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We investigate the topological character of lattice chiral Gaussian fermionic states in two dimensions possessing
the simplest descriptions in terms of projected entangled pair states (PEPS). They are ground states of two different
kinds of Hamiltonians. The first one, Hff , is local, frustration free, and gapless. It can be interpreted as describing
a quantum phase transition between different topological phases. The second one,Hfb, is gapped, and has hopping
terms scaling as 1/r3 with the distance r . The gap is robust against local perturbations, which allows us to define
a Chern number for the PEPS. As for (nonchiral) topological PEPS, the nontrivial topological properties can
be traced down to the existence of a symmetry in the virtual modes that are used to build the state. Based on
that symmetry, we construct stringlike operators acting on the virtual modes that can be continuously deformed
without changing the state. On the torus, the symmetry implies that the ground state space of the local parent
Hamiltonian is twofold degenerate. By adding a string wrapping around the torus, one can change one of the
ground states into the other. We use the special properties of PEPS to build the boundary theory and show how
the symmetry results in the appearance of chiral modes, and a universal correction to the area law for the zero
Rényi entropy.
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I. INTRODUCTION

Topological states [1,2] are quantum states of matter
with intriguing properties. They include nonchiral states with
topological order, such as the toric code [3] and string net
models [4], as well as chiral topological states. The latter have
broken time-reversal symmetry, and possess nonvanishing
topological invariants. They include celebrated examples such
as integer and fractional quantum Hall states, as well as Chern
insulators [5] and topological superconductors [6,7]. They
display chiral edge modes which are protected against local
perturbations, and cannot be adiabatically connected to states
with different values of the topological invariants.

Among others, a remarkable open problem in this field
is to classify all topological phases; that is, the equivalence
classes of local Hamiltonians that can be connected by a
(symmetry-preserving) gapped path. For their free-fermion
versions in arbitrary dimensions, a full classification has been
already obtained [6,7]. For interacting spins, this goal has
only been achieved in one dimension [8–10], based on the
fact that ground states of one-dimensional (1D) gapped local
Hamiltonians are efficiently represented by matrix product
states (MPS) [11]. In dimensions higher than one, this problem
remains open. Still, recent developments reveal that there exist
deep intrinsic connections between quantum entanglement and
topological states. For instance, topological order is reflected
in the universal correction to the entanglement area law, also
called topological entanglement entropy. A further proposal
has been put forward by Li and Haldane [12], who suggested
that the entanglement spectrum, that is, the eigenvalues
of the reduced density operator of a subsystem, contains
more valuable information than the topological entanglement
entropy.

*thorsten.wahl@mpq.mpg.de

Projected entangled pair states (PEPS) [13], higher-
dimensional generalizations of MPS, are a natural tool for
investigating topological states. By construction, they con-
tain the necessary amount of entanglement required by the
entanglement area law. Furthermore, many known topological
states, such as the toric code [3], resonating valence-bond
states [14], and string nets [4], possess exact PEPS descriptions
[15–18]. Despite the lack of local order parameters, PEPS
nevertheless provide a local description for topological states,
with the global topological properties being encoded in a single
PEPS tensor. For some of the above examples, the connection
of topology and the PEPS tensor has been made precise as
originating from a symmetry of the PEPS tensor [16] (see also
Ref. [19]). This symmetry only affects the virtual particles
used to build the PEPS, unlike the physical symmetries of
the PEPS. It can be grown to arbitrary regions, and has
several intriguing consequences: (i) it leads to the topological
entanglement entropy; (ii) it gives rise to a universal part
[20] in the boundary Hamiltonian [21] acting on the auxiliary
particles at a virtual boundary, whose eigenvalues are related
to the entanglement spectrum of the subsystem; (iii) it provides
topological protection of the edge modes [22]; (iv) it gives rise
to string operators that provide a mapping between the different
topological sectors; (v) it can also be used to build string
operators for anyonic excitations and to determine the braiding
statistics; (vi) it determines the ground state degeneracy of the
parent Hamiltonian.

Chiral topological states are very different from the
above-mentioned topological states preserving time-reversal
symmetry (known as nonchiral topological states), in that they
necessarily have chiral gapless edge modes, which cannot
be gapped out by weak perturbations due to the lack of a
backscattering channel. There have been doubts that PEPS can
describe chiral topological states, until explicit examples with
exact PEPS representations have been obtained very recently
[23,24]. These chiral PEPS examples are topological insulators
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and topological superconductors characterized by nonzero
Chern numbers, albeit with correlations decaying as an inverse
power law. In view of all that, very natural questions arise as
to whether these chiral topological PEPS fit into the general
characterization scheme in terms of a symmetry of a single
PEPS tensor, and whether useful information characterizing
topological order manifests itself in the boundary Hamiltonian.

In this work, we answer these questions in an affirmative
way for a family of topological superconductors similar to
the one introduced in Ref. [23]. Those are chiral Gaussian
fermionic PEPS (GFPEPS), which are free-fermionic tensor
network states [25,26]. We give general procedures to build
the boundary Hamiltonians and analyze their properties (see
also Ref. [24]). We first show how to determine the boundary
Hamiltonian for GFPEPS, and how the Chern number can be
obtained by counting the number of chiral modes defined on
the boundary Hamiltonian. Then we show that, as in the case
of topological (nonchiral) PEPS, there exists a symmetry in the
virtual modes that can be grown to any arbitrary region. We
connect this symmetry to the chiral modes on the boundary,
and show that it also gives rise to a universal correction to the
area law in the zero Rényi entropy (although not in the von
Neumann one), and to the boundary Hamiltonian.

Following Refs. [23,24], we also build two kinds of (parent)
Hamiltonian for which the chiral GFPEPS are ground states,
and analyze their properties. The first one, Hff , is Gaussian, lo-
cal, frustration free, and gapless. In terms of that Hamiltonian,
our states can be interpreted as being at the quantum phase
transition between different phases characterized by different
Chern numbers. That Hamiltonian is twofold degenerate on
the torus. We use the symmetry to build string operators that
allow us to characterize the ground states ofHff , and that can be
continuously deformed without changing the state. The second
one, Hfb, is also Gaussian, although gapped, and has a unique
ground state on the torus. It is not local, possessing hopping
terms decaying as 1/|r|3 with the distance |r|. We show that
it is topologically stable to the addition of local perturbations.
This allows us to consider the state as truly topological, and
to define a Chern number which we find equals −1. We also
compute the momentum polarization [27] and show that it has
the expected properties for a topological state. In addition, we
provide a numerical example of a GFPEPS with two Majorana
bonds (the number of Majorana bonds corresponds to twice the
logarithm of the bond dimension in the normal PEPS language)
and Chern number 2 having two symmetries of the above kind.

Given the variety of results obtained in this paper and
the different techniques used to derive them, we start with
a section that gives an overview of all of them, and connects
them to known properties of topological PEPS. The specific
derivations and explicit statements and proofs are given in
the following sections. In Sec. III, a general framework
for studying the boundary and edge theories of GFPEPS is
developed. Their relation to the Chern number is established.
In Sec. IV, we give different examples of GFPEPS, some
of them topological and some of them not, in order to
provide comparison between the two cases. In Sec. V, we
completely characterize all PEPS with one Majorana bond
with topological character. It turns out that in this case, the
Chern number can only be 0 or ±1; for the latter case we
derive necessary and sufficient criteria. In Sec. VI, we prove

a necessary and sufficient condition on the symmetry that a
PEPS tensor has to possess in order to give rise to a chiral edge
state for one Majorana bond, and show how those symmetries
can be grown to larger regions and to build stringlike operators.

II. DEFINITIONS AND RESULTS

This section gives an overview of the main results of
this paper. It also reviews in a self-contained way the basic
ingredients that are required to derive the results, and to
interpret them. It is divided in four subsections. The first
one contains the definition of GFPEPS, which are the basic
objects in our study. It also contains two Hamiltonians for
which they are the ground state. The first one is gapped,
has power-law hopping terms, and is the one that appears
more naturally in the context of topological insulators and
superconductors. The second one follows from the PEPS
formalism, is gapless, and has a degenerate ground state.
In the second subsection, we present a simple family of
GFPEPS, similar to the one introduced in Ref. [23], which
we will extensively use to illustrate our findings. The third
one contains the construction of boundary and edge theories
for GFPEPS, which we explicitly use for the simple family.
In the last subsection, we make a connection between the
behavior observed for this family, and the one that is known
for topological (nonchiral) PEPS (Ref. [16]). In particular, we
show that one can understand it in terms of string operators
acting on the so-called virtual particles, which can be moved
and deformed without changing the state.

Throughout this section we will concentrate on the sim-
plest GFPEPS, those which have the smallest possible bond
dimension (which will correspond to one Majorana bond,
see following). This will allow us to simplify the description
and formulas. However, all the constructions given here can
be easily generalized to larger bond dimensions, and this
will be done in the following sections. Some of the results,
however, explicitly apply to one Majorana bond, so that
we will specialize to that case in the following sections
too.

A. Gaussian fermionic PEPS and parent Hamiltonians

We consider a square Nv × Nh lattice of a single fermionic
mode per site, with annihilation operators aj , where j is a
vector denoting the lattice site. We will consider a state � of
a particular form, and Hamiltonians for which it is the ground
state.

1. Gaussian fermionic PEPS

We revise here the GFPEPS introduced in Ref. [25]. We
will first show how a GFPEPS � of the fermionic modes is
constructed (see Fig. 1).

The basic object in this construction is a fiducial state �1 of
one fermionic (physical) mode, and four additional (virtual)
Majorana modes [28], all of them at site j [Fig. 1(a)]. The
corresponding mode operators cj,L, cj,R, cj,U , and cj,D (L, R,
U , and D stand for left, right, up, and down, respectively) fulfill
standard anticommutation relations {ci,α,cj,β} = 2δi,j δα,β , are
Hermitian, and anticommute with the other fermionic opera-
tors. The state �1 is arbitrary, except for the fact that it must
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FIG. 1. (Color online) Construction of a GFPEPS. (a) We start
with a state �1 that is Gaussian and includes one physical fermionic
mode (big red ball) and four virtual Majorana fermions (small blue
balls) located at site j . (b) Two states of this kind in the same column
are concatenated by projecting on 〈ωjn| (see text). (c) Proceeding
in the same way one obtains a state �Nv

defined on a column with
unpaired virtual Majorana modes on the left and right and on the
two ends of the column. (d) The remaining up and down modes at
the ends are jointly projected out, yielding �1. (e) Afterwards, two
columns can be concatenated by pairwise projecting out the left and
right virtual Majoranas between them. (f) Continuing in the same
way, one obtains a GFPEPS �Nh

defined on Nh columns. It can be
made completely translationally invariant by pairwise projecting out
the remaining left and right virtual Majorana modes, resulting in the
final GFPEPS state �.

be Gaussian and have a well-defined parity. This means that it
can be written as

|�1〉j = eHj |�〉, (1)

where Hj is a quadratic operator in all the mode operators, and
the � denotes the vacuum of the virtual and physical modes.
One can easily parametrize H, and thus �1, but this will not
be necessary here since we will make use of the fact that the
state is Gaussian, for which a more appropriate parametrization
exists.

The state of the physical fermions � can be obtained by
concatenating all the �1 at different sites in the way we explain
now and is illustrated in Fig. 1. First, take two consecutive
lattice sites in the same column, j and n, and project the up
virtual mode of the first and the down of the latter onto a
particular state, i.e.,

|�2〉jn = ωjne
Hj +Hn |�〉 (2)

[see Fig. 1(b)]. Here, ωjn = 1
2 (1 + icj,Dcn,U ), which ensures

that cU and cD are maximally entangled (forming a pure
fermionic state) [29]. Since the modes that we project on
are in a well-defined state after the projection, we can omit
them in the following. In order to simplify the notation, we
will denote by 〈ωjn|�〉 the state obtained by applying ωjn

and discarding the corresponding modes, and we will say that
we have projected onto ωjn. We will also omit the indices
representing the lattice sites whenever this does not lead to
confusion.

We proceed in the same way, concatenating all the sites
corresponding to a column by projecting out the consecutive
up and down virtual modes onto the state defined by ωjn. The
resulting state is �Nv

since we have Nv sites in a column [see
Fig. 1(c)]. This state contains Nv physical fermionic modes,
as well as 2Nv + 2 virtual Majorana modes, Nv on the left, Nv

on the right, one up and one down. Since we will consider here
periodic boundary conditions along the vertical direction, we
also project out the up and down virtual modes, obtaining �1,
a state that corresponds to one column (and thus the subindex).
Such a state contains Nv physical fermionic modes, as well as
2Nv virtual Majorana modes [see Fig. 1(d)]. By construction,
the state is translationally invariant along the vertical direction.

In order to obtain the state on the lattice, we have to follow
a similar procedure in the horizontal direction [see Fig. 1(e)].
For that, we take the states of two consecutive columns, and
project each of the right virtual modes (at site j ) of one and
the corresponding left virtual mode (at site n) of the other onto
ω′

jn = 1
2 (1 + icj,Rcn,L). The resulting state �2 contains 2Nv

physical fermionic modes, as well as 2Nv virtual Majorana
modes. We continue adding columns in the same way, until
we obtain �Nh

, containing Nv × Nh physical fermionic modes
and 2Nv virtual Majorana ones [see Fig. 1(f)].

In order to obtain a translationally invariant state in the
horizontal direction too, we have to project each remaining
virtual pair of modes on the left and the right onto the state
defined by ω′

jn. In this case, we will say that we have a state �

on the torus. Otherwise, we can project the virtual modes on the
left and the right onto some other state. If we took a product
state (of left and right virtual modes) that is translationally
invariant in vertical direction itself, we will still keep that
property in the vertical direction and the state � will be defined
on a cylinder. A subtle point is that, when we perform this
last projection in order to generate the physical state �, the
result may vanish. This happens, for instance, in some of the
examples considered in this paper in the torus case. There, we
will have to introduce a string operator in the virtual modes
for those particular sizes of our system.

The state � on the torus is fully characterized by the fiducial
state �1 (and therefore by H) since the construction is carried
out by concatenating them with a specific procedure. For the
cylinder, � also depends on the states we choose to close the
virtual boundaries. From now on, we will work on the torus,
unless explicitly stated otherwise.

Since the fiducial state �1 is Gaussian and our construction
keeps the Gaussian nature, all the states defined above
will be Gaussian. For that reason, instead of expressing
� and � in the Hilbert space on which the mode oper-
ators act, we characterize them in terms of their covari-
ance matrices (CMs). In order to do so, we write each
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physical fermionic mode operator in terms of two Majorana
operators

aj = (e2j−1 − ie2j )/2, (3)

fulfilling the corresponding anticommutation relations. For a
(generally mixed) Gaussian state ρ in a set of Majorana modes
cl , the CM γ is defined through

γl,m = i

2
tr(ρ[cl,cm]). (4)

This is a real antisymmetric matrix, fulfilling γ �γ � 1, where
1 is the identity matrix. The equality (γ 2 = −1) is reached iff
the state ρ is pure. Thus, the original state �1 will have a CM
with four blocks,

γ1 =
(

A B

−B� D

)
, (5)

where A, D are 2 × 2 and 4 × 4 antisymmetric matrices,
respectively, B is a 2 × 4 matrix, and they are constrained
by γ 2

1 = −1 (since the state �1 is pure). Hence, the state �

is completely characterized by those matrices. Concatenating
states as explained above can be easily done in terms of the
CMs (see Ref. [25] and Sec. III A).

If we consider the indices l (and m) in Eq. (4) as joint
indices of the site coordinates r = (x,y) (and r ′) and the index
of the two Majorana modes located at site r (r ′), the 2 × 2
block of γ of a GFPEPS for given sites r and r ′ fulfills

γr,r ′ = γ (r − r ′) (6)

since the construction of the GFPEPS is translationally
invariant. Thus, it is convenient to carry out a discrete Fourier
transform on γ . The result is, as outlined in Ref. [25], a
block-diagonal matrix with blocks labeled by the momentum
vector k = (kx,ky). Due to the purity of the state, they are of
the form

G(k) =
(

id̂x(k) d̂z(k) + id̂y(k)

−d̂z(k) + id̂y(k) −id̂x(k)

)
(7)

with d̂i(k) ∈ R and |d̂(k)| = 1.
The above construction can be trivially extended to more

general GFPEPS, where there are 4χ virtual Majorana modes
and f fermions per site. In Sec. III, we will show how
to carry out such a construction for that general case. The
case considered in this section, χ = 1, is much simpler to
describe and already possesses all the ingredients to give rise
to topological chiral states.

