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Effects of self-consistency and plasmon-pole models on GW calculations for closed-shell molecules
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We present theoretical calculations of quasiparticle energies in closed-shell molecules using the GW method.
We compare three different approaches: a full-frequency G0W0 (FF-G0W0) method with density functional
theory (DFT-PBE) used as a starting mean field; a full-frequency GW0 (FF-GW0) method where the interacting
Green’s function is approximated by replacing the DFT energies with self-consistent quasiparticle energies
or Hartree-Fock energies; and a G0W0 method with a Hybertsen-Louie generalized plasmon-pole model (HL
GPP-G0W0). While the latter two methods lead to good agreement with experimental ionization potentials and
electron affinities for methane, ozone, and beryllium oxide molecules, FF-G0W0 results can differ by more than
one electron volt from experiment. We trace this failure of the FF-G0W0 method to the occurrence of incorrect
self-energy poles describing shake-up processes in the vicinity of the quasiparticle energies.
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I. INTRODUCTION

Accurate knowledge of the energy of quasiparticle exci-
tations is necessary to interpret photoemission [1,2], inverse
photoemission, tunneling [3], transport [4], and other single-
particle excitation experiments. The determination of quasi-
particle energies is also an important step in the calculation of
optical absorption and reflectivity spectra [5].

The GW method [6,7], in which the electron self-energy
is evaluated to first order in the screened Coulomb interaction
W and the one-electron Green’s function G, is the current
state-of-the-art approach for calculating accurate quasiparticle
energies in crystalline bulk solids, surfaces, and nanostructures
from first principles. To simplify such calculations, additional
approximations are often invoked. Most studies employ a
one-shot procedure, where the self-energy is evaluated using
the Green’s function and screened Coulomb interaction from
a density functional theory (DFT) mean-field calculation. In
addition, many studies employed generalized plasmon-pole
models [7–9] to avoid the explicit calculation of the screened
interaction at nonzero frequencies.

In recent years, many studies have applied the GW method
to molecular systems [10–18]. Despite these efforts, it is not yet
clear to what degree the approximations which are commonly
used in GW calculations on extended systems are valid or
effective in molecular systems. Previous studies explored the
dependence of the results of one-shot GW calculations on the
mean-field starting point [19–21]. Other studies investigated
the effect of self-consistency by iterating Hedin’s equations,
but neglected vertex corrections [20,22,23]. Also, several
works on molecules employed a generalized plasmon-pole
model [12,13]. Plasmon-pole models were originally intro-
duced for calculations on the homogeneous electron gas [6],
where the inverse dielectric function exhibits a single sharp
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plasmon peak, and later extended to crystals using additional
sum rules [7].

In this paper, we explore the importance of self-consistency
and the validity of generalized plasmon-pole models in GW

calculations for molecular systems. Instead of focusing on
quasiparticle energies, we investigate the frequency-dependent
self-energies. We observe that the self-energies exhibit many
poles whose positions depend sensitively on the degree of self-
consistency used in the GW calculation. These poles describe
shake-up processes, where in addition to the quasiparticle
an electron-hole pair is created [24]. In non-self-consistent
calculations with a DFT starting mean field, we find that self-
energy poles can occur erroneously close to the quasiparticle
energies leading to significant disagreement with experiment
for such excitations. Including effects of self-consistency by
replacing the DFT-PBE orbital energies by self-consistent
quasiparticle energies—or equivalently for molecules by
Hartree-Fock energies—moves the self-energy poles away
from the quasiparticle energies and gives good agreement
with experiment. Remarkably, we find that non-self-consistent
calculations employing a generalized plasmon-pole model [7]
that conserves sum rules also yield accurate results.

II. METHODS

The energies En of quasiparticle excitations are the poles
of the interacting one-electron Green’s function and can be
calculated by solving the quasiparticle or Dyson’s equation:

h(r)�n(r) +
∫

d r ′�(r,r ′,En)�n(r ′) = En�n(r), (1)

where h(r) = − 1
2∇2 + Vion(r) + VH (r). Here, Vion and VH

denote the ionic potential and the Hartree potential, re-
spectively, and �n is the quasiparticle wave function. �

is the electron self-energy, which we calculate in the GW
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approximation as

�(r,r ′,ω) = i

∫
dω′

2π
e−iηω′

G(r,r ′,ω − ω′)W (r,r ′,ω′) (2)

with η = 0+. As mentioned, G denotes the interacting Green’s
function and W denotes the screened Coulomb interaction.

