
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double counting occurs if we apply the rules in Eqs. (30)–(32)
to the 2B approximation; the PSD outcome would be the 2B
approximation itself.

C. Two bubbles

As a third example let us consider another conserving
approximation which consists in the sum of the first- and
second-bubble diagrams as shown in Fig. 8(a). After distribut-
ing the pluses and minuses over the internal vertices we find
that the lesser self-energy diagram can be written in terms of
two types of D diagrams,

	<
c (1,2) = i

∑
pq

[
D(a)

p1p2q1
(2)D(a)∗

p1p2q1
(1) + D(b)

p1p2q1
(2)D(a)∗

p1p2q1
(1)

+D(a)
p1p2q1

(2)D(b)∗
p1p2q1

(1)
]
.

The three D-D∗ diagrams in this expression are represented
in the bottom line of Fig. 8(a). We observe that the only
permutation appearing is the identity permutation. Therefore,
according to the rules in Eqs. (30)–(32), we only need to find
the smallest Ĩ1 such that Ĩ1 × Ĩ1 ⊃ {(a,a),(a,b),(b,a)}. This is
simply Ĩ1 = {a,b}. Thus the PSD outcome of the self-energy
is

	<
c,PSD(1,2) =

∑
j1j2∈Ĩ1

∑
pq

D(j2)
p1p2q1

(2)D(j1)∗
p1p2q1

(1)

and the corresponding diagrams are shown in Fig. 8(b). In
accordance with our notation a diagram with no plus/minus on

=

(a)

(b)

+

+

+

=

+

+

+ +

FIG. 8. (Color online) (a) Partitions of the first and second
bubble diagrams and the resulting half-diagrams. (b) The minimal
completion of the square which yields a PSD spectrum.

the internal vertices represents the full diagram, i.e., the sum
of all possible partitions.

D. GW and T -matrix approximations

Unlike the conserving “second-order exchange” and “two
bubbles” approximations the GW and T -matrix approxima-
tions are both conserving and PSD. Let us start from the GW

approximation. We take the RPA W = v + vPW with

Px1x2 (z1,z2) = −igx1x2 (z1,z2)gx2x1 (z2,z1). (41)

Then

W< = v(P < + P −−vP < + P <vP ++ + P −−vP −−vP <

+P −−vP <vP ++ + P <vP ++vP ++ + · · · )v, (42)

where we took into account that if P ++ appears to the left of
P < and/or P −− appears to the right of P < then the division is
not a partition since a cut along the +/− g lines generates a
disconnected + and/or − island, see Sec. II B. It is a matter of
simple algebra to prove that

	<
GW(1,2) ≡ ig<(1,2)W<(1,2)

= i

∞∑
j1j2=1

∑
pq

D(j2)
p1p2q1

(2)D(j1)∗
p1p2q1

(1), (43)

where the diagrams D(j ) are defined as in Fig. 9(a). Equation
(43) is clearly of the form in Eq. (33). In a similar fashion it
can be shown that the symmetrized version of the T -matrix
approximation also has the PSD property since it can be written
as in the second row of Eq. (43) with D diagrams given in
Fig. 9(b).

IV. PSD SELF-ENERGY BEYOND GW

The GW self-energy is the leading order approximation in
the screened interaction W [3,37,38]. Despite the numerous
successful applications of the GW approximation in repro-
ducing experimental spectra, there is also a commensurable
number of examples for which the GW approximation fails,
pointing out the importance of including vertex corrections.
The next to leading order approximation in the RPA W is
represented by the diagram 	vert of Fig. 10 and contains

(a)

(b)

D(1)= ,  D(2)= ,  D(3)=

D(1)= ,  D(2)= ,  D(3)=

FIG. 9. (Color online) (a) Bubble half-diagrams of the GW

approximation. (b) Ladder half-diagrams of the T -matrix
approximation.
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= +

+ +

FIG. 10. (Color online) Next to leading order self-energy in the
screened interaction W . Since W is nonlocal in time, the thick wavy
lines denoting the screened interaction can connect points on different
branches of the Keldysh contour.

a vertex correction. Unfortunately the self-energy 	GW+v ≡
	GW + 	vert is not PSD and the resulting spectral function
has the undesired feature of being negative in some region
of the frequency space. In this section we use the rules of
Eqs. (30)–(32) to construct the leading order beyond-GW

self-energy with an RPA screened interaction and the PSD
property.