2. Parent Hamiltonians

One can easily construct Hamiltonians for which � is the
ground state. For that, we can follow two different approaches.
The first one takes advantage of the fact that � is a Gaussian
state, whereas the second uses that it is a PEPS.

Our first Hamiltonian is the “flat-band” Hamiltonian

Hfb = − i

4

∑
l,m

γl,melem, (8)

where γ is the CM of the state �, and e are the Majorana modes
built out of the physical fermionic modes. Since � is pure,
γ 2 = −1 and thus it has eigenvalues ±i. Hence, Hfb contains

two bands separated by a band gap of magnitude 2, which are
flat. As γ is antisymmetric, there exists an orthogonal matrix
O such that O�γO is block diagonal. Using this, one can
easily convince oneself that � is the unique ground state of
Hfb. Note also that the Hamiltonian Hfb will not be local in
general since γl,m �= 0 for all l,m. We also remark that for
general γ the single-particle spectrum of a Hamiltonian of the
form (8) is given by the eigenvalues of −iγ .

We transform Eq. (8) to reciprocal space and write it in
terms of the Fourier transformed Majorana modes

ek,α = 1√
NhNv

∑
r

er,αeik·r (9)

[with (r,α) corresponding to the joint index l above], so that it
takes the form

Hfb = − i

4

∑
k

2∑
α,β=1

Gα,β (k)ek,αek,β, (10)

where Gα,β (k) is given in Eq. (7).
The second Hamiltonian can be constructed by invoking the

general theory of PEPS (see, e.g., Ref. [16]). We can always
find a local, positive operator h � 0, acting on a sufficiently
large plaquette, that annihilates our state, i.e., hj |�〉 = 0.
Here, j denotes the position of the plaquette. In the case of a
GFPEPS, hj can be chosen to be local. Furthermore, since the
state is translationally invariant, we can take

Hff =
∑

j

hj . (11)

Now, this Hamiltonian is local (i.e., a sum of terms acting on
finite regions, the plaquettes), frustration free (thus the sub-
script), and it is clear that � is a ground state. However, there
may still be other ground states, and, additionally, Hff may
have a gapless continuous spectrum (in the thermodynamic
limit).

For the topological states considered later on, we will see
that Hfb is intimately connected to the chiral properties at
the edges, as it is well known for topological insulators and
superconductors [31,32]. The other one, Hff , will share other
topological properties that makes it akin to Kitaev’s toric code
[3] and its generalizations.

B. A family of topological superconductors

1. Parametrization of the GFPEPS

Now, we review a family of chiral topological GFPEPS
similar to that introduced in Ref. [23], which is characterized
by a parameter λ ∈ [0,1]. The fiducial state �1 is given by

|�1〉 = (
√

1 − λ1 +
√

λa†b†)|�〉. (12)

Here, b is an annihilation operator acting on the virtual modes
as follows:

b = 1√
2

(h + v), (13)

where

h = cL − icR

2
e

iπ
4 and v = cU − icD

2
. (14)
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The corresponding CM γ1 [Eq. (5)] is

A =
(

0 1 − 2λ

−1 + 2λ 0

)
,

B =
√

λ − λ2

(
1 −1 0 −√

2

−1 −1 −√
2 0

)
, (15)

D =

⎛
⎜⎜⎜⎜⎝

0 1 − λ − λ√
2

− λ√
2

−1 + λ 0 λ√
2

− λ√
2

λ√
2

− λ√
2

0 1 − λ

λ√
2

λ√
2

−1 + λ 0

⎞
⎟⎟⎟⎟⎠ .

We have sorted the Majorana mode operators as
e1,e2,cL,cR,cU ,cD .

Later on, we will consider other states, topological or not,
to illustrate the properties of the boundary theories. However,
the family of states given here will be a central object of our
analysis since it already possesses all the basic ingredients. As
it is evident from the definition, the fiducial state �1 in Eq. (12)
is an entangled state between the physical and one virtual
mode, except for λ = 0,1, whereas for λ = 1

2 it is maximally
entangled. It has certain symmetries, which will be of utmost
importance to understand the topological features of the state
� it generates. Explicitly,

(
√

λa† − √
1 − λb)|�1〉 = 0, (16a)

(
√

1 − λa +
√

λb†)|�1〉 = 0, (16b)

d1|�1〉 = 0 (16c)

with

d1 = 1√
2

(−h + v). (17)

The operators a, b, and d1 define three fermionic modes (one
physical, and three virtual). Equations (16) just reflect the fact
that for a Gaussian state the physical mode can be entangled
at most to one virtual mode since we can always find a basis in
which one virtual mode is disentangled. The latter is precisely
the one annihilated by d1. In fact, (16) completely defines the
state �1.

2. Algebraic decay of correlations

The correlation functions of the PEPS defined via Eq. (12)
decay algebraically (see Ref. [23] and Fig. 2). This is most
easily understood by considering the Fourier transform (7).
All d̂i(k) are continuous for all k. However, the d̂i(k) have
a nonanalyticity at k = (0,0), where the first derivatives of
d̂x and d̂y are discontinuous. For instance, for λ = 1

2 in the
example of Eq. (12), one obtains

d̂x(k) = − 2 sin(kx)[1 − cos(ky)]

3 − 2 cos(kx) − 2 cos(ky) + cos(kx) cos(ky)
, (18)

d̂y(k) = 2 sin(ky)[1 − cos(kx)]

3 − 2 cos(kx) − 2 cos(ky) + cos(kx) cos(ky)
, (19)

d̂z(k) = 1 − 2 cos(kx) − 2 cos(ky) + 3 cos(kx) cos(ky)

3 − 2 cos(kx) − 2 cos(ky) + cos(kx) cos(ky)
. (20)

FIG. 2. (Color online) Trace norm ‖γ (r − r ′)‖tr of the block of
the covariance matrix γl,m for λ = 1

2 in Eq. (12) corresponding to sites
l and m at positions r and r ′, respectively, as a function of distance
|r − r ′|. Blue crosses correspond to r − r ′ aligned along the x or y

axes (both lie on top of each other), and green stars indicate the case
of r − r ′ aligned along the diagonal of both axes. In this plot, γ has
been calculated for a 2000 × 2000 lattice and it decays as 1

|r−r ′ |3.05 .
The exponent converges to 3 with increasing lattice size.

At k = (0,0) both the numerators and the common denom-
inator are zero. In Appendix A, we show that due to this
nonanalyticity, correlations in real space decay like the inverse
of the distance cubed (up to possible logarithmic corrections).

3. Frustration-free Hamiltonian: Fragility

The frustration-free parent Hamiltonian for this model is
obtained by explicitly calculating the state �2,2 obtained when
four �1 on a 2 × 2 plaquette are concatenated without closing
the boundaries in horizontal or vertical direction. Thereafter,
one calculates the fermionic operator a�, acting only on the
physical level, which annihilates �2,2, a�|�2,2〉 = 0 (it turns
out that exactly one such operator exists for any λ ∈ (0,1)).
This can be done conveniently in the CM formalism. The
parent Hamiltonian Hff can then be obtained by setting

hj (λ) ∝ a
†
�,j

(λ) a�,j (λ) (21)

in Eq. (11). For λ = 1
2 , for instance, we have

a� = ea,1,1(2 + i) + eb,1,1 − ea,1,2(1 + 2i) + ieb,1,2 − ea,2,1

+ eb,2,1(−2 + i) + iea,2,2 + eb,2,2(1 − 2i), (22)

where ea,x,y denotes the first physical Majorana mode located
at the site with coordinates (x,y) and eb,x,y the second one.
The single-particle spectrum for that case is displayed in
Fig. 3. Note that there is a band-touching point at k = (0,0),
and thus this Hamiltonian is gapless and has a continuous
many-body spectrum. That is, it is exactly twofold degenerate
for finite systems, and in the thermodynamic limit it possesses
a continuous spectrum right on top of the ground state.
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−π −π/2 0 π/2 π
−π−π/20π/2π

−4

−2

0

2

4

ky
kx

E

FIG. 3. (Color online) Single-particle energy spectrum of the
frustration-free parent Hamiltonian Hff of the GFPEPS defined via
Eq. (12) for λ = 1

2 . The band-touching point is at k = (0,0).

The frustration-free Hamiltonian Hff does not have a
protected chiral edge mode, as it is gapless in the bulk: Let
us add a translationally invariant perturbation [with variable
GFPEPS parameter λ ∈ (0,1)]

H̃ff(λ,μ0,ν0)

= Hff(λ) − i

4

∑
x,y

[μ0ea,x,yeb,x,y + ν0(ea,x+1,yeb,x,y

− ea,x,yeb,x+1,y + ea,x,y+1eb,x,y − ea,x,ye2,x,y+1)],

(23)

where μ0,ν0 ∈ R. Note that only μ0 = ν0 = 0 corresponds to
a GFPEPS ground state. After carrying out a Fourier transform,
the Hamiltonian can be brought into the form

H̃ff(λ,μ0,ν0) =
∑

i=x,y,z

∑
k

d ′
i(k)(a†

k,a−k)σi

(
ak

a
†
−k

)
(24)

with σi the Pauli matrices, the Chern number can be calculated
via [33]

C = 1

4π

∫ π

−π

∫ π

−π

d̂ ′(k)

(
∂d̂ ′(k)

∂kx

× ∂d̂ ′(k)

∂ky

)
dkxdky (25)

with d̂ ′(k) = d ′(k)
|d ′(k)| . Depending on the signs of the parameters

μ0 and ν0, the Hamiltonian can be driven by infinitesimally
small perturbations to gapped phases with Chern number
C = 0 (trivial), C = −1, or C = −2 as shown in Fig. 4. This
phase diagram does not depend on the parameter λ as long as
|μ0| and |ν0| are sufficiently small. Hence, with respect to the
frustration-free Hamiltonian, the states defined by Eq. (12)
describe critical points in the transition between different
topological phases with Chern numbers C = −2 and −1 and
a topologically trivial phase (C = 0).

FIG. 4. (Color online) Phase diagram of the perturbed Hamilto-
nian H̃ff (λ,μ0,ν0) (see text) for μ0, ν0 close to zero and λ ∈ (0,1)
arbitrary. The vertical gapless line corresponds to a quadratic band
touching, whereas the horizontal gapless line (μ0 > 0) corresponds
to four Dirac points. All other points in the phase diagram are gapped
with the shown Chern numbers.

We conclude that the frustration-free Hamiltonian is gapless
and thus not topologically protected. Instead, it is at the critical
point between free-fermionic topological phases with different
Chern numbers.

4. Flat-band Hamiltonian: Robustness

Let us now consider the stability of the flat-band Hamilto-
nianHfb against perturbations. First, we will show analytically
that the Hamiltonian is robust even against long-ranged
translationally invariant perturbations; and second, we will
demonstrate numerically the stability against local disorder.
This shows that the Hamiltonian is topologically protected
and its Chern number is therefore a meaningful quantity.

Let us first consider translational-invariant perturbations
where we assume that the perturbation decays faster than 1/|r|3
in real space (with |r| the distance). Then, it can be shown
(see, e.g., Ref. [34], Proposition 3.2.12) that the perturbation
H is differentiable in Fourier space, and thus, the perturbed
flat-band Hamiltonian H̃fb = Hfb + εH is differentiable as
well. Moreover, since the Fourier components of H are
uniformly bounded, the gap of H̃fb stays open for sufficiently
small ε. Thus, the bands of H̃fb are a smooth function of ε,
and thus, the Chern number cannot change under sufficiently
small perturbations.

Let us now turn towards the stability of Hfb against
random disorder, which we have verified numerically. To
this end, we randomly added local disorder terms

∑
j μja

†
j aj

(μj ∈ [−1,1]) to the flat-band Hamiltonian for λ = 1
2 defined

on an Nv × Nv torus (Nh = Nv) as a function of its length Nv .
In Fig. 5, we plot the energy gap obtained for 225 random
realizations for each system size Nv . As can be gathered from
the figure, its gap stays nonvanishing in the thermodynamic
limit, indicating that it is topologically protected against
disorder.

To summarize, the gap of the flat-band Hamiltonian Hfb

is topologically protected against the addition of onsite
disorder and (small) translationally invariant perturbations
whose hoppings decay faster than the inverse of the distance
cubed. Its Chern number is −1.
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FIG. 5. (Color online) Energy gap � of the flat-band Hamil-
tonian Hfb after the addition of disorder terms (see text). The
Hamiltonian is defined on a torus of size Nv × Nv (Nh = Nv) and
for each system size 225 random samples have been considered. The
dashed line represents a fit with the function f (Nv) = a exp(−bNv) +
c, which gives a = 0.101 ± 0.005, b = 0.033 ± 0.004, and c =
1.204 ± 0.003 (95% confidence intervals), i.e., the gap saturates at a
value that is roughly 60% of the unperturbed gap.

C. Boundary and edge theories

In Ref. [21] a formalism was introduced for spin PEPS
to map the state in some region R to its boundary. This
bulk-boundary correspondence associates to each PEPS a
boundary HamiltonianHb that acts on the virtual particles. The
Hamiltonian faithfully reflects the properties of the original
PEPS. In particular, for the toric code [3], or the resonating
valence-bond states [14], that boundary Hamiltonian features
their topological character [20]. In this section, we review that
theory for GFPEPS and show how one can determine Hb for
GFPEPS.

Chiral topological insulators and superconductors, on the
other hand, are characterized by the presence of chiral edge
modes, featuring robustness against certain bulk perturbations.
Here, we also analyze how those features are reflected in Hb,
as well as the relation of that Hamiltonian with that found for
the toric code.

1. Boundary theories

Given the GFPEPS �, let us take a region R of the lattice,
trace all the degrees of freedom of the complementary region
R̄, and denote by ρR the resulting mixed state. As it was shown
in Ref. [21], ρR can be isometrically mapped onto a state of
the virtual particles (or modes) that are at the boundary of
the region R. That is, there exists an isometry VR, such that
ρR = VRσRV†

R, where σR is a mixed state defined on those
virtual modes.

Here, we will take as region R a cylinder with N columns
(see Fig. 6). There we have drawn the (red) physical fermions,
as well as the (blue) virtual Majorana modes, as they appear
in the construction explained above (Fig. 1).

The state σR is Gaussian and is thus also characterized by
a CM, which we will denote by �N . In Sec. III, we will show

FIG. 6. (Color online) Left: The state obtained after cutting out
N columns (region R) from a translationally invariant GFPEPS is
still translationally invariant in the vertical direction. Hence, it can
be understood as being defined on a cylinder. The Majorana modes
on the left and the right boundary (small blue balls) remain unpaired.
Right: Illustration of string operators. Those are defined as operators
acting on the virtual Majorana modes lying on a closed string (such
as the blue, red, and green examples). The projection onto the final
physical state � is carried out after applying one or more of those
string operators.

how to determine it in terms of γ1. Here, we just quote the
results. We can write

σR = 1

ZN

e−Hb
N , (26)

where

Hb
N = − i

4

∑
j,k

(
H b

N

)
j,k

cj ck (27)

is the so-called boundary Hamiltonian, with cj the Majorana
operators acting on the left and right boundaries, and H b

N a
2Nv × 2Nv antisymmetric matrix, given by

H b
N = 2 arctan(�N ). (28)

The spectrum ofHb
N coincides with the so-called entanglement

spectrum [12]. Here, we will be interested in the corresponding
single-particle spectrum, i.e., that of H b

N .
Since Hb

N is translationally invariant in the vertical direc-
tion, we can easily diagonalize it by using Fourier transformed
Majorana modes. It is convenient to define

ĉky
= 1√

Nv

Nv∑
y=1

eikyycy (29)

separately for the left and right virtual modes, so that Hb
N dis-

plays a simple form in their terms. Here, the quasimomentum is
ky = 2πn/Nv , with n = −Nv/2 + 1, . . . ,Nv/2. Up to a factor
of 2, the operators ĉ

†
ky

= ĉ−ky
fulfill canonical commutation

relations for fermionic operators {ĉky
,ĉ

†
k′
y
} = 2δky,k′

y
, for ky �=

0,π . For ky = 0,π , they are Majorana operators (i.e., ĉ
†
0 = ĉ0

and ĉ†π = ĉπ ). This latter fact is crucial to understand the
topological properties of the original state �, as we will discuss
in Sec. V.