Expressing Eq. (1) in the basis of mean-field orbitals ψn and
neglecting off-diagonal matrix elements of the self-energy, the
quasiparticle equation becomes

En = εn + �n(En) − V xc
n , (3)

where εn and V xc
n denote the orbital energies and exchange-

correlation potential matrix elements from a mean-field theory
calculation and �n(En) = 〈ψn|�(En)|ψn〉.

In practice, G and W , which are needed to construct
�, must be evaluated within certain approximations. In the
G0W0 approximation, one uses G and W from a mean-field
calculation.

Going beyond the G0W0 approximation is challenging. In
principle, one could iterate Eqs. (3) and (2) and recalculate
G and W using the quasiparticle energies. However, because
of the neglect of the vertex corrections, this procedure is not
guaranteed to converge accurately to the physical result [25].
Another possibility is to update only the Green’s function in
Eq. (2), while keeping the screened interaction W0 from a DFT
mean-field theory. This method is motivated by the observation
that, for many molecular and other large band-gap systems,
the mean-field energies from DFT-PBE differ significantly
from the experimental quasiparticle energies. DFT-PBE energy
differences, however, are often serendipitously close to neutral
excitation energies (see below), which are the poles of the
screened interaction. This method, the GW0 approximation,
can yield excellent results for both molecular and extended
systems [23,25].

Even with the G0W0 approximation, the calculation of the
self-energy for molecules is computationally challenging. To
evaluate the frequency integral in Eq. (2), it is necessary
to compute G and W on a sufficiently fine frequency grid.
Each evaluation of W requires a sum over all empty states
to calculate the polarizability and then a matrix inversion
to obtain its inverse. To reduce the computational effort, a
generalized plasmon-pole model is often used to extend the
zero-frequency inverse dielectric matrix to finite frequencies
[7,12,14].

The generalized plasmon-pole model of Hybertsen and
Louie [7] assumes the inverse dielectric matrix (ω > 0) can
be expressed as

Imε−1
GG′(ω) = AGG′δ(ω − ω̃GG′), (4)

where G and G′ are reciprocal lattice vectors (we assume a
periodic supercell approach) and ω̃GG′ denotes an effective
excitation energy. Both AGG′ and ω̃GG′ are determined by
imposing the f -sum rule and the Kramers-Kronig relation [7].

III. COMPUTATIONAL DETAILS

We calculate self-energies and quasiparticle properties for
the beryllium oxide (BeO) molecule, methane (CH4), and
ozone (O3). We first carry out DFT calculations with the
PBE exchange-correlation functional, a plane-wave basis,

and norm-conserving pseudopotentials. For this, we employ
the QUANTUM ESPRESSO program package [26]. We then
calculate the quasiparticle energies in the full-frequency
G0W0 (FF-G0W0) approximation using a basis of Kohn-
Sham orbitals [11,21,27]. Because of the large computational
expense, carrying out self-consistent FF-GW0 calculations is
challenging. To approximate the result of a FF-GW0 calcu-
lation, we update the DFT-PBE energies by solving Eq. (3)
with the Hartree-Fock approximation for the self-energy and
use the resulting Green’s function, which still has a simple
quasiparticle form, in Eq. (2). Because screening is weak in
a molecule, the Hartree-Fock energies are often much closer
to the final quasiparticle values than DFT-PBE energies, and
the Hartree-Fock Green’s function is a good approximation
to the self-consistent interacting Green’s function. Finally,
we compute the G0W0 self-energy using the generalized
plasmon-pole approximation of Hybertsen and Louie (denoted
HL GPP-G0W0). For all GW calculations, we employ the
BERKELEYGW program package [28].

To obtain converged results, we use 950 empty states in the
calculation of the screened interaction and the self-energy.
In addition, we employ a static remainder correction to
approximately include the effects of missing unoccupied states
in the self-energy [29]. In the calculation of the screened
interaction, we use supercell reciprocal-lattice vectors of
kinetic energy up to 12 Ry (CH4), 24 Ry (BeO), and 30 Ry
(O3). Finally, we employ a truncated Coulomb interaction to
avoid interactions between periodic replicas [30].

