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We derive an efficient method for treating renormalization contributions at two-loop level within the functional
renormalization group in the one-particle irreducible formalism for fermions. It is based on a decomposition of
the two-particle vertex in charge, magnetic and pairing channels. The method treats single-particle and collective
excitations in all channels on equal footing, allows for the description of symmetry breaking and captures
collective mode fluctuation physics in the infrared. As a first application, we study the superfluid ground state
of the two-dimensional attractive Hubbard model. We obtain superfluid gaps that are reduced by fluctuations in
comparison to the one-loop approximation and demonstrate that the method captures the renormalization of the
amplitude mode by long-range phase fluctuations.
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I. INTRODUCTION

In the last decade, the functional renormalization group
(fRG) proved itself as an excellent tool for the study of
competing instabilities in correlated electron systems and a
valuable source of new approximation schemes [1]. It treats
charge, magnetic, and pairing channels on equal footing
and in a scale-separated way. This allows for the study of
competing order and fluctuation driven instabilities. One of the
major successes of fRG was to provide evidence for d-wave
superconductivity in the two-dimensional repulsive Hubbard
model at weak and intermediate couplings [2–5]. The method
was also successfully applied to quantum wires and dots in
and out of equilibrium [6,7], multiband systems describing
pnictide superconductors [8–10] and also spin models [11,12].

Most of these fRG studies used the one-particle irreducible
(1PI) formalism in a purely fermionic formulation and were
restricted to the one-loop level without or with taking the self-
energy feedback into account in the flow equation for the vertex
as suggested by Katanin [13]. The latter modification improves
the fulfillment of Ward identities and allows to continue fermi-
onic fRG flows into phases with broken symmetries [5,14–19].
However, in a recent study of superfluidity in the attractive
Hubbard model, it was pointed out that the singular infrared
behavior of the amplitude mode of the gap due to phase fluctu-
ations [20,21] is not captured in the Katanin scheme [18,22].

An alternative route to studying fluctuation physics and
symmetry breaking is to decouple the fermionic fields by in-
troducing bosonic auxiliary fields via a Hubbard-Stratonovich
transformation. Applying the fRG to the resulting mixed
fermion-boson action captures the asymptotic infrared behav-
ior of fermionic superfluids already at one-loop level within
a relatively simple truncation [23,24]. Besides fermionic
superfluidity [23–25], this route was also pursued for studying
the BEC-BCS crossover in continuum systems [26–28], and
antiferromagnetism [29] as well as d-wave superconductivity
[30] in the two-dimensional Hubbard model.

The choice of auxiliary fields introduces some bias if only
a small number of them and simple truncations are used [29].
This bias can be reduced by dynamical rebosonization [31,32].
Most fRG studies of partially bosonized actions relied on
relatively simple Ansätze for the bosonic potential. However, in
situations with competition of instabilities, truncating the order

parameter potential is not straightforward. It may therefore be
advantageous to treat at least the high and intermediate scales
in a purely fermionic language. In addition, results for the
vertex in the Hubbard model at large couplings indicate that
the effective interaction contains contributions that are not well
described as boson-mediated interactions [33,34]. Recently,
Veschgini and Salmhofer derived a hierarchy of flow equations
for fermionic 1PI vertex functions from Dyson-Schwinger
equations and pointed out that including all renormalization
contributions at two-loop level may increase the degree of
self-consistency [35].

All this motivates going beyond the one-loop approx-
imation or Katanin’s scheme within the purely fermionic
formalism. One fRG study at two-loop level has been carried
out for the repulsive Hubbard model in the symmetric regime
by Katanin [36]. He used the N -patch approximation for
the momentum dependence of the vertex and neglected its
frequency dependence. For relatively weak couplings, he
concluded that fluctuations at two-loop level do not change
the flow qualitatively. This is not clear at larger couplings
and in symmetry-broken phases. Besides, in such situations
the frequency dependence of the vertex should be taken into
account, which seems to be beyond the scope of Katanin’s
two-loop approach due to the resulting numerical complexity.

In this paper, we present a reformulation of the two-loop
flow equations that is effectively of one-loop form. It is exact
to the third order in the effective interaction and based on a
decomposition of the vertex in charge, magnetic, and pairing
channels [37,38]. It allows to take the frequency dependence
of the vertex into account with a reasonable numerical effort
and to continue fRG flows into symmetry-broken phases. We
demonstrate that the method captures the singular asymptotic
infrared behavior of a fermionic s-wave superfluid. Besides
the general scheme, we present as a first application a study
of the superfluid ground state of the attractive Hubbard model.
In the presence of a not too small external pairing field, the
one- and two-loop flows are qualitatively similar, albeit with
smaller critical scales and gaps at two-loop level. The infrared
behavior is different in the two approximations, as expected.