On the right-hand side of Fig. 10 the self-energy 	vert

is written as the sum of four partitions. Let us determine
the underlying D diagrams. We observe that the screened
interactions W++ or W−− can be partitioned in only one way
with all internal polarizations P ++ or P −−. Indeed a partition
of W++ in which appears a P > does necessarily contain also
a P < and hence the cut along the +/− g lines would generate
a disconnected island. A similar argument applies to W−−.
Accordingly the first diagram on the right-hand side of Fig. 10
is the sum of the partitions shown in Fig. 11(a), and can be
written as the sum of products between the D(j ) diagrams of
the GW approximation, see Fig. 9(a), and the D̃(j ) diagrams
displayed in Fig. 11(b). The same is true for the second diagram
of Fig. 10 provided we exchange D(j ) with D̃(j ). The partitions
of the third diagram of Fig. 10 are very simple due to the
presence of only W++ and W−−, see Fig. 12. The result is the

+ + + ...

=
+ +

(a)

(b)

D(1)= ,   D(2)= ,  D(3)=~ ~ ~

+ ... + ...

FIG. 11. (Color online) (a) Partitions of the first diagram on the
right-hand side of Fig. 10. (b) Definition of the D̃(j ) diagrams.

=

p1 p1

p2

q1q1

p2

p1

p2

q1

p2

p1

q1

+= +
p1

p2

q1

p2

p1

q1

+ ... + ...

FIG. 12. (Color online) Partitions of the third diagram on the
right-hand side of Fig. 10.

sum of products between D(j ) diagrams and permuted D(j )

diagrams. Finally, the fourth diagram of Fig. 10 is partitioned
as illustrated in Fig. 13(a), and can be written as the sum of
products between two D(ij ) diagrams, see Fig. 13(b), where
i refers to the number of top bubbles and j to the number of
bottom bubbles. In conclusion (omitting the dependence on 1
and 2)

	<
GW+v = i

∞∑
j1j2=1

∑
pq

(
D(j2)

p1p2q1
D(j1)∗

p1p2q1
+ D(j2)

p1p2q1
D̃(j1)∗

p1p2q1

+ D̃(j2)
p1p2q1

D(j1)∗
p1p2q1

− D(j2)
p1p2q1

D(j1)∗
p2p1q1

)

+ i

∞∑
i1j1i2j2=1

∑
pq

D(i2j2)
p1p2p3q1q2

D(i1j1)∗
p1p2p3q1q2

. (44)

Thus 	GW+v is the sum of a contribution 	3 containing
partitions with three +/−g lines and a contribution 	5 [the last
term in Eq. (44)] containing partitions with five +/− g lines.
From the rules in Eqs. (30)–(32) we see that 	5 has already
a PSD structure. Instead 	3 should be corrected according to
	3 → 	3,PSD with

	<
3,PSD = i

∞∑
j1j2=1

∑
P∈π2

(−)P
∑
pq

(
D(j2)

p1p2q1
+ D̃(j2)

p1p2q1

)

× (
D

(j1)∗
P (p1)P (p2)q1

+ D̃
(j1)∗
P (p1)P (p2)q1

)
. (45)

This self-energy contains the original four partitions of 	3

plus four more partitions arising from the permutation of the
two p dangling lines. The latter are explicitly worked out in
Fig. 14. Collecting all the results together we conclude that the
leading order self-energy diagrams with screened interactions
and vertex corrections yielding a PSD spectral function are
those in Fig. 15. Here we recall that a diagram with no +/−
on the internal vertices is the full diagram (hence the sum over
all possible partitions). Noteworthy the minimal completion
of the square requires a fourth-order diagram in W .
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+

++  ...