IV. RESULTS

Figure 1(a) shows the graphical solution of the quasiparticle
equation for the highest occupied molecular orbital (HOMO)
of the CH4 molecule from the FF-G0W0, FF-GW0 and HL
GPP-G0W0 approaches. All self-energies are smooth functions
of frequency in the vicinity of the quasiparticle solution.
At more negative energies, the self-energies exhibit many
poles. The onset of these singularities occurs at less negative
energies in the FF-G0W0 method with the first pole occurring
at ∼−21 eV. The slower decay of the corresponding tail leads
to a ∼0.55 eV difference of the HOMO energy compared to
FF-GW0 and HL GPP-G0W0, which agree very well with each
other and with experiment (see Table I).

Figure 1(b) shows the self-energies associated with the
lowest unoccupied orbital (LUMO) of CH4. Here, no poles of
the self-energy are located in the vicinity of the quasiparticle
solution and all three approaches are in good agreement.

Figure 2(a) shows the graphical solution of the quasiparticle
equation for the HOMO of BeO. The FF-G0W0 solution
nearly coincides with a pole of the self-energy, while for
the other methods the self-energy poles are located at more
negative energies and the quasiparticle solution occurs in a
region where the self-energy is smooth. The FF-GW0 result
differs from experiment by 0.36 eV and agrees well with the
HL GPP-G0W0 result. In contrast, the FF-G0W0 quasiparticle
energy differs from experiment by 1.34 eV. A similar situation
occurs for the LUMO [see Fig. 2(b)]. Again, the FF-G0W0

quasiparticle solution nearly coincides with a self-energy pole.
Such large deviations of FF-G0W0 from measured ionization
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FIG. 1. (Color online) Graphical solution of the quasiparticle
equation for the HOMO (a) and the LUMO (b) of methane. The
quasiparticle energies En are given by the values of ω at the
intersections of ω − εn and Re�n(ω) − V xc

n . Shown are self-energies
from full-frequency G0W0 theory, full-frequency GW0 theory, and
G0W0 theory with the generalized Hybertsen-Louie plasmon-pole
approximation. All calculations employed a DFT-PBE starting point.

potentials have been pointed out before by Blase et al. [15] for
a number of gas-phase molecules.

Finally, Fig. 3(a) shows the self-energy for the DFT-PBE
HOMO of ozone. Again, FF-GW0 and HL GPP-G0W0 lead
to excellent agreement with experiment; however, FF-G0W0
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FIG. 2. (Color online) Graphical solution of the quasiparticle
equation for the HOMO (a) and the LUMO (b) of the beryllium
oxide molecule. The quasiparticle energies En are given by the
values of ω at the intersections of ω − εn and Re�n(ω) − V xc

n . Shown
are self-energies from full-frequency G0W0 theory, full-frequency
GW0 theory, and G0W0 theory with the generalized Hybertsen-Louie
plasmon-pole approximation. All calculations employed a DFT-PBE
starting point.

yields a significant discrepancy of 1.3 eV because the quasi-
particle energy is located in the vicinity of a self-energy pole.

We thus find a strong correlation between the accuracy
of the self-energies poles and the accuracy of the resulting
quasiparticle energies. For all three molecules, FF-GW0 and

TABLE I. Comparison of quasiparticle energies from various theoretical approaches with experiment [31]: DFT-PBE, Hartree-Fock (HF),
full-frequency G0W0 (FF-G0W0), full-frequency GW0 (FF-GW0), and G0W0 with the Hybertsen-Louie generalized plasmon-pole approximation
(HL GPP-G0W0). In all calculations, a DFT-PBE starting mean field was employed. All energies are given in eV.

DFT-PBE HF FF-G0W0@PBE FF-GW0@PBE HL GPP-G0W0@PBE Exp.