The single-particle spectrum (dispersion relation, since we
have translational invariance) will be labeled by ky . For the
GFPEPS determined by Eq. (12) for λ ∈ (0,1) we will show
that in the limit N → ∞, one can write

H b
∞ =

⊕
ky �=0,π

(
ĤL

∞(ky) ⊕ ĤR
∞(ky)

)⊕ ĤLR
∞ (0) ⊕ ĤLR

∞ (π ),

(30)
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FIG. 7. (Color online) Dispersion relation corresponding to the
right boundary Hamiltonian for the chiral state defined via Eq. (12).
We plot −iĤ R

∞(ky) (which is a 1 × 1 matrix), for λ = 1
4 (blue solid

line), λ = 1
2 (green dashed line), and λ = 3

4 (red dashed-dotted line)
and N → ∞. For convenience, we have plotted it for ky ∈ [0,2π ).
Note the divergence at ky = 0, where there is a maximally entangled
virtual Majorana pair between the left and the right boundaries. The
lines cross the Fermi level from above at ky = ±π , thus C = −1.

where ĤL
∞(ky) and ĤR

∞(ky) correspond to virtual fermionic
modes on the left and right, respectively, which are decorre-
lated from each other. For ky = 0 and π , however, there is
a single unpaired Majorana mode in each boundary. For the
above family of chiral GFPEPS, the ky = 0 Majorana modes
pair up, giving rise to an entangled state between the left and
the right boundaries, which is why we obtain the structure of
Eq. (30) for the single-particle boundary Hamiltonian.

The Chern number C (up to a sign) is given by the number
of right movers minus the number of left movers on one of
the boundaries. For the simple case considered in this section,
with one Majorana bond |C| = 0,1. For GFPEPS with more
Majorana bonds, one can build the boundary Hamiltonian in
the same fashion, as we will show in the next section. In that
case, the Chern number is determined ditto, but it may be larger
than one.

In Fig. 7, we plot the single-particle dispersion relation of
the right boundary as a function of ky , for the state generated
by (12) for different values of λ and N → ∞ (we will provide
an analytical formula for that limit in Sec. V). It displays
chirality, and the Chern number is −1. The mode at ky = π

has zero “energy,” indicating that the state of the left and right
Majorana modes with such a momentum is in a completely
mixed state. If we construct a fermionic operator using those
two modes, the boundary state σR at momentum π has
infinite temperature, and thus is an equal mixture of zero and
one occupation. If we do the same with the modes at ky = 0,
the opposite is true, namely, they are in a pure state (the vacuum
mode of the fermion mode built out of the two Majorana modes
from the left and the right). Thus, as anticipated, the left and
right boundaries are in an entangled state, which reflects the
topological properties of the state. In Sec. III, we will show
that all the features displayed by this example are intimately
related.

−π −π/2 0 π/2 π

−4

−2

0

2

4

−
iĤ

R ∞
(k

y
)

ky

μ = 1/4
μ = 1/2
μ = 3/4

FIG. 8. (Color online) Dispersion relation at the right boundary
for the nonchiral state defined via Eq. (56). We plot −iĤ R

∞(ky) (which
is a 1 × 1 matrix), for μ = 1

4 (blue solid line), μ = 1
2 (green dashed

line), and μ = 3
4 (red dashed-dotted line) and N → ∞. It crosses the

Fermi level twice with slopes of different signs, hence C = 0.

As a second example, we take a state that does not display
any topological features. Its explicit form is given in Sec. IV C.
The dispersion relation for the right boundary is shown in
Fig. 8. Since the energy band of the boundary Hamiltonian
does not connect the valence and conduction band for any μ,
the Chern number is zero. Furthermore, both at ky = 0,π the
“energy” vanishes, showing that the right and left boundaries
are unentangled.

In Sec. IV, we present further examples: We give an exam-
ple of a GFPEPS displaying C = 2. We also investigate the
Chern insulator presented in Ref. [23], provide a topologically
trivial GFPEPS as well as the nonchiral state introduced in
Ref. [25].

2. Edge theories

The definition of the boundary theory used above may look
a bit artificial; the Hamiltonian Hb

N does not generate any
dynamics, but is just the logarithm of the density operator, and
thus comes from the interpretation of the boundary operator
as a Gibbs state. However, it is well known [35] that for free-
fermionic (i.e., Gaussian) states, its spectrum is intimately
related to the one of another Hamiltonian that indeed generates
the dynamics at the physical edges of the system in question.
In the PEPS representation, there is a way of constructing
such an edge Hamiltonian [22], which we review here and we
explicitly illustrate such a relation.

Let us consider the flat-band Hamiltonian (8), but in the
case of a cylinder with open boundary conditions. For that,
we restrict the sum in Eq. (8) to the modes that correspond
to region R (the cylinder in Fig. 6), and denote by HR the
corresponding Hamiltonian. The state �N [see Fig. 1(f)] has
extra (virtual) modes, which we can project onto an arbitrary
state, say φv . The energy (in absolute value) of the resulting
state will typically be much smaller than the gap of the system
on the torus. Thus, there is a subspace spanned by all the states
resulting from this construction with a low energy. By choosing
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a set of linearly independent vectors φv , and orthonormalizing
the resulting state, we can project HR onto that subspace. This
is precisely the procedure given in Ref. [22], and the resulting
Hamiltonian, which has as many degrees of freedom as there
are virtual Majorana modes, is the edge Hamiltonian He

N . We
now write

He
N = − i

4

∑
l,m

(
H e

N

)
l,m

clcm, (31)

and in Sec. III C we show that one obtains that H e
N =

�N . Thus, up to a scale transformation [cf. Eq. (28)], we
see that the edge Hamiltonian is nothing but the boundary
Hamiltonian, whenever we take the flat-band Hamiltonian as
the parent Hamiltonian of our GFPEPS. This agrees with
the statement of Ref. [35], and indicates that our results
on the boundary Hamiltonian can be translated to the edge
Hamiltonian constructed in the outlined way.

D. Symmetries, degeneracy, and topological entropy

Here, we will first briefly review how the topological
properties of PEPS in spin systems are reflected in the
symmetries of the corresponding fiducial state �1. Then,
we will show that for the GFPEPS considered in previous
subsections, a similar behavior is present.

1. Spins

For PEPS in spin systems, all the properties are encoded
in the single tensor which is used to build the state. In the
language used in this paper, this tensor is equivalent to �1

since it is given by its coefficients in a basis. In particular,
for topological states like the double models [20], there exist
operators Ug , where g is an element of a group G and Ug a
unitary representation of it, acting on the virtual particles which
leave �1 invariant. Those operators can be concatenated to
string operators defined on the virtual modes on the boundary,
so that for any state appearing during the construction of
the PEPS �, there exist other operators fulfilling the same
property. Those operators can be built starting out from Ug in a
systematic way. This implies that for any region R, there exist
operators Ug acting on the virtual particles at the boundary,
such that

UgσR = σRUg = σR. (32)

For double models, the operators Ug can be written as products
of operators acting on each of the virtual particles of the
boundary.

From Eq. (32) it follows that σR is supported on a proper
subspace of the virtual system, that corresponding to the
eigenvalue 1 of all Ug , i.e.,

σR = 1

ZN

Pe−Hb
N P . (33)

Here, P is a nonlocal operator which projects onto that
subspace. This fact has two consequences: (i) the zero
Rényi entropy (which is the logarithm of the dimension of
that subspace) does not coincide with the logarithm of the
dimension of the Hilbert space of the virtual particles on
the boundary of R; (ii) there is a nonlocal constraint on the
boundary and edge Hamiltonian. Those two features are thus

related to the topological character of the PEPS. Note that
(i) may also imply in some cases that there is a correction to
the area law, what is usually called the topological entropy.
That is, the von Neumann entropy of σR scales like the
number of virtual particles on the boundary of R minus a
universal constant, which is directly related to the topological
properties of the model under study. The property (ii) acts as
a superselection rule in the boundary and edge theories since
any perturbation in the bulk will not change that subspace.
Additionally, in the spin lattices studied in Ref. [20], Hb

N is
local (contains hoppings that decay exponentially with the
distance) whenever the frustration-free parent Hamiltonian of
the state � is gapped.

Another consequence of (32) is apparent if we take a PEPS
defined on the torus. Then, we can attach different string
operators Ug and Ug′ around the two different cuts of the torus
(see Fig. 6, right). This means that during the construction
of the PEPS, we apply those operators to the virtual particles
at the position where the strings appear before applying the
projections ω and ω′. Because of the symmetry, those string
operators can be moved without changing the state. However,
they cannot be discarded given the topology of the torus.
The states for each pair of Ug and Ug′ are ground states of
the parent, frustration-free Hamiltonian of the PEPS as well,
and for some particular g,g′ they are linearly independent.
Thus, that Hamiltonian is degenerate and in fact all its ground
states can be generated by applying the string operators on
circles around the torus. Furthermore, anyonic excitations can
be understood as the extreme points of open strings, and the
braiding properties related to the group G.

2. Fermionic systems

Now we show that an analogous phenomenon is present
in our chiral topological models. That is, as PEPS, they also
possess a symmetry in �1 which is inherited for larger regions,
and that gives rise to properties (i) and (ii). Besides that,
the parent Hamiltonian Hff is degenerate on the torus, and
the different ground states can be obtained by attaching to the
virtual modes string operators around the torus. The strings can
be deformed, without changing the state. However, there are
some differences, too. First of all, the von Neumann entropy of
σR does not display a universal correction, which we attribute
to the long-range properties of the parent Hamiltonian Hfb

of the state � (see Refs. [23,24]). For the same reason, the
hoppings in Hb

N decay according to a power law. Furthermore,
the ground state subspace of the parent Hamiltonian Hff

is doubly degenerate on the torus, and some topologically
inequivalent string configurations give rise to the same state.

Let us consider any region R, and denote by �R the state
obtained by projecting all the virtual modes within region R
onto the state generated by ωjn or ω′

jn, as they appear in the
PEPS construction. We arrive at a state of the physical modes
in R and the virtual ones sitting at the boundary of R. For
instance, if we take as R a cylinder with N columns, the state
�R = �N (see Fig. 6). We can write

|�〉 = 〈ω∂R,∂R̄|�R,�R̄〉, (34)

where ω∂R,∂R̄ projects out all the virtual modes at the
boundaries of R and its complement R̄.
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If a contour C encloses a connected region R, for chiral
GFPEPS with one Majorana bond, there is a fermionic operator
dC such that

dC |�R〉 = 0. (35)

For any contour, we will say that the state

|�C〉 = 〈ω∂R,∂R̄|dC |�R,�R̄〉 (36)

is a GFPEPS with a string along the contour C. In Sec. VI D,
we will show how this string operator can be deformed
continuously for a chiral GFPEPS without changing the state
we are building. However, if a contour wraps up around one of
the sections of the torus, we cannot get rid of it by continuous
deformations.

Let us denote by Ch,v contours wrapping the torus horizon-
tally and vertically, respectively. We show in Sec. VI D that
if we build the family of chiral GFPEPS starting out from
�1 according to Eq. (12), we obtain � = 0 after the last
projection. However, the states obtained if we add a certain
string along any of those contours coincide, �Ch

∝ �Cv
, and

in the following that is the state that we will consider. We also
show that if we insert string operators along the two contours
Ch and Cv , the state �Ch,Cv

we obtain is orthogonal to the
previous one, but it is also a ground state of Hff .

The frustration-free Hamiltonian has certainly very in-
teresting properties, although we cannot determine them
unambiguously given our results. It is not only at a quantum
phase transition point between free-fermionic (gapped) phases
with Chern numbers C = 0, −1, and −2, but it furthermore
carries features of states described by PEPS with long-range
topological order: Its ground state manifold is obtained by
inserting strings along the nontrivial loops of the torus.
Hence, our results also allow us to interpret the local parent
Hamiltonian as being at the edge of a topologically ordered
interacting phase.

The existence of the operators dC in Eq. (35) for any simply
connected region R has another important consequence. It
follows that we can build a unitary operator U = 1 − 2d

†
CdC

such that Eq. (32) is fulfilled for the boundary operator. As
a consequence, we also have Eq. (33) with P = 1 − d

†
CdC .

Note that in our case G = Z2 is represented by {1,U}.
Thus, we conclude that the properties of the previous para-
graph (i) (topological correction to zero Rényi entropy) and
(ii) (nonlocal constraint on boundary and edge Hamiltonian)
are fulfilled as in the standard PEPS case. Note that ifR lies on
a cylinder as in Fig. 6, we can also give the interpretation that,
as in the case of a Majorana chain, there are two Majorana
modes at the boundaries building a fermionic mode in the
(pure) vacuum state. As a consequence, we can write σR for
the cylinder as in Eq. (33), where P projects onto the subspace
where that mode is in the vacuum.

In addition to the zero Rényi entropy S0(Nv), we have also
numerically computed the von Neumann entropy SvN(Nv) for
the example given in Eq. (12) for λ = 1

2 . Both are shown
in Fig. 9 as a function of Nv: While the zero Rényi entropy
clearly shows a topological correction of ln(2), similar to the
toric code model, the von Neumann entropy does not exhibit
such a correction. As we prove in Appendix B, this follows
from the fact that SvN(Nv) forms a discrete approximation to
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FIG. 9. (Color online) Von Neumann entropy SvN (blue circles)
and zero Rényi entropy S0 (red squares) versus length of the cylinder
in vertical direction Nv for the example given in Eq. (12) for λ =
1
2 . The lines indicate linear fits, which have been done for 31 data
points distributed equally between Nv = 4000 and 4600. These yield
SvN = 0.49401Nv − 2.0 × 10−7 (the constant converges to zero for
intervals containing increasing Nv’s) and S0 = ln(2)Nv − ln(2).

the integral over the modewise entropy, which is sufficiently
smooth in ky to ensure fast convergence. The same happens for
all Rényi entropies Sα except for α = 0. This is consistent with
the result of, e.g., Ref. [36] (where, however, only nonchiral
topological states have been considered).

In order to further investigate the topological properties of
our model, we have also computed the so-called momentum
polarization [27] (see also Refs. [37–39]), which measures
the topological spin and chiral central charge of an edge. For
a state |ϕ〉 on a cylinder, it is defined as μ(Nv) = 〈ϕ|TL|ϕ〉,
where TL is the translation operator on the left half of the
cylinder. It can thus be rephrased in terms of the (many-body)
entanglement spectrum λ� of the left half, which implies that
in the framework of PEPS, it can be naturally evaluated on
the virtual boundary between the two parts of the system. In
particular, for GFPEPS it can be expressed as a function of the
(single-particle) spectrum of the boundary Hamiltonian H b

N ,
as shown in Fig. 7. In Ref. [27], it has been shown that (for
systems with CFT edges) μ(Nv) = exp(−αNv − 2πiτ/Nv +
· · · ), with a nonuniversal α, and a universal τ which carries
information about the topological properties of the system. In
Appendix B, we prove that for GFPEPS, μ(Nv) exactly follows
the above behavior, and τ is indeed universal: Remarkably, it
only depends on whether the boundary Hamiltonian exhibits
a divergence, but not at all on its exact form. In particular, for
our example, we analytically obtain a τ which corresponds
to a chiral central charge of c = 1

2 , independently of λ, in
accordance with expectations.

Finally, an interesting behavior is also observed for the
boundary Hamiltonian (27) for N → ∞. On the right bound-
ary, we perform the Fourier transform to position space
[HR

∞]n,m. Then, for y � 1, |[HR
∞]n,n+y | ∝ ln(y)/y + O(1/y)

(see Appendix C). Thus, the decay is not exponential as it is the
case for gapped phases in spins, but follows a power law. We
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FIG. 10. (Color online) Hopping amplitudes |[HR
∞]1,1+y | of the

boundary Hamiltonian of the example given in Eq. (12) for λ = 1
2

versus y. For large y, the curve has an inclination of −1 (on the
log-log scale) indicating a decay as 1/y, consistent with the fact
that the logarithmic correction gets less important. The plot has been
generated for N → ∞ and Nv = 2 × 104 sites in vertical direction.

plot the hopping amplitudes |[HR
∞]1,1+y | of the above chiral

family for λ = 1
2 in Fig. 10.