= +

(a)

(b)

D(i,j)=

=

+ +

+

+ +

+ ...

+ ...

i bubbles

j bubbles

FIG. 13. (Color online) (a) Partitions of the fourth diagram on
the right-hand side of Fig. 10. (b) Definition of the D(i,j ) diagrams.

V. VERTEX CORRECTIONS IN THE HOMOGENEOUS
ELECTRON GAS

The numerical implementation of the full self-energy of
Fig. 15 is rather demanding. We observe, however, that the
exclusion of the last two partitions of Fig. 10 leads to a
much simpler PSD self-energy since no permuted D diagrams
appear. It is straightforward to show that in this case the rules
of Eqs. (30)–(32) lead to the following PSD self-energy:

	<
c (1,2) = i

∞∑
j1j2=1

∑
pq

(
D(j2)

p1p2q1
+ D̃(j2)

p1p2q1

)

× (
D(j1)∗

p1p2q1
+ D̃(j1)∗

p1p2q1

)
, (46)

where the corresponding D diagrams are defined in Figs. 9(a)
and 11(b). The diagrammatic representation of Eq. (46) is
shown in Fig. 16. This self-energy too goes beyond the GW

FIG. 14. (Color online) There are four extra diagrams that correct
the self-energy with three +/− g lines (	3). They have (a)
D̃∗(1)D̃(2), (b) D∗

P (1)D̃(2), D̃∗
P (1)D(2) [similar to diagram (b) and

thus not shown], and (c) D̃∗
P (1)D̃(2) structures. Subscript P denotes

a diagram with permuted p indices.

approximation, but the vertex correction is only partial (since
the last two partitions of Fig. 10 are discarded).

The three-dimensional homogeneous electron gas (3D
HEG) is one of the most studied correlated many-body system
[39]. We still lack detailed knowledge of one directly observ-
able quantity—the spectral function A(k,ω)—when departing
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+=

+

+ +

+

PSD

FIG. 15. (Color online) Leading order beyond-GW self-energy
with the PSD property. Thick wavy lines denote the screened
Coulomb interaction in the random phase approximation.

from the on-shell energy, i.e., when ω �≈ εk . Discrepancies
with experimental measurements contributed to the debates on
the position of satellites [40,41], bandwidth of simple metals
[14,42], cancellation of vertex function and self-consistency
effects [5,43,44], and the spectral function shape [45,46].

Despite numerous efforts there are just a few results that go
beyond the GW approximation in the study of quasiparticle
properties. Analytically these are the results of Onsager et al.
[47] on the second-order exchange energy and of Ziesche [48]
and of Glasser and Lamb [49] on the second-order exchange
self-energy. These works only contain analytic results for

(a)

(b) (c)

(d)

g3(z-y2) +–

g3(z-y2)g4(z-y2-y3)

g5(z-y3) – +––
g1(z-y1)g2(z-y1-y2)

g3(z-y2) +– ++

g1(z-y1)

g2(z-y1-y2)

g3(z-y2)

g4(z-y2-y3)

g5(z-y3)

+–
–

– +
+

FIG. 16. (Color online) The sum of the four self-energy partitions
(a) + (b) + (c) + (d) yields a positive spectral function. Lines with
arrows denote the electron propagator G0(k,ω), whereas wavy lines
stand for the screened Coulomb interaction W0(k,ω). Vertices are
labeled with + (−) if the time lies on the minus (plus) branch of the
Keldysh contour. Diagrams are translated into analytic expressions
according to the definitions (47) and (48) and notations below
Eq. (49). For instance g5(z − y3), connecting vertices with “−” labels
as in (c) and (d), corresponds to the time-ordered Green’s function
[see also Eq. (2)]: B(k5)

z−�(y3)−εk5
−iη

+ A(k5)
z−�(y3)−εk5

+iη
.