CH4 HOMO −9.44 −14.63 −13.64 −14.21 −14.16 −14.35
CH4 LUMO −0.80 0.60 0.16 0.18 0.16
BeO HOMO −6.24 −11.35 −8.76 −10.46 −10.56 −10.1
BeO LUMO −4.83 −0.88 −2.65 −2.16 −2.41
O3 HOMO −7.96 −14.31 −11.43 −12.97 −12.72 −12.73
O3 LUMO −6.16 −1.07 −2.53 −2.55 −1.86 −2.10
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FIG. 3. (Color online) (a) Graphical solution of the quasiparticle
equation for the HOMO of ozone. The quasiparticle energies
En are given by the values of ω at the intersections of ω − εn

and Re�n(ω) − V xc
n . Shown are self-energies from full-frequency

G0W0 theory, full-frequency GW0 theory, and G0W0 theory with
the generalized Hybertsen-Louie plasmon-pole approximation. All
calculations employed a DFT-PBE starting point. (b) Resulting
spectral functions for the HOMO of ozone. Arrows denote the position
of shake-up features. Note that some solutions of the quasiparticle
equation do not give rise to peaks in the spectral function because
they are suppressed by strong peaks in the imaginary part of the
self-energy. The solutions which give rise to peaks in the spectral
functions are marked by black dots.

HL GPP-G0W0 lead to self-energy poles separated by multiple
electron volts from the quasiparticle energy of the DFT-PBE
HOMO and LUMO and give good agreement with experiment.
In contrast, we find significant disagreement between exper-
iment and FF-G0W0 results when the quasiparticle energies
are close to the incorrectly computed self-energy poles. To
understand the differences in the positions of the self-energy
poles, we express the FF-G0W0 self-energy as the sum of a bare
exchange contribution and a frequency-dependent correlation
contribution given by

〈m|�c(ω)|m〉 =
∑
nI

|VmnI |2
ω − εn − 
I sgn(εn − μ) + iη

, (5)

TABLE II. Comparison of lowest experimental neutral singlet
excitation energies of the molecules [34–38] with energy differences
from density-functional theory (DFT-PBE) and Hartree-Fock (HF)
calculations. The neutral excitation energies are the poles of the
screened interaction. All energies are given in eV.

DFT-PBE HF Exp.

CH4 8.64 14.03 9.87–10.5
BeO 1.41 10.47 1.48
O3 1.80 13.24 2.0

where μ denotes the chemical potential and VjnI is a
fluctuation potential [27,32]. Also, 
I is a pole of the screened
interaction W and corresponds to a neutral excitation energy
of the system [6]. For molecular systems, the poles of the
screened interaction within the random-phase approximation
are typically quite close to energy differences of the DFT-PBE
mean-field theory used to calculate W [33]. Table II shows that
DFT-PBE energy differences agree very well with experimen-
tal optical excitation energies in the three molecules, indicating
that the screened interaction from DFT-PBE is reasonably
accurate. In contrast, Hartree-Fock energy differences differ
by multiple electron volts from experiment, as expected, as
electron-hole attractions in optical excitations are neglected
within Hartree-Fock theory.

According to Eq. (5), the FF-G0W0 self-energy poles occur
at ω = εn − 
I (if n is an occupied state). Even if the values
of 
I were accurate, the FF-G0W0 self-energy poles would
be incorrectly positioned if the mean-field energies εn differ
from the quasiparticle energies. In our approximate FF-GW0

method, the DFT-PBE orbital energies are replaced by Hartree-
Fock energies, which are closer to the correct quasiparticle
energies and more negative by multiple electron volts (see
Table I). This FF-GW0 approach thus moves the self-energy
poles to more negative energies. In the HL GPP-G0W0 method,
DFT-PBE energies are used in Eq. (5), but for each WGG′

all poles are replaced by a single effective pole. To conserve
sum rules [7], the energy of the effective pole must be larger
than the smallest 
I (see Fig. 4). In effect, this also results
in a shift of the self-energy poles to more negative energies.
We thus find that different reasons are responsible for the
shift of the self-energy poles to more appropriate values in
FF-GW0 and HL GPP-G0W0 approaches. We note that while
the resulting self-energies agree quite well in the vicinity
of the quasiparticle solution they disagree at higher energies
where shake-up structures are important. This could result in
inaccuracies of the generalized plasmon-pole approximations
for the so-called inner valence states [24].