The article is structured as follows. In Sec. II, we describe
the reformulated flow equations at two-loop level that allow
for an efficient numerical solution. In Sec. III, results for the
attractive Hubbard model are presented, including estimates
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FIG. 1. Simplified diagrammatic representation of the one-loop
renormalization group equation for the two-particle vertex.

for the infrared behavior and numerical results. Section IV
contains a short summary and final remarks.

II. METHOD

In this section, we describe the reformulation of the
two-loop flow equations as effective one-loop equations,
which is at the heart of this article. The result is applicable to all
systems whose effective actions contain vertices with an equal
number of creation and annihilation operators only (see below)
and in which it is meaningful to classify diagrams according
to singular dependencies on transfer momenta or frequencies.

A general derivation of renormalization group equations
in the 1PI framework can be found for example in Ref. [1].
Flow equations at two-loop level were derived for example in
Refs. [14,35].

A. Flow equations at two-loop level

In this section, we outline the derivation of flow equations
at two-loop level in order to make the article self-contained,
following the presentations in Refs. [14,22].

Flow equations at two-loop level are based on a truncation
of the flowing effective action ��[φ̄,φ] at the three-particle
level,

��[φ̄,φ] = �(0)�+
∑
α,β

�
(2)�
αβ φ̄αφβ+1

4

∑
α,β,γ,δ

�
(4)�
αβγ δφ̄αφ̄βφγ φδ

+ 1

(3!)2

∑
α,β,γ,δ,ε,ζ

�
(6)�
αβγ δεζ φ̄αφ̄β φ̄γ φδφεφζ+ . . . ,

(1)

where φ̄, φ are anticommuting Grassmann fields and �(2n)�

the 1PI n-particle vertex functions.1 The ellipsis represents
four-particle and higher-order terms. The Greek indices α =
(k,s), with k = (k0,k), collect momenta k as well as fermionic
Matsubara frequencies k0 and the spin or Nambu index s. For
describing a system in the symmetric phase, the fermionic
fields can be chosen in spinor representation, φα → ψks

and φ̄α → ψ̄ks , where s =↑↓ is the spin orientation. For a
fermionic singlet superfluid or superconductor, as considered
in the following, the fields are most conveniently chosen in
Nambu representation, where s = ± is the Nambu index and

φk+ = ψk↑, φ̄k+ = ψ̄k↑, φk− = ψ̄−k↓, φ̄k− = ψ−k↓. (2)

Using this representation in the presence of spin rotation
invariance, only vertices that create and annihilate an equal

1�(0)� describes the interaction correction to the grand-canonical
potential and is not important in the following.
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FIG. 2. Simplified diagrammatic representation of the one-loop
renormalization group equation for the three-particle vertex.

number of Nambu quasiparticles appear in the effective action
[16,39].

Inserting the Ansatz for the effective action (1) into the
functional flow equation and evaluating appropriate functional
derivatives with respect to the fields (see Ref. [1]) yields flow
equations for the self-energy

d

d�
��

αβ =
∑
γ,δ

S�
δγ �

(4)�
αγ δβ (3)

and the two-particle vertex

d

d�
�

(4)�
αβγ δ

=
∑

a,b,c,d

[
∂�,S

(
G�

abG
�
cd

)(
�

(4)�
αbcδ�

(4)�
dβγ a − �

(4)�
βbcδ�

(4)�
dαγ a

)

−1

2
∂�,S

(
G�

abG
�
cd

)
�

(4)�
αβca�

(4)�
bdγ δ

] +
∑
a,b

S�
ba�

(6)�
αβabγ δ, (4)

where G�
αβ = (�(2)�)−1

αβ is the full fermionic propagator and
S�

αβ = ( d
d�

G�
αβ)��=const. ≡ ∂�,SG

�
αβ the so-called single-scale

propagator. The self-energy is connected to �(2)� via
a Dyson-Schwinger equation, (G�)−1

αβ = (G�
0 )−1

αβ − ��
αβ ,

where G�
0 is the regularized bare propagator at scale �.

The flow equation for the two-particle vertex is illustrated
diagrammatically in Fig. 1.