on-shell self-energy and only a contribution of the bare
Coulomb interaction is included. The screened Coulomb inter-
action is possible to treat numerically. The non-self-consistent
calculations were performed by Hedin [3] and Lundqvist
[50–52]. It took three decades to implement the same approach
partially or fully self-consistently. This was achieved in
works by von Barth and Holm [5,53]. The nonpositivity of
the spectral function first observed by Minnhagen [10,43]
hindered systematic diagrammatic explorations and stimulated
development of synthetic approaches: analyzing real time
Kadanoff-Baym dynamics [54], neglecting the incoherent part
of the electron spectral function [12], employing the Ward
identities and a model form of the exchange-correlation kernel
[14,15,55,56], or the self-consistent cumulant expansion [40].

Using the presented formalism it is now possible to
pursue the diagrammatic route. In this section we present
the results of a non-self-consistent calculation. Thus we
evaluate the diagrams in Fig. 16 for the 3D HEG using the
analytical frequency and numerical Monte Carlo momentum
integrations. The method was developed in a prior publication
[46], however, especially the analytical frequency integration
part had to be substantially extended. For the HEG the bare
time-ordered Green’s function can be written as a function of
frequency ω and momentum k as

G−−
0 (k,ω) = B(k)

ω − εk − iη
+ A(k)

ω − εk + iη
. (47)

For self-consistent calculations this equation can be extended
to include multiple poles (e.g., to describe quasiparticle
satellites) for each momentum value. In this work we perform
a one-shot calculation and therefore set B(k) = nk and A(k) =
1 − nk with 0 � nk � 1 denoting the occupation number and
εk is the energy of the state with momentum k. For the
energy dispersion we used the prescription by Hedin [2,3,57]
to put the pole of the dressed G = G0 + G0	c[G0]G with
Fermi momentum k = kF correctly at the Fermi surface, i.e.,
εk = k2/2 + μ − εF , where μ is the chemical potential and
εF = k2

F /2 is the Fermi energy. Analogous definitions have
been used for the anti-time-ordered, lesser and greater Green’s
functions.

Generally each interaction line in Fig. 16 can designate
either the bare Coulomb interaction or include scattering
with generation of a plasmon or a particle-hole pair. On
the RPA level the plasmon oscillator strength t(q) vanishes
when its dispersion curve �(q) enters the particle-hole
continuum at the critical wave number qc. Because plasmonic
excitations exist on the bounded momentum interval they are
especially convenient for numerics: Momentum integrations
need to be performed on the finite interval. Physically
plasmons also dominate the particle-hole response in electron
liquids with typical metallic densities. Therefore, in the
present work we only treat the plasmonic contributions. The
screened Coulomb interaction is treated in the plasmon pole
approximation, i.e., W (k,ω) ≈ W0(k,ω) (cf. Eq. 25.11 of
Ref. [57]):

W−−
0 (k,ω) = v(k)

2

[
w(k)

ω − �(k) + iη
− w(k)

ω + �(k) − iη

]
,

(48)
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where we denote w(q) = t(q)�2(0)/�(q) and 0 � t(q) � 1
is the plasmonic spectral weight with t(0) = 1 and t(qc) = 0.
Analogous definitions have been used for the other Keldysh
components of W0. Our numerical approach also allows
us to include contributions from the particle-hole contin-
uum to exhaust the f -sum rule for the dielectric function
ε(q,ω):

∫ ∞

0
ω Imε−1(q,ω) dω = −π

2
�2(0),

where �(0) = 4
√

αrs

3π
εF , with α = [4/(9π )]1/3 ≈ 0.521 and

rs = 1/(αkF ) the Wigner-Seitz radius. Monte Carlo mo-
mentum integration of these terms is, however, more in-
volved as it requires an extra integration for each interaction
line.