For unoccupied states in the sum in Eq. (5), the self-energy
poles are located at ω = εn + 
I . The orbital energies in
Hartree-Fock are again closer to the true quasiparticle energies
than those from DFT-PBE (see Table I), resulting in a shift of
the self-energy poles to more positive energies. The increase
of the effective 
I in the HL GPP-G0W0 theory has the same
effect. The above discussion shows that use of FF-G0W0 is
particularly problematic for molecules with a small DFT-PBE
HOMO-LUMO gap, resulting in self-energy poles in the
vicinity of the quasiparticle energy.
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FIG. 4. (Color online) Imaginary part of the inverse dielectric
matrix for the BeO molecule in a supercell calculation. Shown are
the full-frequency result (FF) and the Hybertsen-Louie generalized
plasmon-pole (HL GPP) model for G = G′ = [001]2π/a0 and G =
G′ = [400]2π/a0 (multiplied by a factor of 10) with a0 denoting the
linear dimension of the supercell. Arrows denote the positions of
the effective excitations in the generalized plasmon-pole model. The
molecular axis is along the z direction.

Finally, we discuss the physical meaning of the singular
structures in the self-energy. These poles give rise to additional
peaks in the spectral function [see Fig. 3(b)] describing
so-called shake-up processes where an electron-hole pair is
excited in addition to a quasiparticle [24]. Also, in electronic
systems with open shells, the self-energy poles are responsible
for the multiplet structure arising from the coupling of angular
momenta of the outer valence shell and of the hole left
behind in the photoemission process [11]. In extended systems,
additional features in spectral functions arising from the
shake-up of plasmon modes, known as plasmon satellites, have
received much attention recently [1,39,40].

V. CONCLUSIONS

We have computed self-energies and quasiparticle proper-
ties for three molecules using three approximate GW methods
employing a DFT-PBE mean-field starting point. Results of the
full-frequency G0W0 approximation can differ significantly
(by more than 1 eV) from experimental findings. We have
traced this failure of the full-frequency G0W0 method to the
occurrence of inaccurate self-energy poles in the vicinity of the
quasiparticle energy. Both a full-frequency GW0 method and
G0W0 with the generalized plasmon-pole approximation shift
the self-energy poles away from the quasiparticle energies and
lead to excellent agreement with experiment. The generalized
plasmon-pole model is therefore a valuable approximation for
molecular systems, reducing the computational cost signifi-
cantly compared to full-frequency self-consistent approaches.
We expect that the effects of self-consistency are important for
a wide range of molecules, particularly those with a mean-field
HOMO-LUMO gap of similar or smaller size than the typical
quasiparticle shifts.
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[2] A. Grüneis, C. Attaccalite, T. Pichler, V. Zabolotnyy, H.
Shiozawa, S. L. Molodtsov, D. Inosov, A. Koitzsch, M. Knupfer,
J. Schiessling et al., Phys. Rev. Lett. 100, 037601 (2008).

[3] O. E. Dial, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Phys.
Rev. B 85, 081306(R) (2012).

[4] Z.-L. Cheng, R. Skouta, H. Vasquez, J. R. Widawsky,
S. Schneebeli, W. Chen, M. S. Hybertsen, R. Breslow, and
L. Venkataraman, Nature Nanotechnology 6, 353 (2011).

[5] M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998).
[6] L. Hedin and S. Lundqvist, in Solid State Physics, Advances in

Research and Application, edited by F. Seitz, D. Turnbell, and
H. Ehrenreich (Academic, New York, 1969), Vol. 23, p. 1.

[7] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986).

[8] R. W. Godby and R. J. Needs, Phys. Rev. Lett. 62, 1169 (1989).
[9] W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351 (1988).

[10] P. H. Hahn, W. G. Schmidt, and F. Bechstedt, Phys. Rev. B 72,
245425 (2005).

[11] J. Lischner, J. Deslippe, M. Jain, and S. G. Louie, Phys. Rev.
Lett. 109, 036406 (2012).

[12] S. Sharifzadeh, I. Tamblyn, P. Doak, P. T. Darancet, and J. B.
Neaton, Eur. Phys. J. B 85, 323 (2012).

[13] J. C. Grossman, M. Rohlfing, L. Mitas, S. G. Louie, and M. L.
Cohen, Phys. Rev. Lett. 86, 472 (2001).

[14] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett.
97, 216405 (2006).

[15] X. Blase, C. Attaccalite, and V. Olevano, Phys. Rev. B 83,
115103 (2011).

[16] D. Foerster, P. Koval, and D. Sanchez-Portal, J. Chem. Phys.
135, 074105 (2011).

[17] K. S. Thygesen and A. Rubio, Phys. Rev. Lett. 102, 046802
(2009).
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