The flow equation for the three-particle vertex can be
written schematically as2

d

d�
�(6)� = �(4)�∂�,S(G�G�)�(6)� + S��(8)�

+ ∂�,S tr(G��(4)�G��(4)�G��(4)�) (5)

and is illustrated diagrammatically in Fig. 2. A solution for
�(6)� inO((�(4)�)3) is obtained by neglecting the contributions
in the first line of Eq. (5), because these are at least of fourth
order in the effective interaction. At the same level of ap-
proximation, the scale-derivative ∂�,S in the second line of
Eq. (5) can be replaced by a full scale derivative d

d�
that acts

also on the self-energy and the vertex. The latter modification
generates terms at least of O((�(4)�)4). The resulting flow
equation [14]

d

d�
�(6)� = d

d�
tr(G��(4)�G��(4)�G��(4)�) (6)

2The flow equation for �(6)� including all indices and contributions
in O((�(4)�)3) follows from Eqs. (9) and (10) by applying the
derivative ∂�,S to the right-hand sides.
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can straightforwardly be integrated because the right-hand side is a total derivative, yielding

�(6)� = tr(G��(4)�G��(4)�G��(4)�) (7)

in a system with only two-particle interactions at the microscopic level. In more detail, the three-particle vertex in O((�(4)�)3)
reads

�
(6)�
αβabγ δ = (

�
(6)�
αβabγ δ

)
(1) + (

�
(6)�
αβabγ δ

)
(2), (8)

(
�

(6)�
αβabγ δ

)
(1) = −

∑
c,d,e,f,m,n

G�
cdG

�
ef G�

mn

(
�

(4)�
αneδ�

(4)�
βdmb�

(4)�
af cγ − �

(4)�
αneδ�

(4)�
admb�

(4)�
βf cγ + �(4)�

αneγ �
(4)�
admb�

(4)�
βf cδ − �(4)�

αneγ �
(4)�
βdmb�

(4)�
af cδ

+�
(4)�
αneδ�

(4)�
admγ �

(4)�
βf cb − �

(4)�
αneδ�

(4)�
βdmγ �

(4)�
af cb − �(4)�

αneγ �
(4)�
admδ�

(4)�
βf cb + �(4)�

αneγ �
(4)�
βdmδ�

(4)�
af cb

−�
(4)�
αneb�

(4)�
admγ �

(4)�
βf cδ + �

(4)�
αneb�

(4)�
βdmγ �

(4)�
af cδ + �

(4)�
αneb�

(4)�
admδ�

(4)�
βf cγ − �

(4)�
αneb�

(4)�
βdmδ�

(4)�
af cγ

)
, (9)(

�
(6)�
αβabγ δ

)
(2) = −

∑
c,d,e,f,m,n

G�
cdG

�
ef G�

mn

(
�

(4)�
βacm�

(4)�
f dγ δ�

(4)�
αneb + �(4)�

aαcm�
(4)�
f dγ δ�

(4)�
βneb + �

(4)�
αβcm�

(4)�
f dγ δ�

(4)�
aneb + �

(4)�
αβcm�

(4)�
f dbγ �

(4)�
aneδ

+�
(4)�
αβcm�

(4)�
f dδb�

(4)�
aneγ + �

(4)�
βacm�

(4)�
f dbγ �

(4)�
αneδ + �

(4)�
βacm�

(4)�
f dδb�

(4)�
αneγ + �(4)�

aαcm�
(4)�
f dbγ �

(4)�
βneδ + �(4)�

aαcm�
(4)�
f dδb�

(4)�
βbeγ

)
. (10)

In Eq. (9), all internal propagators run into the same
direction, while this is not the case in Eq. (10). Inserting
these expressions in Eq. (4) yields the flow equation for
the two-particle vertex at two-loop level, which is illustrated
schematically in Fig. 3.

The two-loop diagrams can be classified in contributions
with nonoverlapping and overlapping loops, which have the
topological structure of the second and third diagrams on the
right-hand side of Fig. 3, respectively. In two-loop diagrams
with nonoverlapping loops, the single-scale propagator in
Eq. (4) contracts two indices at the same vertex. As discussed
by Katanin [13], these contributions can be rewritten as
one-loop diagrams with an insertion of �̇�. Exploiting the
relation Ġ� = S� + G��̇�G�, they allow to replace the
single-scale propagators in the one-loop contributions in
Eq. (4) by scale-differentiated full propagators. The two-loop
contributions with overlapping loops can be treated in a similar
fashion after decomposing the vertex in interaction channels,
which is discussed in the next section.

B. Channel-decomposed flow equations at two-loop level:
�̇ scheme

In this section, we discuss how the two-loop contributions
with overlapping loops can be reformulated effectively as
one-loop contributions, and derive a channel-decomposition
scheme for the vertex and the flow equations at two-loop level.

d

dΛ
= − +

|

+

|

FIG. 3. Simplified diagrammatic representation of the two-loop
flow equation for the two-particle vertex. The second and third
diagrams on the right-hand side can be classified as two-loop contri-
butions with nonoverlapping and overlapping loops, respectively.