III. DETAILED ANALYSIS

In this section, we provide a detailed derivation of the
boundary and edge theories for GFPEPS. We start in Sec. III A
by formally introducing GFPEPS, and then provide the
derivation of boundary theories (Sec. III B) and edge theories
(Sec. III C) for GFPEPS.

A. GFPEPS

The construction of GFPEPS given in Sec. II A can be
defined more generally for f physical fermionic modes per
site and χ Majorana bonds between them. We again start
with an Nh × Nv lattice, now with χ left, right, up, and
down Majorana modes per site, cj,L,κ ,cj,R,κ ,cj,U,κ and cj,D,κ ,
respectively, where κ = 1, . . . ,χ is the index of the Majorana
bonds. At each site j they are jointly with the physical modes
in a Gaussian state as in Eq. (1). The procedure to construct
the GFPEPS is the same, except that there are now χ virtual
bonds between any two neighboring sites, i.e., here we have
to set

ωjn = 1

2χ

χ∏
κ=1

(1 + icj,D,κcn,U,κ ), (37a)

ω′
jn = 1

2χ

χ∏
κ=1

(1 + icj,R,κcn,L,κ ) (37b)

for the vertical and horizontal bonds, respectively. We will
again denote by 〈ωjn| (〈ω′

jn|) the map which applies ωjn (ω′
jn)

and discards the corresponding virtual modes. For simplicity,
in the following we will call the states generated by the
operators (37) out of the vacuum maximally entangled states.

The remaining procedure of how to concatenate them is the
same as in Sec. II A (cf. also Fig. 1).

In this scenario, the CM is likewise given by Eq. (5), just that
the blocks A, B, and D now have sizes 2f × 2f , 2f × 4χ , and
4χ × 4χ , respectively. We are interested in how to determine
the CMs of the different states �Nv

, �N , and � involved in the
construction of the GFPEPS. It is based on two operations (see
Fig. 1): (i) building the state of l + m modes out of two states
of l and m modes, respectively, i.e., taking tensor products;
(ii) projecting some of the modes onto some state (given by
ω or/and ω′). Apart from that, we will also extensively use in
other parts of this paper: (iii) tracing out some modes.

In terms of the CM, those operations are performed as
follows [40]. (i) Joining two systems. The resulting CM is a 2 ×
2 block-diagonal matrix, where the two diagonal blocks are
given by the CM of the state of the l and m modes, respectively.
The operation (ii) projecting out some of the modes is slightly
more elaborate. Let us consider an arbitrary state (pure or
mixed) with CM γ1 with blocks A,B,D [as in Eq. (5)], and
we want to project the last modes (corresponding to matrix D)
onto some other state of CM ω. The resulting CM is given by
[25,40]

γ ′
1 = A + B(D + ω−1)−1B�. (38)

Typically, we will have to project onto the states generated by
(37). Their CM is very simple:

ω =
(

0 −1
1 0

)
. (39)

Finally, in the case of operation (iii) tracing out some of the
modes, one simply has to take the corresponding subblock
of the CM. This block is the CM of the reduced state. For
instance, if one traces out the physical degrees of freedom
of the state described by the CM (5), one obtains a (generally
mixed) state defined on the virtual degrees of freedom with CM
D. Conversely, one can also build the CM of a purification of
a mixed state D, as( −D

√
1 + D2

−√
1 + D2 D

)
. (40)

Operations (i) and (ii) can be used to build the CM of the state
� out of that of �1. In this section, we will extensively use all
presented operations to construct the boundary and edge states
and Hamiltonians.

B. Boundary theories

1. Boundary theories in GFPEPS

We will now show how to derive boundary theories in
the framework of fermionic Gaussian states by only using
their description in terms of CMs rather than the full state.
We consider a bipartition of the PEPS � into two regions R
and R̄ (Fig. 11) and are interested in the reduced state ρR =
trR̄(|�〉〈�|). We proceed as follows. First, we consider the
states where all virtual bonds within those regions have been
projected out, leaving only virtual particles at the boundaries of
those regions (which are denoted by ∂R and ∂R̄, respectively)
unpaired. Hence, we are left with two states, which are defined
on the physical degrees of freedom of these regions plus the
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FIG. 11. (Color online) (a) Partition of a lattice with a GFPEPS
defined on it into a region R and its complement R̄. The blue balls
represent the virtual Majorana modes and the big red balls (connected
by wavy lines indicating the prior projection on maximally entangled
pairs of virtual Majorana modes) the physical fermions. (b) After
cutting the bonds as indicated in (a), the region R has unpaired
virtual indices at its boundary which are collectively denoted by ∂R.
(c) The same is true for the (inner) boundary of region R̄, whose
virtual degrees of freedom are denoted by ∂R.

virtual degrees of freedom of the respective boundaries [see
Figs. 11(b) and 11(c)]. We define their CMs as

� =
(

L F

−F� G

)
and �̄ =

(
L̄ F̄

−F̄� Ḡ

)
, (41)

respectively, where the first (second) block corresponds to the
physical (virtual) degrees of freedom. The whole GFPEPS �

could be obtained by pairwise projecting their virtual degrees
of freedom on maximally entangled states, and thus, according
to Eq. (38), its CM is

γ =
(

L 0
0 L̄

)
+
(

F 0
0 F̄

)(
G 1
−1 Ḡ

)−1 (
F 0
0 F̄

)�
.

(42)

The CM of ρR is given by the (1,1) block of Eq. (42), that is,

γR = L + F (G + Ḡ−1)−1F�. (43)

As explained in Sec. II C, we are interested in a state σ∂R
defined on the virtual degrees of freedom located on ∂R, which
is isometric to ρR. Naively, one could think that its CM is
given by the (2,2) block of �, i.e., G, which corresponds to
a reduced state acting on that boundary. However, this is not
the case in general since the state described by the CM G

is usually not isometric to ρR. As outlined in Ref. [21], σ∂R
is given by a symmetrized version which takes into account

∂R and ∂R̄. In fact, we can construct σ∂R by first finding the
appropriate purification of ρR, and then tracing the physical
modes. We will carry out that task in two steps. First, we will
conveniently rotate the basis of the physical Majorana modes
in region R and afterwards truncate the redundant degrees of
freedom (projection). Both taken together correspond to the
application of an isometry on ρR.

We start with an orthogonal basis change in the basis of
physical Majorana modes {el} in region R. The new ones are
given by an orthogonal matrix M:

e′
m =

∑
l

Mm,lel . (44)

This obviously does not change the spectrum of ρR. By
performing this basis change, the CM � gets modified to

�′ =
(

M 0
0 1

)(
L F

−F� G

)(
M� 0

0 1

)
.

Note that this CM corresponds to a pure state, as � does. We
choose M in such a way that �′ decouples into a purification
of the virtual state and a trivial part on the remaining physical
level. This is always possible if the region R contains more
degrees of freedom than ∂R and can be done practically by
using a singular value decomposition of F . Then,

�′ =
⎛
⎝Z 0 0

0 −G
√
1 + G2

0 −√
1 + G2 G

⎞
⎠ , (45)

where Z is the CM of a pure state defined on the physical
level and the remaining nontrivial part of �′ corresponds to
a purification of G (note that the first and second blocks
correspond to the physical degrees of freedom and only the
third block to the virtual ones). We discard the decoupled
physical part and project the virtual degrees of freedom
(together with those of region R̄, given by Ḡ) on the maximally
entangled state. This yields the relevant part of Eq. (43), which
is the CM of σR:

�N = −G +
√
1 + G2(G + Ḡ−1)−1

√
1 + G2 , (46)

which is defined on the modes at the boundary. [We denote
it by �N since R will be typically taken to lie on a cylinder
(cf. Fig. 6) with N columns. However, Eq. (46) is true for any
bipartition R, R̄.]

In order to obtain the boundary Hamiltonian Hb
N =

− i
4

∑
l,m[H b

N ]l,mclcm, which reproduces the entanglement
spectrum, we can then use the relation H b

N = 2 arctan(�N )
[Eq. (28)]. Note that for G = Ḡ, Eq. (46) yields a trivial
entanglement spectrum �N = 0, while for G = −Ḡ, one
finds �N = −2G(1 − G2)−1, which gives a factor of 1

2 in
the entanglement temperature (i.e., the effective strength of
H b

N ) with respect to G, H b
N = 4 arctan(G), corresponding to

the case σL = σ�
R in Ref. [21].

A crucial point to observe in the result for the boundary
theory is that �N only depends on the CMs G and Ḡ,
which characterizes the reduced state of the virtual degrees
of freedom at the boundaries of R and R̄. We can therefore
trace the physical degrees of freedom from the beginning and
only ever need to consider G and Ḡ. While this observation
is also true for general PEPS, it is particularly useful when
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working with GFPEPS in terms of CMs, as it allows us to
completely neglect the physical part of the CM right from the
beginning.

Let us finally briefly comment on the relation of the
boundary theory as given by �N to the construction of the
boundary theory for general PEPS derived in Ref. [21]. There,
the part of the PEPS which describes R (corresponding to the
CM �) is interpreted as a linear map XR from the boundary
to the bulk degrees of freedom, which is then decomposed

as XR = VR PR, with VR an isometry and PR =
√

τ�
R ,

where τR is the reduced density matrix of R on the virtual
system (corresponding to G). This is exactly identical to the
decomposition (45); in particular, M describes the isometry
VR, and the (2 + 3,2 + 3) block of �′ describes the map

ν →
√

τ�
Rν

√
τ�
R [realized by projecting the (3,3) part onto

ν]. Finally, Ḡ describes the analogous state τR̄ obtained from
the part R̄, and thus, �N is exactly identical to the boundary

theory
√

τ�
RτR̄

√
τ�
R derived in Ref. [21].

2. Boundary theories on the torus

We will focus now on the situation where the GFPEPS
is placed on a square lattice on a long torus, where we take
the length of the torus to infinity. The two regions R and R̄
are then obtained by cutting the torus into two halves, and
are thus given by (identical) long cylinders with diameter Nv

and length N → ∞ (cf. Fig. 6). As we have seen, the central
object in the description is the CM G at the boundary of
region R, ∂R, obtained after tracing out the physical system
(and correspondingly for R̄). In the case of a cylinder, R is
given by the left and right boundaries of the cylinder together.
In the following, we will show how to determine G given the
CM γ1 defining the GFPEPS, without having to construct the
CM of the whole state �N .

As we have seen in the preceding subsection, the boundary
theory is entirely determined by the CM of the virtual part of
the initial state �1. We thus start by decomposing the CM of
the virtual system of �1 into

D =
(

H K

−K� V

)
. (47)

Here, V corresponds to the vertical and H to the horizontal
Majorana modes, respectively. We now concatenate one
column of tensors, closing its vertical boundary, leaving us
with a CM which describes the left and right virtual indices of
the column [cf. Figs. 1(b)–1(d)]. This is done by employing
Eq. (38) for the corresponding subblocks of V of each
pair of (cyclically) consecutive states �1,j and �1,k . Due to
translational invariance, this is conveniently expressed in the
Fourier basis (with ky the quasimomentum in the y direction):
In this basis, the D’s of one column form a block-diagonal
matrix, while

ω̂(ky) =
(

0 eiky1χ

−e−iky1χ 0

)
(1χ denoting the χ × χ identity matrix) since the ω’s of one
column form a circulant matrix with the two blocks coupling
the “up” and “down” indices of adjacent V ’s. In Fourier space,
the CM describing the left and right virtual modes of one

column is thus

D̂1 = H + K (V + ω̂−1)−1 K�. (48)

(We use the hat to denote dependence on ky in the following;
the subscript N of D̂N indicates the number of columns.)
Taking advantage of the fact that the matrix inverse can
be written in terms of determinants, one immediately finds
that each entry of D̂1 is a complex ratio of trigonometric
polynomials (i.e., polynomials in e±iky ) with a degree bounded
by the dimension of ω̂, i.e., 2χ .

The matrix D̂1 consists itself of four blocks

D̂1 =
(

R̂1 Ŝ1

−Ŝ
†
1 T̂1

)
, (49)

corresponding to the left and right indices, respectively. Let
us now see what happens if we contract two columns. We
will consider the general case where the two columns can be
different: for instance, each of them could have been derived
by contracting some number of single columns �1; this will
allow us to easily derive recursion relations. We thus have two
columns described by

D̂ =
(

R̂ Ŝ

−Ŝ† T̂

)
and D̂′ =

(
R̂′ Ŝ ′

−(Ŝ ′)† T̂ ′

)
,

with a column of maximally entangled states connecting them:
The CM of both blocks concatenated is then according to
Eq. (38)

D̂′′ =
(

R̂ 0
0 T̂ ′

)

+
(−Ŝ 0

0 (Ŝ ′)†

)(
T̂ 1
−1 R̂′

)−1 (−Ŝ† 0
0 Ŝ ′

)
. (50)

Using the Schur complement formula for the matrix inverse
in the middle, this gives a recursion relation for the blocks
R̂, Ŝ, and T̂ , which serves several purposes. In particular, by
choosing D̂ = D̂′, we can obtain an iteration formula for D̂2�

describing 2� columns, which quickly converges towards the
infinite cylinder limit D̂∞, thus being very useful for numerical
study. Moreover, as we will see in Sec. V, in certain cases it
can also be used to analyze the convergence of the transfer
operator, or, by choosing D̂′ = D̂′′ and D̂ = D̂1, to determine
the explicit form of the fixed point D̂∞.

Finally, given the fixed point D̂∞, as well as ˆ̄D∞ corre-
sponding to the boundary ∂R̄, it is now straightforward to
determine the boundary Hamiltonian using Eqs. (46) and (28)
for N → ∞. Note that in the particular case of a torus which
we consider, ˆ̄D∞ can be obtained from D̂∞ by exchanging the
blocks corresponding to the left and right boundaries.

C. Edge theories

1. Derivation of edge theory

We will now turn our attention towards the edge Hamil-
tonian, which describes the effective low-energy physics
obtained at an edge of the system.

As explained in Sec. II C, the GFPEPS � is the ground
state of the flat-band Hamiltonian Hfb = − i

4

∑
l,m γl,melem

[Eq. (8)], where γ is the CM of the whole state � [Eq. (42)].
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The restriction of Hfb to a region R of the system is then
given by

HR = − i

4

∑
l,m

[γR]l,melem, (51)

where the sum now only runs over modes in R, and γR is
determined by Eq. (43).

Let us now perform the basis transformation M [Eq. (44)]:
Following Eq. (43), the CM of R, γR, is then transformed to

γ ′
R =

(
Z 0
0 �N

)
,

with �N given by Eq. (46), and at the same time,
HR is transformed into an isomorphic Hamiltonian H′

R =
− i

4

∑
l,m[γ ′

R]l,melem. We thus see that the spectrum of H′
R

(and thus of HR) consists of two parts: First, the (1,1) block of
γ ′
R corresponds to bulk modes at energy ±1. Second, the (2,2)

bock �N corresponds to modes at generally smaller energy,
which are thus related to restricting Hfb to region R; those
modes are related to the boundary degrees of freedom via the
purification in the (2 + 3,2 + 3) block of �′ [Eq. (45)]. We
thus find that the edge Hamiltonian, i.e., the low-energy part
of the truncated flat-band Hamiltonian, is given by

H e
N = �N, (52)

with He
N = − i

4

∑
l,m[H e

N ]l,mclcm [Eq. (31)]. Except for addi-
tional bulk modes with energy ±1, H e

N in fact exactly repro-
duces the spectrum of the truncated flat-band Hamiltonian. The
relation (52) allows us to transfer the results on the boundary
theory �N of GFPEPS one to one to their edge Hamiltonian
H e

N . Note that the resulting relation between entanglement
spectrum and edge Hamiltonian H b

N = 2 arctan(H e
N ) corre-

sponds to the one derived by Fidkowski [35].
The derivation of the edge Hamiltonian in this section

is again identical to the edge Hamiltonian introduced for
general PEPS in Ref. [22]. Using the same notation as in
the last paragraph of Sec. III B 1, the edge Hamiltonian
for general PEPS is obtained by projecting the physical
Hamiltonian onto the boundary using the isometry VR. This
projection is exactly accomplished by rotating with M and
subsequently considering only the (2,2) block of γ ′

R, and thus,
the edge Hamiltonian obtained here is identical to the one of
Ref. [22], with the bulk Hamiltonian taken to be the flat-band
Hamiltonian.