The frequency integrations can be done completely ana-
lytically (facilitated by the MATHEMATICA computer algebra
system), whereas for the remaining momentum integrations
one has to rely on numerics. The frequency integration is
implemented for a general case of time-ordered G0(k,ω) and
W0(k,ω). Since each correlator in the self-energy expression
comprises two terms the total number of terms grows geomet-
rically with the order of the diagrams. In order to optimize
the calculation we implemented an approach where for each
ω integration the program closes the integration contour in
such a way that the least number of terms is generated. One
might argue that the Hedin set of equations gives a prescription
on which half of the complex plane the integration should be
closed (see for example Eqs. (A30) of Ref. [3]). However, it is
easy to verify that this is only relevant for the first-order term.
Higher order terms decay faster than 1/ω at infinity (ω here
denotes the frequency to be integrated over) and, therefore,
the choice of the half-plane is not important. Finally, we notice
that it is sufficient to consider only the lesser self-energy. The
greater self-energy component required to describe properties
of the states above the Fermi level is obtained from symmetry
considerations.

Our analytic approach covers the case of the Fig. 16(a)
diagram where all partitions are included. Other diagrams
in this figure contain only a subset of the partitions of
the MBPT diagrams from which they originate. The corre-
sponding analytic expressions can be easily extracted from
the general result by analyzing the frequency dependence.
The overall ω dependence can readily be obtained on paper
by integrating δ functions in lesser and greater correlators.
Despite the omission of several partitions the final result
is bulky and requires an additional simplification using
A(k) + B(k) = 1.

The results of frequency integration are

	<
A (z,ζ ) = 2iπ

∫
d3y2

(2π )3
B3C2δ(ζ − ε3 + �2), (49a)

	<
B (z,ζ ) = 2iπ

∫∫
d3y1

(2π )3

d3y2

(2π )3
B3C1C2

×
[H2(ε3,�1) − H1(ε3 − �2,�1)

ε2 − ε1 − �2

]

× δ(ζ − ε3 + �2), (49b)

	<
C (z,ζ ) = 2iπ

∫∫
d3y3

(2π )3

d3y2

(2π )3
B3C2C3

×
[H4(ε3,�3) − H5(ε3 − �2,�3)

ε4 − ε5 − �2

]

× δ(ζ − ε3 + �2), (49c)

	<
D(z,ζ ) = 2iπ

∫∫∫
d3y1

(2π )3

d3y2

(2π )3

d3y3

(2π )3
B3C1C2C3

×
[H2(ε3,�1) − H1(ε3 − �2,�1)

ε2 − ε1 − �2

]

×
[H4(ε3,�3) − H5(ε3 − �2,�3)

ε4 − ε5 − �2

]

× δ(ζ − ε3 + �2), (49d)

where we define

Hi(a,�) = Ai

a − � − εi

+ Bi

a + � − εi

.

In these equations we adopt the following notations: Ai ≡
A(xi), Bi ≡ B(xi), Ci ≡ 1

2v(yi)w(yi). The quantities εi and
�i are energies labeled by the momenta, as shown in
Fig. 16, and have a meaning of electron and plasmon
dispersions, respectively. The momenta yi are associated with
plasmonic excitations. Equation (49) possesses some symme-
tries: Eqs. (49b) and (49c) are identical upon simultaneous
permutations of the (1,5)(2,4) fermionic and (1,3) bosonic
indices. The two brackets in Eq. (49d) transform analogously.
For the numerical momentum integration of Eq. (49) it is
useful to rescale the variables as follows: k = kF k̃, εk = εF k̃2,
v(q) ≡ 4π

q2 = 4π

k2
F

1
q̃2 , 	 = εF 	̃. This leads to the following

density-dependent prefactors:

ci =
[(

kF

2π

)3 1

ε2
F

(
1

2

4π

k2
F

εF

)]i

=
(

αrs

2π2

)i

, (50)

where i = 1,2,3 denotes the diagram’s order.
From the particle-hole symmetry we can obtain the greater

self-energy (	>). For this it is sufficient to replace Bi with Ai

and vice versa, and to change the sign of each �i .
Upon a close inspection it is evident that the four terms in

Eq. (49) can be combined together as follows:

	<
2,PSD = 2iπ

∫
d3y2

(2π )3
B3C2

×
[

1+
∫

d3y1

(2π )3
C1

H2(ε3,�1)−H1(ε3−�2,�1)

ε2 − ε1 − �2

]2

× δ(ζ − ε3 + �2). (51)

The first-order integrand [cf. Eq. (49a)] is multiplied by a full
square. Since we know that the GW self-energy fulfills the
PSD property the same holds for the sum of the four terms in
Fig. 16. This analytic conclusion is numerically confirmed.