The latter allows to extend the one-loop schemes by Karrasch
et al. [37] and Husemann and Salmhofer [38] for the symmetric
phase, by the author and Metzner for singlet superconductors
[39], and by Maier and Honerkamp for antiferromagnets [17].

The basic idea is to rewrite the insertions of two vertices
that are connected by a full and a single-scale propagator
in the two-loop contributions with overlapping loops (see
third diagram on the right-hand side of Fig. 3) as a one-loop
contribution (see first diagram on right-hand side of Fig. 3).
In order to make use of this idea, the vertex has to be
decomposed in interaction channels and the diagrams in the
flow equation have to be assigned to channels according to
their leading singular dependence on external momenta and
frequencies.

For a decomposition in interaction channels, the two-
particle vertex is written as a sum of several terms, where
each describes a possibly singular dependence of the vertex
on momenta and frequencies. Assuming translation invari-
ance, the multi-index notation of Sec. II A is specialized
to

�
(4)�
αβγ δ ≡ �(4)�

sαsβsγ sδ
(kα,kβ,kγ ,kδ), (11)

where �(4)� is nonzero only for kα + kβ = kγ + kδ . For the
sake of compactness of the presentation, we stick to the multi-
index notation in the major part of this section. The channel-
decomposition of the vertex reads

�
(4)�
αβγ δ = uαβγ δ + V

PH,�
αβγ δ − V

PH,�
βαγ δ + V

PP,�
αβγ δ , (12)

where u is the microscopic interaction and

V
PH,�
αβγ δ = V PH,�

sαsβ sγ sδ

(
kγ − kβ ;

kα + kδ

2
,
kβ + kγ

2

)
, (13)

V
PP,�
αβγ δ = V PP,�

sαsβ sγ sδ

(
kα + kβ ;

kα − kβ

2
,
kδ − kγ

2

)
(14)

describe fluctuation corrections in the (Nambu) particle-hole
and (Nambu) particle-particle channel, respectively. The first
argument of V PH,� and V PP,� describes the possibly singular
dependence on the transfer momentum, while the last two
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= + kγ−kβ − kγ−kα +
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FIG. 4. Diagrammatic representation of the decomposition of
the (Nambu) two-particle vertex in bare interaction, particle-hole
channels, and particle-particle channel.

momentum arguments describe dependences on fermionic rel-
ative momenta. The decomposition of the vertex is illustrated
diagrammatically in Fig. 4.

Flow equations for the effective interactions in the particle-
hole and particle-particle channels are derived by inserting the
Ansatz (12) into the flow equation (4) and assigning diagrams
to interaction channels according to their leading singular
dependence on external momenta. The one-loop contributions
[i.e., Eq. (4) without the last term] are assigned to interaction
channels as in the channel-decomposition schemes at one-loop
level in such a way that the transfer momentum is transported
through the diagrams by the fermionic propagators. The first
and second contributions in the square bracket in Eq. (4)
are assigned to the direct and crossed particle-hole channel,
respectively. The third contribution is assigned to the particle-
particle channel. This yields(

d

d�
V

PH,�
αβγ δ

)
1L

=
∑

a,b,c,d

∂�,S

(
G�

abG
�
cd

)
�

(4)�
αbcδ�

(4)�
dβγ a

≡ V̇
PH,�
αβγ δ , (15)

(
d

d�
V

PP,�
αβγ δ

)
1L

= −1

2

∑
a,b,c,d

∂�,S

(
G�

abG
�
cd

)
�

(4)�
αβca�

(4)�
bdγ δ

≡ V̇
PP,�
αβγ δ (16)

After rewriting the two-loop diagrams with nonoverlapping
loops as one-loop diagrams with �̇ insertions, they are
assigned similarly according to the transfer momentum in the
fermionic loops,(

d

d�
V

PH,�
αβγ δ

)
�̇

=
∑

a,b,c,d

∂�,�

(
G�

abG
�
cd

)
�

(4)�
αbcδ�

(4)�
dβγ a, (17)

(
d

d�
V

PP,�
αβγ δ

)
�̇

= −1

2

∑
a,b,c,d

∂�,�

(
G�

abG
�
cd

)
�

(4)�
αβca�

(4)�
bdγ δ,

(18)

where ∂�,� is a shorthand for a � derivative that acts on the
fermionic self-energy only, ∂�,�G� = G��̇�G�.