2. Localization of edge modes

In the case of a cylinder, on which we focus, the edge
Hamiltonian H e

N is supported on the auxiliary modes both
on the left and the right edge [cf. Fig. 1(f)]. However, as
we will show in the following, the edge Hamiltonian (as
well as the boundary theory) on the two edges decouples for
almost all ky , and moreover, the corresponding physical edge
modes are localized at the same edge as the virtual modes.
An important consequence of that is that we can use the
virtual edge Hamiltonian to compute the Chern number of
the system, as it is known that the Chern number corresponds
to the winding number of the edge modes localized at one of
the edges of the system [41,42].

In order to answer both of these questions, we will first need
to demonstrate some properties of the CM � ≡ �N [Eq. (41)],
which describes the GFPEPS �N [Fig. 1(f)] on a cylinder of
length N � 1. Since the system is translational invariant in
vertical direction, we can equally well carry out our analysis
in Fourier space, and we will do so in the following. By
combining Eqs. (5), (47), and (48), we immediately find that
�1 is described by a CM of the form

�̂1 =

⎛
⎜⎝

Â1 B̂1,R B̂1,T

−B̂
†
1,R R̂1 Ŝ1

−B̂
†
1,T −Ŝ

†
1 T̂1

⎞
⎟⎠ ,

with R̂1, Ŝ1, and T̂1 defined in Eq. (49). The concatenation of
N columns is then given by the Schur complement

�̂N = P̂N + Q̂N V̂ −1
N Q̂

†
N, (53)

with

P̂N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R̂1 −B̂
†
1,R 0 . . .

B̂1,R Â1 0
0 0 Â1
...

. . .
. . .

0 Â1 −B̂
†
1,T

B̂1,T T̂1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q̂N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ŝ1

B̂1,T

B̂1,R B̂1,T

. . .

B̂1,R B̂1,T

B̂1,R

−Ŝ
†
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V̂N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T̂1 1
−1 R̂1 Ŝ1

0 −Ŝ
†
1 T̂1 1

−1
. . .

. . .
. . .

. . . 1
−1 R̂1 Ŝ1

−Ŝ
†
1 T̂1 1

−1 R̂1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have moved the virtual modes on the left (right)
boundary to the left (right) corner of the CM, as indicated by
the lines above.

Let us now first show that the two virtual edges are
decoupled. To this end, we consider the reduced state of the
virtual system of �N , which is given by the CM G in Eq. (41);
evidently, vanishing off-diagonal blocks in G (and Ḡ) imply
that any coupling between the two boundaries in �N [Eq. (46)]
vanishes as well. G is given by the two outer blocks of �̂N .
Obviously, the only way in which these two blocks can couple
is via V̂ −1

N .
We now invoke a result on the inverse of banded matrices

[43]: Given a banded matrix Ab, it holds that |(A−1
b )ij | �

const × β |i−j |, where β < 1 depends on the ratio of the largest
and smallest eigenvalue of AbA

†
b (and β → 1 if the ratio
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diverges). Using this result, we find that the coupling between
the two edges in G is exponentially suppressed in the length N

of the cylinder, as desired, as long as the ratio of the eigenvalues
of V̂N V̂

†
N does not diverge. Its largest eigenvalue is clearly

bounded by 4 since V̂N is the sum of two CMs. To lower
bound the smallest eigenvalue, observe that V̂N V̂

†
N is again a

banded Toeplitz matrix, which we can regard as a subblock of
a larger circulant matrix. This circulant matrix can in turn be
diagonalized using a Fourier transform, and we find that it is of
the form [D̂1 + ω̂−1(kx,ky)][D̂1 + ω̂−1(kx,ky)]†. On the other
hand, det [D̂1 + ω̂−1(kx,ky)] is exactly the energy spectrum of
the local parent Hamiltonian as constructed in Ref. [25], and
thus V̂ −1

N ≡ V̂ −1
N (ky) has exponentially decaying entries if and

only if the parent Hamiltonian is gapped for the given value of
ky (which is the case for almost all ky).

As we have seen, (almost) all virtual edge modes on the left
and right of the cylinder decouple. In the following, we will
show that also the physical modes corresponding to these edge
modes are exponentially localized around the corresponding
boundary. To this end, we fix N � 1 and consider the CM �′
[Eq. (45)], which is obtained by an orthogonal transformation
from the original CM � ≡ �N . In �′, the edge modes are
supported on the (2,2) block, and we need to figure out how
the inverse of the orthogonal transformation M [Eq. (44)] maps
these back to the physical modes.

To this end, note that in order to prepare an arbitrary state in
the (2,2) block of �′ [Eq. (45)], we just need to project the (3,3)
block on an (unphysical) CM X via the Schur complement
formula (38). In particular, we can use this to occupy or deplete
a specific mode. (We assume χ to be even; otherwise, one can
simply group pairs of modes.) Consequently, by projecting
the original CM �N onto the very same X, we will exactly
occupy or deplete the corresponding physical mode. Now, we
can make use of Eq. (53), together with the aforementioned
result on inverses of banded matrices: Given X and X′ such
that projecting onto X (X′) occupies (depletes) a certain
mode at one boundary, and denoting by γ (X) [γ (X′)] the
corresponding CMs after the projection, we have that

γ (X) − γ (X′) = Ŷ [(Ẑ + X−1)−1 − (Ẑ + X′−1)−1]Ŷ †,

where Ŷ and Ẑ denote the corresponding submatrices of �̂N .
Importantly, Ŷ decays exponentially in distance as it is a
column of �̂N . Since we also have that

[γ (X) − γ (X′)]l,m = 2i(vlv
∗
m − wlw

∗
m)

with
∑

l vlcl and
∑

l wlcl the creation/annihilation operator
for the corresponding physical mode, it follows that vl and wl

decay exponentially with the distance from the corresponding
boundary, i.e., the physical edge mode corresponding to a
given virtual edge mode is localized around that edge.

IV. FURTHER EXAMPLES

In this section, we will present further examples for both
chiral and nonchiral GFPEPS, and discuss their respective
boundary theories. In subsection A, we discuss a Chern insu-
lator with C = −1; in subsection B, we discuss a model with
C = 2 which has entangled edge modes at incommensurate

values of ky ; and in subsections C and D, we discuss two
nonchiral models.

A. GFPEPS describing a Chern insulator with C = −1

In the following, we study the family of chiral GFPEPS
presented in Ref. [23], which are particle-number conserving
and describe a Chern insulator with C = −1. They can be
decoupled into two copies of a topological superconductor
which is closely related to the family of Eq. (12) [44]. This
family has f = 2 physical fermionic modes per site, χ = 2
Majorana bonds, and γ1 [Eq. (5)] is defined via

A = (−1 + 2η)

(
W 0
0 −W

)
,

B =
√

η − η2

2

(
1 − W 1 + W −√

2 W
√

2 1

1 − W −1 − W
√

2 1 −√
2 W

)
,

D =

⎛
⎜⎜⎜⎜⎝

0 (−1 + η) 1 − η√
2
1 η√

2
1

(1 − η) 1 0 − η√
2
1 − η√

2
1

η√
2
1 η√

2
1 0 (−1 + η) 1

− η√
2
1 η√

2
1 (1 − η) 1 0

⎞
⎟⎟⎟⎟⎠ ,

(54)

where 1 = (1 0
0 1), W = ( 0 1

−1 0), and η ∈ (0,1). The ordering of
the physical Majorana modes is (c1↑,c2↑,c1↓,c2↓), and the
blocks of D are ordered according to left, right, up, and down
virtual modes.

The boundary �̂∞(ky) can be computed using the results of
Sec. V, and we find it to be of the form

�∞ =
⎛
⎝⊕

ky �=π

(
�̂L

∞(ky) ⊕ �̂R
∞(ky)

)⊕ �̂LR
∞ (π )

⎞
⎠⊗ 1 (55)

with �̂LR
N (π ) = ( 0 ±1

∓1 0 ), the sign depending on whether the
horizontal length N of the cylinder is even or odd. In Fig. 12,
we show the spectrum of the boundary Hamiltonian of the
above model (top panel). Moreover, we illustrate how for N →
∞ the edge Hamiltonian for a single edge converges (middle
panel) and how the coupling between the two edges vanishes
(bottom panel).

The Chern number can now be determined by counting the
number of times the bands of −i�̂R

∞(ky) ⊗ 1 [or, alternatively,
of −iĤ R

∞(ky) ⊗ 1] cross the Fermi level. Obviously, the
spectrum of the boundary and edge Hamiltonian consists of
two bands lying on top of each other. In the language of
topological superconductors, this would give rise to a Chern
number of −2. However, since we assume particle-number
conservation (as we deal with a Chern insulator), the Chern
number is given by the number of fermionic chiral modes
of the edge or boundary Hamiltonian, respectively. There is
only one such fermionic chiral mode (annihilation operator
âky

), which is obtained by combining the two chiral Majorana
modes on the right edge, ĉ1,ky

and ĉ2,ky
, with equal dispersion to

âky
= 1

2 (ĉ1,ky
− iĉ2,ky

). In this case, combining the Majorana
modes does not make the system topologically trivial since
both of them have the same chirality. Therefore, the (particle-
number-conserving) Chern number is C = −1.
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B. GFPEPS with Chern number C = 2

In the following, we provide an example of a topological
superconductor with χ = 2 and Chern number C = 2. The
model has been constructed numerically such that it exhibits
discontinuities in �̂∞(ky) and thus pure fermionic modes

between the edges maximally entangled modes between the
edges at ky = ±1; it thus demonstrates that for χ > 1, there
is no constraint (in terms of simple fractions of π ) on
the possible values of ky . The CM D of the example is
given by

D ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −0.326 −0.250 0.510 0.295 0.071 −0.434 −0.030
0.326 0 0.044 −0.074 −0.513 0.032 −0.051 0.577
0.250 −0.044 0 −0.467 0.036 0.603 −0.423 −0.125

−0.510 0.074 0.467 0 0.148 0.156 0.169 0.216
−0.295 0.513 −0.036 −0.148 0 −0.161 −0.296 0.237
−0.071 −0.032 −0.603 −0.156 0.161 0 0.042 0.521

0.434 0.051 0.423 −0.169 0.296 −0.042 0 0.047
0.030 −0.577 0.125 −0.216 −0.237 −0.521 −0.047 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It has been obtained by numerically optimizing D such that
one of the eigenvalues of �̂R

N (ky) (where N = 229) jumps from
±i to ∓i for some ky ∈ [0.999,1.001], while restricting half
of the eigenvalues of D to be between ±0.6i such as to prevent
D from converging to a pure state. As �̂R

N (−ky) = [�̂R
N (ky)]∗

(with ∗ indicating the complex conjugate), this automatically
yields another identical discontinuity at ky = −1. Note that D

can be purified to a state with f = 2 physical fermions.
The spectrum of −iĤ R

∞(ky) is plotted in Fig. 13. Due to
the discontinuities at ky ± 1, it crosses the Fermi energy twice
from below, thus describing a topological superconductor with
Chern number C = 2. At ky = ±1, one of the eigenvalues of
−iĤ R

∞(ky) diverges, and thus �̂LR
∞ (ky) is nontrivial, coupling

one of the two virtual Majorana modes between the left and
the right ends of the cylinder.

C. GFPEPS with Chern number C = 0

The following example provides a family of nontopological
GFPEPS with Chern number C = 0. It has one parameter μ,
and its matrix D is given by

D =

⎛
⎜⎜⎜⎝

0 0 −μ

2 f (μ)

0 0 f (μ) −μ
μ

2 −f (μ) 0 0

−f (μ) μ 0 0

⎞
⎟⎟⎟⎠ (56)

with f (μ) =
√

1 − 3μ

2 + μ2

2 and μ ∈ (0,1). (A and B can be
obtained by choosing an arbitrary purification.)

We find that the left and right boundaries [Eq. (30)]
decouple for all ky . The dispersion relation for the right
boundary is shown in Fig. 8. Since the energy band of the
boundary Hamiltonian crosses the Fermi energy once with
positive and once with negative slope for all μ ∈ (0,1), the
Chern number is always zero.

D. GFPEPS with flat entanglement spectrum and C = 0

The last example we consider is taken from Ref. [25];
it does not display any topological features. It is

given by

γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
2

− 1√
2

0 0

0 0 0 0 1√
2

− 1√
2

− 1√
2

0 0 0 1
2

1
2

1√
2

0 0 0 1
2

1
2

0 − 1√
2

− 1
2 − 1

2 0 0

0 1√
2

− 1
2 − 1

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

Since D̂N = ˆ̄DN , and thus G = Ḡ, the entanglement spectrum
and edge Hamiltonian of this model are totally flat, i.e.,
�N = 0 according to Eq. (46), and the Chern number is zero.

V. FULL SOLUTION FOR χ = 1

In this section, we will use the recursion relation (50) to
explicitly derive the boundary and edge theories for GFPEPS
with one Majorana mode per bond, χ = 1. We will then use
this result to show that the presence of chiral edge modes
is related to the occurrence of Majorana modes maximally
correlated between the two edges, i.e., a fermionic mode in a
pure state shared between the two edges.

We start by deriving a closed expression for the boundary
and edge Hamiltonian for χ = 1. In this case,

D̂ =
(

ir̂ iŝ

iŝ∗ it̂

)
, (58)

with scalar functions r̂ ≡ r̂(ky) ∈ R, t̂ ≡ t̂(ky) ∈ R, and ŝ ≡
ŝ(ky). Note that for given ky , the eigenvalues need not to come
in complex-conjugate pairs. However, they are still bounded
by one, which implies that for r̂ t̂ � 0,

1 −
√

r̂ t̂ � |ŝ| with equality iff |ŝ| = 1, (59)

which in turn implies that for all r̂ and t̂ ,

1 − r̂ t̂ � |ŝ| with equality iff |ŝ| = 1. (60)

[For r̂ � 0 and t̂ � 0, Eq. (59) follows from 2 �
−i (1, ŝ

|ŝ| ) D̂1 (1, ŝ
|ŝ| )

† = r̂ + t̂ + 2|ŝ| � 2
√

r̂ t̂ + 2|ŝ|, and sim-
ilarly for r̂ � 0 or t̂ � 0.]
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FIG. 12. (Color online) Analysis of the boundary and edge
Hamiltonian of the model of Sec. IV A, using the form of Eq. (55).
Top: boundary Hamiltonian −iĤ R

∞(ky) for different values of η.
Middle: convergence of the right edge spectrum �̂R

N (ky) [i.e.,
the block of �̂N (ky) corresponding to the right edge] for η = 1

2
with increasing cylinder length N = 1,3,8,100. For N = 100, the
spectrum is already well converged. Bottom: magnitude of the
corresponding off-diagonal element of D̂N (ky) which describes the
coupling of the two boundaries (cf. Sec. III B 2), for cylinder lengths
N = 1,3,8,100, illustrating the exponential decoupling in N .

Let us now study what happens when we concatenate
cylinders; for the CM of N columns, we will write D̂N and
r̂N , ŝN , and t̂N . The iteration relation (50) yields the following

−π −π/2 −1 0 1 π/2 π
−10

−5

0

5

10

sp
ec

(−
iĤ

R ∞
)

ky

FIG. 13. (Color online) Eigenvalue spectrum of −iĤ R
∞(ky) for

the example of Sec. IV B. Since χ = 2, there are two bands. They
diverge at ky = ±1, respectively, where only one mode of Ĥ R

∞(ky) is
defined. Since the Fermi level at E = 0 is crossed two times from
below, C = 2. The dispersionless bulk bands of the (truncated) flat-
band Hamiltonian HR correspond to an energy of ±∞.

iteration relations for the matrix elements:

r̂ ′′ = r̂ + r̂ ′ |ŝ|2
1 − r̂ ′ t̂

, (61a)

t̂ ′′ = t̂ ′ + t̂
|ŝ ′|2

1 − r̂ ′ t̂
, (61b)

ŝ ′′ = ŝ ŝ ′

1 − r̂ ′ t̂
. (61c)

For ẑ = ẑ′ = ẑN (ẑ = r̂ ,ŝ,t̂) and ẑ′′ = ẑ2N , with N a power
of 2 (i.e., doubling the number of columns in each step), we
obtain

r̂2N = r̂N (1 + ξ̂N ), (62a)

t̂2N = t̂N (1 + ξ̂N ), (62b)

ŝ2N = ŝN

ŝ∗
N

ξ̂N , (62c)

with

ξ̂N = |ŝN |2
1 − r̂N t̂N

. (63)

Assume for now |ŝN | < 1: Then, (60) ⇒ ξ̂N < 1 ⇒ |ŝ2N | <

1, and thus |ŝ1| < 1 implies |ŝN | < 1. Moreover, Eq. (60)
implies |ŝ2N | < |ŝN |, which in turn implies that |ŝN | converges;
similarly, since ξ̂N � 0, r̂N and t̂N monotonously move away
from zero and thus converge. We therefore find that for
|ŝN | < 1, all matrix elements converge.