In order to make Eqs. (49) suitable for Monte Carlo inte-
gration the following has to be done: (i) integrate in spherical
coordinates with zenith direction along the z vector, (ii) one
angular integration is trivially done (2π ) because the system is
isotropic, and (iii) map integration variables to the interval
[0,1]. The speed and quality of a pseudorandom number
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generator is very important for the present calculations. We
use the Mersenne twister 19937 generator as implemented in
the GSL library combined with a highly efficient jump ahead
method [59] due to Haramoto et al. [58] for parallelization.
The method is roughly three times faster than the standard
FORTRAN implementation. We used roughly 1012 Monte Carlo
realizations to get the full frequency dependence for each
momentum value. Real self-energy parts were computed using
the Hilbert transform:

	R(k,ω) = 	x(k) +
∫

dω′

2π

�(k,ω′)
ω − ω′ + iη

, (52)

where 	x(k) is the frequency independent exchange
self-energy and �(k,ω) = i[	>

c (k,ω) − 	<
c (k,ω)] =

i[	R
c (k,ω) − 	A

c (k,ω)] is the rate operator.
Each term of Eq. (49) was separately computed as shown in

Figs. 17 and 18 for two values of k. The first-order self-energy
is well understood. One of its marked features is the existence
of logarithmic singularities at ω = εk ± �(0) [57]. These
singularities have never been observed in an experiment and
are believed to be washed out by higher order contributions.
Although our calculations do not preclude this conclusion
we found that our selection of second-order terms makes the
singularities even more pronounced.

The real part of the retarded self-energy of Eq. (51) is
displayed in Fig. 19. We observe that the real part of the
first order and the complete self-energy cross the y axis at
almost the same point which is equal to μ/εF − 1. This
implies that the higher order corrections do not change the
chemical potential appreciably. As expected, the rate operator
is everywhere positive despite a large negative contribution
of the second-order term. We notice an almost complete
cancellation of different order terms beyond the singularities,
i.e., ω > εk + �(0) for particle (k > kF ) and ω < εk − �(0)
for hole (k < kF ) states. High accuracy of the Monte Carlo

4 2 2 4 6

2

2

4

6 1

2

( )

F

F

FIG. 17. (Color online) The rate operator 1
2 �(k,ω) =

−Im 	R
c (k,ω) of the homogeneous electron gas at the density

of rs = 4 and k = kF (the energy ω is measured with respect to
μ). Different line styles denote contributions of different orders:
full, dotted, and dashed lines stand for first, second, and third order,
respectively. Thick solid line denotes the sum of all contributions.
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FIG. 18. (Color online) The rate operator 1
2 �(k,ω) =

−Im 	R
c (k,ω) as in Fig. 17 for a different momentum k = 1.2kF

(the energy ω is measured with respect to μ). The inset magnifies
the region of the logarithmic singularity. Notice the almost complete
cancellation of 	>

c (k,ω) for ω > εk + �(0).

integration was required to get the cancellations properly. This
is especially important at metallic densities where different
orders have comparable contributions. Due to the density
scaling [see Eq. (50)] the first-order self-energy becomes

6 4 2 2 4 6

6

4

2

2

4

6

F

( )

F

FIG. 19. (Color online) The real part of the retarded self-energy
Re 	R(k,ω), see Eq. (52), and the rate operator 1

2 �(k,ω) =
−Im 	R

c (k,ω) of the homogeneous electron gas at the density of
rs = 4 and k = kF (the energy ω is measured with respect to μ).
Shaded dashed curves denote the first-order calculation. Full lines
denote contribution from diagrams shown in Fig. 16 plus the first-
order contribution from the particle-hole excitations. The horizontal
line bounding the shaded area in the graph of Re 	R crosses the y

axis at the value of the exchange self-energy 	x(kF )/εF = − 2α

π
rs ≈

−1.327.
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dominant at large densities (rs → 0), while the third order
is largest in the correlated low density regime (rs → ∞).