On the other hand, |ŝ1| = 1 implies that r̂1 = t̂1 = 0 (as D̂1

must have spectral radius � 1), and thus r̂∞ = t̂∞ = 0, while
|ŝ∞| = 1. An explicit analysis of the possible D̂1 for χ = 1,
using Eq. (48), shows that r̂1(ky) = t̂1(ky) = 0 can only be the
case for ky = 0 or ky = π , unless both vanish identically (in
which case the fixed point and the GFPEPS are trivial).

In order to determine the fixed point for |ŝ1| < 1 (N → ∞),
we now consider the scenario where ẑ = ẑ′′ = ẑ∞ and ẑ′ = ẑ1,
i.e., where we append a single column to an infinite cylinder.
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From (61a), we find that

r̂∞ = r̂∞ + r̂1
|ŝ∞|2

1 − r̂1 t̂∞

and thus ŝ∞ = 0 for r̂1 �= 0 (and similarly if ĉ1 �= 0); if r̂1 =
t̂1 = 0, (61c) yields ŝ∞ = ŝ∞ŝ1 which as well implies ŝ∞ = 0
as long as |ŝ1| < 1. On the other hand, Eq. (61b) yields a
quadratic equation for t̂∞,

r̂1 t̂
2
∞ − (1 + r̂1 t̂1 − |ŝ1|2)t̂∞ + t̂1 = 0, (64)

and similarly for r̂∞ by exchanging r̂ and t̂ . Of the two
solutions,

t̂±∞ =
�̂1 ±

√
�̂2

1 − 4r̂1 t̂1

2r̂1

[where �̂1 = 1 + r̂1 t̂1 − |ŝ1|2 = det(iD̂1) + 1 � 0], the fixed
point is always given by t̂−∞. This is seen by noting that
−1 � t̂+∞ � 1 implies that ±2r̂1 − �̂1 �

√
�̂2

1 − 4r̂1 t̂1 (with
± the sign of r̂1), squaring which yields 0 � (r̂1 ∓ 1)(t̂1 ∓
1) − |ŝ1|2 = det(iD̂1 ∓ 1), and thus t+∞ can only be physical if
iD̂1 has an eigenvalue ±1; and these remaining cases can be
easily analyzed by hand. We thus find that the fixed-point CM
is of the form

D̂∞ =
(

ir̂−
∞ 0

0 it̂−∞

)
,

except when |ŝ1| = 1, which we found can only happen at
ky = 0,π [in which case ŝ1(ky) is real].

In order to obtain the boundary theory, we need to combine
the expression for �N [Eq. (46)] with the fact that Ĝ and ˆ̄G
are given by Ĝ = ir̂∞ ⊕ it̂∞ and ˆ̄G = it̂∞ ⊕ ir̂∞, with the
exception of the singular points in ky space where |ŝ∞| = 1. In
particular, the two boundaries can be described independently
almost everywhere, and we obtain for the edge theory of the
right edge (t̂∞ = t̂−∞, r̂∞ = r̂−

∞)

�̂R
∞(ky) = −it̂∞ − i(1 − t̂2

∞)(t̂∞ − r̂−1
∞ )−1

= i
r̂1 − t̂1√

�̂2
1 − 4r̂1 t̂1

, (65)

with the boundary Hamiltonian given by ĤR
∞(ky) =

2 arctan[�̂R
∞(ky)]; for the opposite edge, r̂ and t̂ need to be

interchanged. For the points with |ŝ1| = |ŝ∞| = 1, on the other
hand, the two boundaries are in a maximally entangled state
of the Majorana modes with the corresponding ky .

Clearly, �̂R
∞(ky) [Eq. (65)] is continuous unless the denom-

inator becomes zero. For the latter to happen, one first needs
that r̂1 t̂1 � 0, and with this, �̂2

1 − 4r̂1 t̂1 = 0 is equivalent to
1 −

√
r̂1 t̂1 = |ŝ1|, which using Eq. (59) implies that |ŝ1| = 1,

which can only be the case for ky = k0
y = 0,π . In order to

analyze how �̂R
∞(ky) behaves around such a point, we expand

to first order in δky = ky − k0
y : Then, r̂1 = r̂ ′

1 δky + O(δk2
y),

t̂1 = t̂ ′1 δky + O(δk2
y), and |ŝ1| = 1 + O(δk2

y) (since |ŝ1| � 1).

One immediately finds that

�̂R
∞(ky) = i

(r̂ ′
1 − t̂ ′1)δky + O

(
δk2

y

)√
−4r̂ ′

1 t̂
′
1 δk2

y + O
(
δk4

y

)
= i sign(δky)

r̂ ′
1 − t̂ ′1√−4r̂ ′

1 t̂
′
1

+ O(δky),

that is, �̂R
∞(ky) exhibits a discontinuity unless r̂ ′

1 = t̂ ′1. In order
to relate r̂ ′

1 and t̂ ′1, we observe that the eigenvalues of D̂1 around
k0
y are i[±1 + 1

2 (r̂ ′
1 + t̂ ′1)δky + O(δk2

y)], and thus r̂ ′
1 + t̂ ′1 = 0,

which implies that

�̂R
∞(ky) = i sign(δky) sign

(
r̂ ′

1

(
k0
y

))
;

that is, the edge Hamiltonian exhibits a jump between ±1,
and the boundary Hamiltonian derived from the entanglement
spectrum diverges, as we have seen in the examples. The case
of vanishing first-order terms r̂ ′

1 = t̂ ′1 = 0 can be dealt with
using the explicit form of D̂1 for χ = 1, which yields that
r̂1 = t̂1 = 0 vanish identically for all ky , making the fixed
point trivial; if r̂ ′

1 changes its sign, this corresponds to a
transition point between C = +1 and −1. Note that according
to Eq. (48), r̂1 = t̂1 = 0 happens if and only if K is either
diagonal or off diagonal (as the other terms are anti-Hermitian
2 × 2 matrices). This means that the virtual CM D does not
couple the left with the down Majorana mode and the right
with the up Majorana mode (or the other way around).

We thus find that |ŝ1(k0
y)| = 1 at k0

y = 0 or π is equivalent to
having a discontinuity in the edge Hamiltonian, which jumps
between ±1. Since H e

N is otherwise continuous, and we will
see that for χ = 1, |ŝ1(k0

y)| = 1 can occur for at most one ky

(see Sec. VI B), it follows that |ŝ1(k0
y)| = 1, i.e., the existence

of a maximally entangled mode between the left and right
edges of the cylinder D̂1 at ky = k0

y is equivalent to having a
chiral mode at the edge.

VI. SYMMETRY AND CHIRALITY

As we have seen in the preceding section, the existence of a
chiral edge mode is equivalent to the existence of a maximally
entangled Majorana mode between the left and right edges of
the cylinder at k0

y = 0 or π . In the following, we will show that
this mode can be understood as arising from a local symmetry
of the state �1 which defines the GFPEPS [Eq. (1)].

Concretely, in part A we will demonstrate that a certain
symmetry of �1 leads to a maximally entangled Majorana
pair between the left and right edges and thus a chiral edge
state. In part B we will show the opposite, that a maximally
entangled Majorana pair between the left and the right implies
�1 having a certain symmetry. In part C we uncover these
kinds of symmetries in the examples presented in the previous
sections. In part D we consider again the example given by
Eq. (12) and outline how strings of symmetry operators can be
used to construct all ground states of its frustration-free parent
Hamiltonian Hff .

We will generally restrict the discussion in this section to
the case of χ = 1 Majorana mode per bond, although some of
the results (in particular in Subsection A) directly generalize
to larger χ .
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A. Sufficiency of local symmetry

We start by showing how a symmetry in �1 induces a
symmetry on a whole column �1, and how this subsequently
gives rise to a maximally correlated mode between the two
edges of a cylinder. Since �1 is a pure Gaussian state where
four virtual Majorana modes are entangled with one physical
fermionic mode, there must be a virtual fermionic mode which
is in the vacuum, i.e.,

d1 = αLcL + αRcR + αUcU + αDcD (66)

on the virtual system which annihilates �1,

d1 |�1〉 = 0, (67)

as already discussed in Sec. II D. [d1 corresponds to the
eigenvector of D, Eq. (5), with eigenvalue −i, and describes
a fermionic mode.] We will refer to d1 as a symmetry since
it corresponds to a Z2 symmetry of �1 with U1 = 1 − 2d

†
1d1.

On the other hand, for the virtual fermionic modes ω12 (the
indices denoting the vertical positions) [Eq. (37)], it holds that
〈ω12|(1 − ic1,Dc2,U ) = 0 and thus

〈ω12|(c1,D + ic2,U ) = 0. (68)

By combining Eqs. (67) and (68), we can now study how the
symmetry (66) behaves when we concatenate two or more
sites by projecting onto 〈ω12| (we assume αU �= 0 for now,
and define θ := iαD/αU ):

0 = 〈ω12|[(αLc1,L + αRc1,R + αUc1,U + αDc1,D)|�1,�1〉1,2

+ θ (αLc2,L + αRc2,R + αUc2,U + αDc2,D)|�1,�1〉1,2]

= d2〈ω12|�1,�1〉1,2 ≡ d2|�2〉,
with

d2 = αL(c1,L + θc2,L) + αR(c1,R + θc2,R)

+αUc1,U + θαDc2,D

the symmetry of the concatenated state �2 [Figs. 1(b) and
14(b)]. The argument can be easily iterated, and we find

FIG. 14. (Color online) Concatenation of a symmetry. (a) Sym-
metry d1 annihilating the state �1 of virtual and physical Majorana
fermions on one site. For a chiral state with χ = 1 it can be
concatenated as described in the text to a symmetry d2 annihilating the
state �2 defined on two sites (b). Proceeding in the same manner and
closing the vertical boundary, one obtains a symmetry d© annihilating
one column �1 (c).

that

dNv

∣∣�Nv

〉 = 0,

with

dNv
= αL

Nv∑
y=1

θy−1cy,L + αR

Nv∑
y=1

θy−1cy,R

+ αUc1,U + θNv−1αDcNv,D.

Let us now see what happens when we close the boundary
between sites Nv and 1, which yields |�1〉 ≡ 〈ωNv,1|�Nv

〉
[Fig. 1(d)]: Since 〈ωNv,1|(cNv,D + ic1,U ) = 0, we find that

d©|�1〉 = 0, (69)

with

d© = αL

Nv∑
y=1

θy−1cy,L + αR

Nv∑
y=1

θy−1cy,R (70)

[Fig. 14(c)] whenever θNv = 1. This leads to two requirements
for the existence of d© fulfilling Eq. (69): First, |αU | = |αD|,
and second, the momentum k0

y of d© (defined via eik0
y = θ )

must be commensurate with the lattice size. Whenever these
requirements are fulfilled, we thus find that the local symmetry
d1 [Eq. (66)] gives rise to a symmetry d© ∝ αLĉL,ky

+ αRĉR,ky

[Eq. (69)] on the whole column (i.e., on D̂1), at momentum
eik0

y = iαD/αU . Note that we only need to assume that either
αU or αD is nonzero; if both are zero, the condition (67)
implies that the horizontal virtual modes entirely decouple
from the physical system, and the GFPEPS describes a product
of one-dimensional vertical chains.

We have thus found that a certain local symmetry induces a
symmetry on a column �1, which forces the Majorana modes
with a specific momentum on both ends of the column to be
correlated. This is equivalent to demanding that for this ky =
k0
y , D̂1(k0

y) has an eigenvalue −i. For k0
y = 0,π , this implies

that |ŝ1(k0
y)| = 1, as the diagonal elements of D̂1(k0

y) are zero

due to D̂1(−ky) = D̂∗
1 (ky).

The symmetry of a single column is passed on when
concatenating columns, that is, when going from �1 to �N

[Figs. 1(d)–1(f)], in analogy to the arguments given before.
In order for this to lead to a coupling between the two edge
modes in the limit of an infinite cylinder, as observed in the
examples with chiral edge modes, it is additionally required
that |αL| = |αR|. Otherwise, the symmetry becomes localized
at a single boundary. This can be understood by exchanging
horizontal and vertical directions, leading to eik0

x = iαR/αL

(and k0
x = 0,π , too). As we have seen in the last section, a

coupling between the left and the right edges for χ = 1 can
only emerge, if k0

y = 0,π (and analogously k0
x = 0,π ). Thus,

we have to require αD/αU = ±i, αR/αL = ±i for a symmetry
leading to a chiral edge state. Since there can only be one
such symmetry for χ = 1 (otherwise the virtual and physical
systems decouple), we conclude that there can be a maximally
entangled Majorana mode only for k0

y = 0 or π , but not for
both of them (and similarly for kx). We thus find that d1 must
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be of the form

d1 = αL(cL ± icR) + αU (cU ± icD). (71)

(αL,αU �= 0) in order to be stable under concatenation.
Let us finally show that in order to have a nontrivial Chern

number, there is an additional constraint on αL and αU , namely,
that

arg

(
αL

αU

)
�∈
{

0,π,±π

2

}
. (72)

This can be directly verified by explicitly constructing D

(given d̂1, the only remaining freedom is the eigenvalue
of the nonpure mode), where one finds that the diagonal
(off-diagonal) elements of K [cf. Eq. (47)] vanish exactly if
arg( αL

αU
) = 0,π [arg( αL

αU
) = ±π

2 ]. As we have seen in the last
section, this in turn is equivalent to a trivial (completely flat)
edge spectrum, and thus to a trivial Chern number.

In summary, we find that we have a nontrivial Chern number
whenever we have exactly one symmetry d1 which satisfies
Eqs. (71) and (72).

B. Necessity of an onsite symmetry

Let us now show the converse statement of the previous
subsection: We will show that for χ = 1, a maximally
entangled Majorana pair between the left and right boundaries
of a cylinder at k0

y = 0,π , which is equivalent to the presence of
a chiral edge mode, implies the existence of a local symmetry
of the form (71).

Following the results in Sec. V, the presence of a maximally
entangled Majorana pair on the boundary of a cylinder of

arbitrary length is equivalent to the presence of the symmetry
on a single column (i.e., a cylinder of length N = 1), that is,

D̂1
(
k0
y

) =
(

0 ±1
∓1 0

)
. (73)

According to Eq. (48), we also have

D̂1
(
k0
y

) = H + K

[
V −

(
0 ±1

∓1 0

)]−1

K�, (74)

where the upper sign is for k0
y = 0 and the lower for k0

y = π

[and is unrelated to the sign in Eq. (73)]. We choose in both
cases the upper sign; the other cases can be treated analogously.
Then, Eq. (74) tells us that 〈ωv|�1〉 [with 〈ωv| corresponding
to the projection on 1

2 (1 + icDcU )] is in a maximally entangled
state of the two horizontal Majorana modes. This maximally
entangled state fulfills

〈ωh,ωv|�1〉 = 0 (75)

with 〈ωh| corresponding to the projection on 1
2 (1 + icRcL).

We now parametrize the reduced density matrix of the
virtual system ρvir in the basis {|�vir〉,|ωh〉,|ωv〉,|ωh,ωv〉}
(|�vir〉 denoting the projection on the vacuum of the virtual
particles and their subsequent discard). According to Eq. (75)
its matrix representation is

ρvir = 1

4

⎛
⎜⎝

ρ00 0 0 0
0 ρhh ρhv 0
0 ρ∗

hv ρvv 0
0 0 0 0

⎞
⎟⎠ . (76)

From it, we can calculate the elements of D via Dp,q =
i
2 tr(ρvir[cp,cq]) with p,q = L,R,U,D [cf. Eq. (4)] and obtain

D =

⎛
⎜⎝

0 ρ00 − ρhh + ρvv 2 Im(ρhv) −2 Re(ρhv)
−ρ00 + ρhh − ρvv 0 2 (ρhv) 2 Im(ρhv)

−2 Im(ρhv) −2 Re(ρhv) 0 ρ00 + ρhh − ρvv

2 Re(ρhv) −2 Im(ρhv) −ρ00 − ρhh + ρvv 0

⎞
⎟⎠ . (77)

The fact that ρvir describes a Gaussian state is used by inserting
this into Eq. (74), which gives

ρ00 = 1 −
√

(ρhh − ρvv)2 + 4|ρhv|2. (78)

Given this restriction, one can check that D in Eq. (77) has
an eigenvalue −i with the corresponding symmetry d1 =
αL(cL − icR) + αU (cU − icD) fulfilling Eq. (67), where αL =
2ρ∗

hv , αU = −ρhh + ρvv −
√

(ρhh − ρvv)2 + 4|ρhv|2. After
considering all possible sign cases in Eqs. (73) and (74), one
arrives at Eq. (71). We thus find that for a GFPEPS with χ = 1,
a (unique) symmetry of this form with arg( αL

αU
) /∈ {0,π,±π

2 }
and αL,αU �= 0 is both necessary and sufficient to have a
divergence in the boundary spectrum, and thus a Chern
number C = ±1. The states simultaneously fulfilling Eq. (71)
and arg( αL

αU
) ∈ {0,π,±π

2 }, on the other hand, are the transi-
tion points between GFPEPS with Chern number C = −1
and +1.

C. Symmetries in the considered examples

We will now study the symmetries in the examples given
in Sec. IV and relate them to chiral edge modes in the light of
the results of the previous subsections.

1. Chern insulator with Chern number C = −1

For the Chern insulator introduced in Sec. IV A, we consider
only one copy of the two superconductors constituting the
Chern insulator. Doing so is trivial on the virtual level since
the matrix D is block diagonal with two identical blocks. Each
of those blocks has an eigenvalue −i corresponding to the
symmetry

d1 = −e−i π
4 cL − ei π

4 cR − icU + cD (79)

for any η ∈ (0,1). Thus, the state �1 possesses two symmetries
d

(1,2)
1 , with d

(1)
1 |�1〉 = d

(2)
1 |�1〉 = 0. Both of them are the form

(79), with one containing only the first Majorana operator in
left, right, down, and up directions and the other only the
second Majorana operator.
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2. GFPEPS with Chern number C = 2

Let us now consider the topological superconductor with
Chern number C = 2 introduced in Sec. IV B; in the following,
all equalities are to be understood up to numerical accuracy.
By diagonalizing the CM D of the virtual system, one
obtains two linearly independent eigenvectors with eigenvalue
−i, i.e., there exist two operators d

(0,1)
1 such that (x0d

(0)
1 +

x1d
(1)
1 )|�1〉 = 0 for all xi . In order to find a basis d

(±)
1 of

operators which reveals the symmetries of the model, we start
from the state �1 on one column, which has zero modes at
momenta ky = ±1. We first focus on the symmetry at ky =
k0
y = 1, where we find that horizontal modes of �1 at momen-

tum k0
y are annihilated by an operator

∑2
κ=1 α

(+)
L,κ [ĉL,κ (k0

y) −
ieik0

x ĉR,κ (k0
y)] with k0

x = −2.58 (see Ref. [45] for the values

of the α’s). This suggests to try to construct a d
(+)
1 which

contains the above operator: it turns out that x0d
(0)
1 + x1d

(1)
1

indeed contains an operator of this form, which at the same
time acts on the vertical modes as

∑
κ α

(+)
U,κ (cU,κ − ieik0

y cD,κ ).
We proceed identically for ky = −k0

y = −1, and obtain a pair
of (nonorthogonal) symmetries

d
(±)
1 =

2∑
κ=1

[
α

(±)
L,κ

(
cL,κ − ie±ik0

x cR,κ

)
+ α

(±)
U,κ

(
cU,κ − ie±ik0

y cD,κ

)]
. (80)

We thus find that also for this model, the existence of
divergences in the entanglement spectrum and thus of chiral
edge modes is closely related to local symmetries in �1 with
the corresponding momenta. Note that since all coefficients
α are different, the only way to grow these symmetries
following the procedure of Sec. VI A is to concatenate either
exclusively d

(+)
1 or exclusively d

(−)
1 , which therefore gives

rise to maximally entangled Majorana pairs between the two
boundaries with definite momenta ±k0

y and ±k0
x , respectively.

3. Generic GFPEPS with Chern number C = 0

Let us now consider the nonchiral family of states discussed
in Sec. IV C. As it has only one physical mode, there must be
a symmetry d1 such that d1|�1〉 = 0. It can be calculated to be

d1 = −2i
√

f (μ)

2 − μ
cL + icR − 2

√
f (μ)

2 − μ
cU + cD. (81)

As it is not of the form (71) required for chiral edge states, the
Chern number of the family is zero.

4. GFPEPS with flat entanglement spectrum and C = 0

Let us finally consider the example of Sec. IV D, which has
a flat entanglement spectrum. It has a symmetry d1|�1〉 = 0
with d1 = cL + cR − icU − icD , i.e., with momentum k0

x =
k0
y = π

2 . Since it is not at momentum 0 or π , there cannot be
entangled Majorana modes between the left and the right edges
of a long cylinder. However, as the amplitudes are equal, the
symmetry is stable under concatenation, and must therefore
still be present in an infinite cylinder. The explanation is that
in the limit N → ∞, a second symmetry at k0

y = π
2 arises,

such that on each edge the two modes at ky = ±π
2 can pair up

locally.

D. Symmetry and ground space

The GFPEPS models discussed in this paper appear as
ground states of two types of Hamiltonians: On the one hand,
there is is the flat-band Hamiltonian Hfb [Eq. (8)], which
by construction has the GFPEPS � as its unique ground
state. On the other hand, we can construct the local parent
Hamiltonian Hff [Eq. (11)], which is gapless for the chiral
examples considered, i.e., for any finite system size, it is
exactly doubly degenerate with energy splittings to higher
energies that are the inverse of a polynomial in the system
size. In the following, we will show how this ground space can
be parametrized by using the virtual symmetry d1 of the local
state �1. This is in close analogy to the case of conventional
PEPS with topological order, where the ground space can be
parametrized by putting loops of symmetry operators on the
virtual bonds in horizontal and vertical direction around the
torus on which the GFPEPS is defined.

In the following, we will consider the example of Sec. II B
and show how to parametrize its doubly degenerate ground
space in terms of strings of symmetry operators. For simplicity,
we will set λ = 1

2 . Let us start by recalling Eq. (16), which
defines operators u, w, and d1 such that u|�1〉 = w|�1〉 =
d1|�1〉 = 0, where u = 1√

2
(a† − b) and w = 1√

2
(a + b†), with

a the physical mode, and b = 1√
2
(h + v), d1 = 1√

2
(−h + v),

with h = exp(i π
4 )(cL − icR)/2 and v = (cU − icD)/2 [cf.

Eqs. (14) and (17)].
Let us now consider a lattice of size Nh × Nv , and

concatenate all the �1 in this region by projecting onto 〈ωjn|
and 〈ω′

jn| on all the horizontal and vertical links, respectively,
but without closing either of the boundaries, resulting in a
state �Nh×Nv

. Following the arguments given in Sec. VI A,
projecting onto the maximally entangled states concatenates
the symmetry operators u, w, and d1, which gives rise to three
symmetries for the square region:

ũ
∣∣�Nh×Nv

〉 = w̃
∣∣�Nv×Nh

〉 = d̃1

∣∣�Nh×Nv

〉 = 0,

where

ũ = 1√
2

(ã† − b̃), (82a)

w̃ = 1√
2

(ã + b̃†), (82b)

d̃1 = 1√
2

(−h̃ + ṽ), (82c)

where again

b̃ = 1√
2

(h̃ + ṽ),

(83)

h̃ = 1

2
e
i
π
4
(
c̃L − ic̃R) and ṽ = 1

2
(c̃U − ic̃D).

Here, c̃p = ∑
y cy,p, c̃q = ∑

x cx,q (p = L,R, q = U,D)
are the zero-momentum (center-of-mass) mode of the vir-
tual Majorana modes on the corresponding boundary, and
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ã = ∑
j aj is the center-of-mass mode of the physical fermion

(with site index j ).
In order to close the boundary, we first transform the

entangled states across the boundary into the Fourier basis
(since they are translational invariant, they are of the same form
in k space), and project onto all entangled states at the boundary
except those with momentum kx = 0 and ky = 0. This leaves
us with the zero-momentum part of the state �Nh×Nv

, which
we denote by �̃Nh×Nv

, where we disregard additional physical
modes which are unentangled to the boundary degrees of
freedom. This state is exactly characterized by the three
symmetries of Eq. (82), and thus

�̃Nh×Nv
= ∣∣�̃Nh×Nv

〉 〈
�̃Nh×Nv

∣∣ = d̃1d̃
†
1 ũũ†w̃w̃†

= 1
4 d̃1d̃

†
1(ã† − b̃)(ã − b̃†)(ã + b̃†)(ã† + b̃)

= 1
2 d̃1d̃

†
1(−ã†b̃† + ã†ãb̃†b̃ + b̃b̃†ãã† + ãb̃).

Following Eq. (37), the projection onto the remaining
zero-momentum bonds is ω̃h = 1

2 (1 + ic̃Rc̃L) and ω̃v =
1
2 (1 + ic̃Dc̃U ). Hence, h̃†|ω̃h〉 = ṽ†|ω̃v〉 = 0, and thus, using

Eqs. (82c) and (83), also d̃
†
1 |ω̃h,ω̃v〉 = b̃† |ω̃h,ω̃v〉 = 0, i.e.,

|ω̃h,ω̃v〉 = d̃
†
1 b̃

†|�vir〉 (84)

(with |�vir〉 the vacuum of d̃1 and b̃, or equivalently of h̃ and
ṽ; the phase can be absorbed in |�vir〉).

Let us now see what happens when we close the remaining
(kx,ky) = (0,0) boundary. Since �̃Nh×Nv

is proportional to
d̃1d̃

†
1, we find that

〈ω̃h,ω̃v| �̃Nh×Nv
|ω̃h,ω̃v〉 = 0;

the success probability for constructing the GFPEPS by
projecting onto entangled states is zero! Indeed, this comes
as no surprise since the success probability of any such
projection is related to

√
det(D + ω−1) in Eq. (38) [40], which

in turn is the square root of the spectral function of the parent
Hamiltonian as constructed in Ref. [23] (which generally, and
in particular for the example considered, is equal to Hff):
having a gapless parent Hamiltonian requires the GFPEPS
to vanish when performing the projections. This raises the
question of how to obtain a proper PEPS description of the
ground state subspace.

Fortunately, this problem can be overcome exactly by using
the virtual symmetry of �1. To this end, let us place a string
of symmetry operators

c̃L = 1√
2
e−i π

4 (−d̃1 + b̃) + 1√
2
ei π

4 (−d̃
†
1 + b̃†)

at the left edge before closing the boundary, i.e., we replace
the state |ω̃h,ω̃v〉 = d̃

†
1 b̃

†|�vir〉 by

|ω̃L〉 = c̃L|ω̃h,ω̃v〉 = −1√
2
e
−i

π
4 (b̃† + d̃

†
1)|�vir〉.

Using that �̃Nh×Nv
is proportional to d̃1d̃

†
1, this immediately

yields

〈ω̃L|�̃Nh×Nv
|ω̃L〉 = 1

2 〈�vir| b̃ �̃Nh×Nv
b̃†|�vir〉 = 1

4 ã†ã, (85)

i.e., this way we obtain a GFPEPS for one of the ground states
of the parent HamiltonianHff , namely, the one with the gapless

center-of-mass mode occupied. It is easy to see that we obtain
the same result when we insert a horizontal string instead, e.g.,
c̃U . In terms of the notation introduced in Sec. II D, |�〉 = 0
and |�Ch

〉 ∝ |�Cv
〉. Note that the string operators c̃L and c̃U

can be deformed without changing the state: This can be seen
by consecutively using Eq. (16c) to deform the string as∣∣�Ch

〉 = 〈ω∂R,∂R̄|c̃L|�R,�R̄〉 = 〈ω̄|c̃L|�̄〉

= 〈ω̄|
⎛
⎝ Nv∑

y=2

cy,L + ic1,R + e
−i

π
4 c1,U − e

i
π
4 c1,D

⎞
⎠ |�̄〉

= ∣∣�C′
h

〉
, (86)

etc., where we defined |�̄〉 as the state of all virtual and
physical particles before any projection is applied, and 〈ω̄|
denotes the projection on all virtual modes.

Let us now finally see what happens if we insert both a
horizontal and a vertical string: Then, we must replace |ω̃h,ω̃v〉
by

|ω̃UL〉 = c̃U c̃L|ω̃h,ω̃v〉 = −e−iπ/4|�vir〉,
and we find

〈ω̃UL|�̃Nh×Nv
|ω̃UL〉 = 〈�vir| �̃Nh×Nv

|�vir〉 = 1
2 ãã†, (87)

which is the second ground state, where the gapless center-
of-mass mode is in the vacuum. Note that the second ground
state can equivalently be obtained using that ã|�̃Nh×Nv

〉 =
−b̃†|�̃Nh×Nv

〉 [Eq. (82b)], which exactly cancels the b̃ in
Eq. (85), and thus yields Eq. (87).

In summary, we find that it is possible to parametrize the
two-dimensional ground state subspace of the model using the
string operators given by the virtual symmetry of �1: One
of the ground states is obtained by inserting a single string
(either horizontally or vertically), while the other ground state
is obtained by inserting both a horizontal and a vertical string.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have established a framework for boundary
and edge theories for Gaussian fermionic projected entangled
pair states (GFPEPS), and applied it to the study of chiral
fermionic PEPS, and in particular their underlying symmetry
structure.

We have introduced two different kinds of Hamiltonians:
the boundary Hamiltonian Hb

N and the edge Hamiltonian
He

N . The former reproduces the entanglement spectrum of
the reduced density matrix of a region as a thermal state
exp(−Hb

N ), while the latter contains the low-energy physics
of the truncated flat-band Hamiltonian Hfb. We have shown
that in the context of GFPEPS, both of these Hamiltonians act
on the auxiliary degrees of freedom at the boundary, which
naturally imposes a one-dimensional structure, and that they
are related in a simple way. As the physical edge modes
corresponding to He

N are localized at the same edge of a
cylinder, the number of chiral edge modes and thus the Chern
number of a GFPEPS can be read off the virtual boundary
and edge Hamiltonian. We have also provided constructive
methods for analytically and numerically determining Hb

N and
He

N for general GFPEPS, and in particular on infinite cylinders
and tori.
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We have subsequently provided a full analysis of the
edge and boundary Hamiltonians for the case of GFPEPS
with one Majorana mode per bond, χ = 1. We have put
particular emphasis on the case of GFPEPS with chiral edge
modes, where we have shown that the presence of chiral
edge modes is equivalent to a maximally entangled state
between the virtual Majorana modes at the two boundaries
of a cylinder, which leads to a divergence in the entanglement
spectrum at the corresponding momentum. Subsequently, we
have related this global virtual symmetry in the GFPEPS to
a local virtual symmetry in the PEPS tensor �1. Identifying
such symmetries has proven extremely powerful in the case
of nonchiral topological models, where it has allowed for
a comprehensive understanding of ground state degeneracy,
topological entropy, excitations, and more from a simple local
symmetry and the strings formed by it. We have shown that
the virtual symmetry of chiral GFPEPS is similarly powerful,
as it explains the origin of chiral edge modes, the topological
correction to the Rényi entropy, and it allows us to parametrize
the ground state space of the gapless parent Hamiltonian using
strings formed by the symmetry. It is an interesting question to
understand further implications of the symmetry, such as the
excitations obtained from open strings, or the role played by
symmetries for fermionic PEPS with higher bond dimension
χ . Our numerical results indeed suggest that the same type of
symmetries underlies chiral edge modes for χ > 1.