The selection of diagrams of Fig. 16 and computed in this
work in the plasmon pole approximation describes scattering
processes accompanied by the emission or absorption of
one plasmon. Correspondingly, the scattering operator has
pronounced (more narrow in comparison with the first-order
result) peaks at ω = εk ± �(0). But how important are the
remaining contributions? The simplest first-order term, absent
in the plasmon pole approximation, but included in the results
of Fig. 19, involves generation of a single particle-hole pair.
Due to less restrictions on the available phase space for
scattering it is important for ω → ∞ and also determines the
lifetime of quasiparticles in the vicinity of the Fermi energy. It
also gives rise to secondary peaks in Fig. 19. These, however,
are not related to scattering mechanisms involving generation
of two plasmons. Inclusion of such processes is important
for the interpretation of multiple satellites in the spectral
function. To lowest order they result from the partition of
the second-order self-energy diagram included in Fig. 15, but
omitted in Fig. 16. Respective calculations are on the way and
will be the subject of a forthcoming publication.

VI. CONCLUSIONS

Approximations of MBPT to the self-energy can lead to
unphysical density of states, with a negative spectral weight in
some frequency region. This undesired feature entails unphys-
ical results on the system properties and makes self-consistent
calculations impossible due to a progressive deterioration
of the analytic properties of the Green’s function. In 1985
Almbladh proposed a diagrammatic perturbation theory of the
photoemission current [60], and in a subsequent paper [19]
he elaborated on the theory and gave a prescription on how
to combine diagrams of different order to get a physically
sensible result: the positive-definite photoemission current.
These ideas are precursors for our theory. Using the Green’s
function of the Keldysh formalism we developed a method
to construct manifestly PSD spectral functions. The method
becomes particularly lucid when expressed in diagrammatic
language as it amounts to apply a few simple drawing rules.
Most importantly, the only quantity needed to evaluate these

diagrams is the spectral function (available in most MBPT
codes).

We derive a Lehmann-like representation of the exact
self-energy and show that it is given by the sum of squares
of irreducible correlators. We then elucidate the connection
between the diagrammatic expansion of the irreducible cor-
relators and MBPT. Any lesser/greater self-energy diagram
can be partitioned into two halves with internal time vertices
on opposite branches of the Keldysh contour. Thus by simply
drawing diagrams and assigning a sign to the internal vertices
we are able to extend to a minimal set of diagrams any
MBPT approximation and to generate PSD spectral functions.
Some important MBPT approximations, such as the GW

or T -matrix approximations, do not require any corrections.
Our theory applies equally well to diagrammatic expansions
with noninteracting and with self-consistent Green’s functions
because PSD self-energies do preserve the correct analytic
structure.

In standard MBPT approximations the straightforward
inclusion of vertex corrections inevitably ruin the PSD prop-
erty and, hence, our additional diagrams must be included.
Remarkably, these diagrams are of higher order. For instance,
the inclusion of the full first-order vertex leads to diagrams
of the fourth order in the screened interaction. Required com-
putational power to numerically evaluate them is immense.
Fortunately, excluding some partitions allows us to construct
an approximation containing diagrams of maximally third
order. They are feasible for numerics as our calculations for
the 3D HEG demonstrate.

Even though we only presented in detail the formalism for
the spectral function, the same ideas apply to the spectrum of
the density response function. This extension, however, goes
beyond the scope of the present work and will be presented
elsewhere.
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