Understanding the local symmetries underlying chiral topo-
logical order is of particular interest when going to interacting
models since these local symmetries will still give rise to
maximally entangled Majorana modes between distant edges
even for interacting models; keeping the symmetry structure
of the local PEPS tensor untouched thus seems to be a crucial
ingredient when adding interactions. This can in particular be
achieved by taking several copies of a chiral GFPEPS and
coupling the copies on the physical level without changing
the auxiliary modes, for instance by a Gutzwiller projection
(cf. Ref. [24]), similar to the way in which fractional Chern
insulators are constructed; we are currently pursuing research
in this direction.
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APPENDIX A: DECAY OF CORRELATIONS
IN REAL SPACE

In this part of the appendix, we show that the correlations
of the GFPEPS defined via Eq. (12) and therefore also the

hoppings of the corresponding flat-band Hamiltonian Hfb in
Eq. (10) decay like the inverse of the distance cubed. More
precisely, we will show that the d̂j (k) in Eq. (7) (j = x,y)
decay at least as fast as ln(|r|)

|r|3 , but not faster than 1
|r|3 in

real space [by analogous arguments it can be shown that
d̂z(k) corresponds to a faster decay than the inverse distance
cubed]. Crudely speaking, the reason for this decay is that the
d̂j (k) have a nonanalytical point at k = (0,0), where they are
continuous, but not continuously differentiable.

An important fact which we will need in the proof is the
following relation between the decay of Fourier coefficients
and the smoothness of the corresponding Fourier series, stated
for the relevant case of two dimensions: Given that the Fourier
coefficients decay faster than |r|−(2+d) (i.e., they are upper
bounded by a constant times |r|−(2+d+δ) for some δ > 0),
it follows that the Fourier series is d times continuously
differentiable (continuous if d = 0); see, e.g., Proposition
3.2.12 in Ref. [34].

Let us start by considering the behavior of d̂(k) around the
nonanalytical point k = (0,0). For simplicity, we again restrict
ourselves to λ = 1

2 , but the arguments for other λ are the same.
We expand the numerators and denominators in Eqs. (18) and
(19) to second order and those in Eq. (20) to fourth order
around k = (0,0) to obtain

d̂x(k) = −2kxk
2
y

k2
x + k2

y

+ O(k2), (A1)

d̂y(k) = 2k2
xky

k2
x + k2

y

+ O(k2), (A2)

d̂z(k) = −1 + 2k2
xk

2
y

k2
x + k2

y

+ O(k3). (A3)

This shows that the d̂x,y(k) are continuous, but not continu-
ously differentiable at k = (0,0), whereas d̂z(k) is both (and
only its second derivative is noncontinuous). This implies
that the d̂x,y cannot asymptotically decay faster than 1

|r|3 in
real space since otherwise their Fourier transform would be
continuously differentiable. This demonstrates the claimed
lower bound on the decay of the correlations.

The upper bound is obtained by formally carrying out the
Fourier transform and bounding the terms obtained after partial
integration: To simplify notation, we suppress the index x or y

in d̂x,y(k), respectively (the result applies to both of them and
also to the overall hopping amplitude of the Hamiltonian). Let
us assume that the site coordinates fulfill |x| � |y| (x �= 0);
in the opposite case, the line of reasoning is the same. We
integrate its Fourier transform twice with respect to kx by
parts [r = (x,y)]

dr =
∫

BZ
d̂(k)e−ik·rdkxdky

=
(

− 1

−ix

)2 ∫ π

−π

dky

∫ π

−π

∂2d̂(k)

∂k2
x

e−ik·rdkx, (A4)

where BZ denotes the first Brillouin zone, that is, (−π,π ] ×
(−π,π ]. Let us first show that the last double integral is
defined, although its integrand might diverge at k = (0,0):
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For that, we will demonstrate the bounds∣∣∣∣∣∂
2d̂(k)

∂k2
x

∣∣∣∣∣ <
c

|k| ,
∣∣∣∣∣∂

3d̂(k)

∂k3
x

∣∣∣∣∣ <
c′

|k|2 (A5)

with c,c′ > 0. In order to show the first bound, we realize that
∂2d̂(k)
∂k2

x

√
k2
x + k2

y and ∂3d̂(k)
∂k3

x
(k2

x + k2
y) cannot diverge anywhere

but at k = (0,0). We expand them for d̂(k) = d̂x(k) around
this point by setting k = [|k| cos(φ),|k| sin(φ)] and obtain

∂2d̂(k)

∂k2
x

√
k2
x + k2

y −−−→
|k|→0

−4[cos(3φ) sin2(φ)] + O(|k|)
1 + O(|k|) ,

(A6)

∂3d̂(k)

∂k3
x

(
k2
x + k2

y

) −−−→
|k|→0

12 cos(4φ) sin2(φ) + O(|k|)
1 + O(|k|) . (A7)

Therefore, the limit |k| → 0 exists for all φ and is uniformly
bounded and, as a result, the expressions on the left-hand side
of Eqs. (A6) and (A7) are bounded for any k ∈ BZ. The same
thing is encountered for d̂(k) = d̂y(k). Since the left-hand sides
of Eqs. (A6) and (A7) do not diverge for any k and are defined
for a finite region (the first Brillouin zone), the bounds (A5)
are correct. The first bound implies that the double integral
(A4) is defined (and finite).

It will be convenient to split the integral (A4) into two parts,
one with range over the full circle Cε of radius ε centered at
k = (0,0) and the rest. The first part is bounded in absolute
value by

∫
Cε

c
|k|d

2k = 2πcε. Thus, employing another partial
integration

|dr | <
2πcε

x2
+ 1

x2

∣∣∣∣∣
∫

BZ\Cε

∂2d̂(k)

∂k2
x

e−ik·rd2k

∣∣∣∣∣
= 2πcε

x2
+ 1

x2

∣∣∣∣∣∣
(

1

−ix

)⎛⎝∫ π

−π

dky

[
∂2d̂(k)

∂k2
x

e−ik·r
]√

ε2−k2
y

−
√

ε2−k2
y

×θ
(
ε2 − k2

y

)−
∫

BZ\Cε

∂3d̂(k)

∂k3
x

e−ik·rd2k

⎞
⎠
∣∣∣∣∣∣ . (A8)

We use the bounds on the second and third derivatives of d̂(k):

|dr | <
2πcε

x2
+ 1

|x|3
(

2πc +
∣∣∣∣∣
∫

BZ\Cε

∂3d̂(k)

∂k3
x

e−ik·rd2k

∣∣∣∣∣
)

(A9)

<
2πcε

x2
+ 1

|x|3
(

2πc +
∫

BZ\Cε

c′

|k|2 d2k

)

<
2πcε

x2
+ 1

|x|3 (2πc + 2πc′[ln(
√

2π ) − ln(ε)]). (A10)

We now set ε = 1
|x| to obtain

|dr | <
2π [2c + c′ ln(

√
2π |x|)]

|x|3 . (A11)

After realizing that |x| � |r|√
2
, this leads to

|dr | <
a + b ln(|r|)

|r|3 (A12)

(a,b > 0). The decay of d̂z in real space is faster since
its derivatives start diverging at a higher order. Hence, the
hoppings decay at least as fast as ln(|r|)

|r|3 and, therefore, for large
|r| as the inverse distance cubed.

APPENDIX B: MOMENTUM POLARIZATION AND
TOPOLOGICAL ENTANGLEMENT ENTROPY

In this Appendix, we derive analytical expressions for two
quantities which probe topological order based on the entan-
glement spectrum, namely, the momentum polarization and the
topological entropy, for the case of noninteracting fermions,
i.e., Gaussian states. First, we will prove that the universal
contribution to the momentum polarization [27] is exactly
determined by the number of divergences in the entanglement
spectrum [Ĥ b

N (ky) in the case of GFPEPS]; and second, we will
prove that there is no additive topological correction to the von
Neumann entropy SvN of the entanglement spectrum. Let us
stress that both of these arguments rely only on few properties
of the entanglement spectrum and the corresponding boundary
Hamiltonian, and are thus not restricted to the case of GFPEPS.

Both these proofs are based on the Euler-Maclaurin
formulas, which for our purposes say the following: Given
a function f : [0,2π ] → C which is three times continuously
differentiable, it holds that

N∑
k=0

f

(
2πk

N

)
− f (0) + f (2π )

2

= N

2π

∫ 2π

0
f (x) dx + 2π [f ′(2π ) − f ′(0)]

12 N
+ O(1/N3),

(B1)
N∑

k=1

f

(
π (2k − 1)

N

)

= N

2π

∫ 2π

0
f (x) dx − 2π [f ′(2π ) − f ′(0)]

24 N
+ O(1/N3).

(B2)

Let us now first discuss how to compute the momentum
polarization; for clarity, we will focus on two copies of the
superconductor defined in Sec. II B, but the arguments can
be readily adapted. For a state |ϕ〉 on a long cylinder which
is partitioned into two cylinders A and B, the momentum
polarization [27] is μ(Nv) = 〈ϕ|TA|ϕ〉, where TA translates
part A of the system around the cylinder axis, and Nv is
the circumference of the cylinder; and it is expected to scale
as exp[−αNv + 2πi

Nv
(ha − c

24 )], where c is the chiral central
charge and ha the topological spin, and α ∈ C is nonuniversal.
It is immediate to see that this definition is equivalent to
evaluating μ(Nv) = ∑

� λ�e
ik� , where λ� is the entanglement

spectrum of A, i.e., |ϕ〉 = ∑
�

√|λ�||ϕA
� 〉|ϕB

� 〉, and k� is the
momentum of |ϕA

� 〉. In PEPS, the entanglement spectrum
corresponds to a state on the boundary degrees of freedom,
and therefore this expression can be evaluated directly at
the boundary. Concretely, in the case of two states with one
fermion per bond (i.e., χ = 2), such as two copies of the super-
conductor of Sec. II B, the entanglement spectrum corresponds
to the thermal state of the noninteracting Hamiltonian H b

N , so
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that the momentum polarization is given by

ln[μ(Nv)] =
∑

k

ln
e−ωk + eik+ωk

e−ωk + eωk︸ ︷︷ ︸
=:f (k)

, (B3)

where ωk is the energy of the boundary mode with momentum
k ≡ ky , as shown in Fig. 7. To evaluate the sum (B3), we
use the Euler-Maclaurin formulas, where f (k) is defined via
the summand in Eq. (B3) on the open interval (0,2π ), and
continuously extended to [0,2π ]. In order to ensure continuity
of f , we follow the different branches of the logarithm (i.e.,
we add 2πi as appropriate). Moreover, for examples with a
gapless mode at k = π (such as the examples of Sec. II B) f (k)
diverges, which can be fixed by replacing eik by e2ik above (and
subsequently correcting for the factor of 2 obtained in the scal-
ing). For the examples considered, the functions f obtained
this way are indeed three times continuously differentiable.
Which of the two Euler-Maclaurin equations we use depends
on whether the sum in Eq. (B3) runs over k = 2πn/Nv or k =
2π (n + 1

2 )/Nv (n = 0, . . . ,Nv − 1), which is connected to the
choice of boundary conditions. We will focus on the case k =
2π (n + 1

2 )/Nv , but let us note that the difference in the relevant
subleading terms is merely a factor of −2 in the 1/Nv term
(which in the examples relates to a nonzero topological spin
ha) and a trivial additive term proportional to f (2π ) − f (0)
which relates to the treatment of the branches of the logarithm.

With this choice of k, using (B2) we find that

ln μ(Nv) = αNv − 2πi

Nv

τ + O
(
1/N3

v

)
,

where α = 1
2π

∫
f (x) dx is nonuniversal, and

τ = 1
24i

[f ′(2π ) − f ′(0)]. It is now easy to check that
for k0 = 0,2π ,

f ′(k0) = lim
k→k0

[
i e2ωk

1 + e2ωk
+ O(k − k0)

]
and thus a divergence in the entanglement spectrum at k0 = 0,
such as for the example of Sec. II B, implies that f ′(2π ) −
f ′(0) = ±i. We thus find that τ is universal, with its value only
depending on the presence of a divergence in the entanglement
spectrum, but not on the exact form of ωk . In particular, with
τ = c/24, we find a chiral central charge of c = 1 for two
copies of the superconductor, which amounts to c = 1

2 for a
single copy of the topological superconductor. Note that the
Euler-MacLaurin formulas can be easily adapted to deal with
more discontinuities and with different values of k, by expand-
ing f (k) in terms of Bernoulli polynomials; thus, the outlined
approach allows for the analytical calculation of the mo-
mentum polarization for general free-fermionic systems with
several boundary modes and arbitrary fluxes through the torus.

Let us conclude by discussing the scaling of the topolog-
ical entropy, which is given by SvN(Nv) = ∑

k g(k), g(k) =
−pk ln pk − (1 − pk) ln(1 − pk), pk = e−ωk/(e−ωk + eωk ) [in
particular, g(k) → 0 for k → 0,2π ]. For the cases discussed
in the paper, g′(k) is continuous and periodic, but its second
derivative diverges; thus, the error term in the Euler-Maclaurin
formula can be of order o(1/Nv). Yet, this is sufficient as we
are only interested in constant corrections to the entanglement
entropy, and one immediately finds that both for periodic and

antiperiodic boundary conditions, SvN(Nv) = aNv + o(1/Nv),
with a nonuniversal a = 1

2π

∫ 2π

0 g(k) dk, and no constant
topological correction.

APPENDIX C: POLYNOMIAL DECAY OF THE
BOUNDARY HAMILTONIAN HOPPINGS

In this part of the Appendix, we prove that the hopping
amplitudes |[HR

∞]1,1+y | of the boundary Hamiltonian of the
example of Sec. II B, shown in Fig. 10, decay as ln(y)/y.

We start by calculating the single-particle entanglement
spectrum on the right boundary: For that we employ Eq. (48)
to calculate D̂1(ky) for the topological superconductor defined
by Eq. (12) and from it �̂R

∞(ky) via Eq. (65) as a function of
λ. The result is

�̂R
∞(ky) = i

2λ2 sin(ky)√
g2(ky )

|1−λ−eiky |4 + 4λ4 sin2(ky)
(C1)

with g(ky) some second-order polynomial in cos(ky). For
λ �= 0 this function is analytic as long as ky is not an integer
multiple of π . One can check that g(π ) �= 0 for any λ ∈ (0,1),
so �̂R

∞(π ) = 0 and the only possible nonanalytical point is
ky = 0. As shown in Sec. V, these are the only ky points
where |�̂R

∞(ky)| = 1 is possible and where hence the spectrum
of the boundary Hamiltonian can diverge: One can check
from the explicit function g(ky) that g(δky) = g(−δky) =
g0 δk2

y[1 + O(δk2
y)] for λ ∈ (0,1) (where g0 depends on λ).

Therefore,

�̂R
∞(δky) = i

2λ2δky√
g2

0δk4
y [1+O(δk2

y )]
(2−λ)4 + 4λ4δk2

y

= i

(
1 − g2

0

8λ4(2 − λ)4
δk2

y

[
1 + O

(
δk2

y

)])
sgn(δky).

(C2)

Owing to Eq. (28) for N → ∞, the single-particle spectrum
is given by

−iĤ R
∞(ky) = ln

(
1 − i�̂R

∞(ky)

1 + i�̂R∞(ky)

)
. (C3)

Henceforth, we can expand

−iĤ R
∞(δky) =

[
ln

(
16λ4(2 − λ)4

g2
0

)
− 2 ln(δky)

− ln
[
1 + O

(
δk2

y

)]]
sgn(δky), (C4)

and we see that the nonanalyticity is only due to the
term 2 ln(δky), the other ones being analytical around
ky=0. The Fourier coefficients of an analytical function
defined on (−π,π ] decay exponentially. Thus, the algebraic
decay of |[HR

∞]1,1+y | is due to the diverging term we singled
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out:

|[HR
∞]1,1+y | −−−→

y→∞
4√
Nv

∫ π

0
sin(kyy) ln(ky)dky

−−−→
y→∞

4√
Nv

[
ln(y)

y
+ O

(
1

y

)]
(C5)

with the prefactor of the 1/y contribution being dependent on whether y is even or odd but constant otherwise.
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