Before assigning the two-loop contributions with over-
lapping loops to the interaction channels, it is convenient
to rewrite them effectively as one-loop diagrams. This is
possible after expressing insertions of two vertices that are
connected by a full and a single-scale propagator as one-loop
scale-derivatives of effective interactions. Consider as an
example the renormalization contribution to the two-particle
vertex arising from the first two terms in the first line of
Eq. (10). After insertion into Eq. (4), these contributions

γ

δ

β

/

α

+

γ

δ

β

\

α

=

γ

δ

β

•

α

FIG. 5. Illustration of the reorganization of two-loop diagrams
with overlapping loops in a one-loop diagram with a scale-
differentiated effective interaction.

read

−
∑

S�
baG

�
cdG

�
ef G�

mn

(
�

(4)�
βacm�

(4)�
αneb+�(4)�

aαcm�
(4)�
βneb

)
�

(4)�
f dγ δ. (19)

Renaming summation indices and exploiting the antisymmetry
of the vertex under particle exchange, this expression can be
rewritten as

−
∑

�
(4)�
f dγ δG

�
ef G�

cd

(
S�

baG
�
mn + G�

baS
�
mn

)
�

(4)�
αnbe�

(4)�
aβcm︸ ︷︷ ︸

=
(

d
d�

V
PH,�
αβce

)
1L

= −
∑

c,d,e,f

(
d

d�
V

PH,�
αβce

)
1L

G�
ef G�

cd�
(4)�
f dγ δ, (20)

where Eq. (15) was exploited. This reorganization is illustrated
diagrammatically in Fig. 5 and works similarly for all
contributions in Eq. (4) after inserting Eqs. (9) and (10).
Collecting terms yields the two-loop flow equation for the
vertex expressed effectively as a one-loop equation,

d

d�
�

(4)�
αβγ δ =

∑
a,b,c,d

[
d

d�

(
G�

abG
�
cd

)(
�

(4)�
αbcδ�

(4)�
dβγ a − �

(4)�
βbcδ�

(4)�
dαγ a

)

− 1

2

d

d�

(
G�

abG
�
cd

)
�

(4)�
αβca�

(4)�
bdγ δ

]

+
∑

a,b,c,d

G�
abG

�
cd

[
�

(4)�
αbcδV̇

PP,�
βdaγ − �

(4)�
αbcγ V̇

PP,�
βdaδ

+ V̇
PP,�
αbcδ �

(4)�
βdaγ − V̇

PP,�
αbcγ �

(4)�
βdaδ − �

(4)�
αbcδV̇

PH,�
βdγ a

+�
(4)�
αbcγ V̇

PH,�
βdδa + V̇

PH,�
αdγ a �

(4)�
βbcδ − V̇

PH,�
αdδa �

(4)�
βbcγ

−�
(4)�
αβcaV̇

PH,�
bdγ δ − V̇

PH,�
αβca �

(4)�
bdγ δ

]
. (21)

In order to make use of this reorganization, we insert the
decomposition of the vertex in interaction channels Eq. (12)
on both sides of Eq. (21) and assign diagrams to interaction
channels according to their leading singular dependence on
external momenta. The assignment of the contributions in the
first two lines of Eq. (21) was discussed above. After inserting
the decomposition of the vertex, the other lines contain
diagrams that can be classified in two-loop vertex correction
diagrams [for an example, see Fig. 6(a)] and two-loop
box diagrams [for examples, see Figs. 6(b) and 6(c)]. No
two-loop propagator renormalization diagrams appear as a
consequence of the topological structure of the two-loop
diagrams with overlapping loops.

Like at one-loop level, the vertex correction diagrams
are assigned to interaction channels according to the transfer
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kγ

kδ

kαkγ − kβ

p + kβ

p + kγ

kβ

p

kδ=k−q/2

kγ=k +q/2

p−q/2

p−k

kβ=k −q/2 k −p

p+q/2

kα=k+q/2 kδ=k−q/2

kγ=k +q/2

p+k

q/2+p

kα=k+q/2 q/2−p

p+k

kβ=k −q/2

(a)

(b) (c)

FIG. 6. Examples for (a) vertex correction and [(b) and (c)] box
diagrams. At two-loop level, the scale-derivative acts on the effective
interactions that transport the loop momentum p. The transfer
momentum is transported through the diagram by the fermionic
propagators in (a) and (b), while it is transported by the effective
interactions in (c).

momentum in the fermionic loop and in one effective inter-
action. The singular dependence on momentum in the other
effective interaction is integrated and does not give rise to
singular renormalization contributions in the ground state of a
fermionic s-wave superfluid (see Sec. III B). Differently from
one-loop level, the two-loop box diagrams are assigned to
interaction channels in such a way that the transfer momentum
is transported through the diagram by the effective interactions
[as shown in the example in Fig. 6(c)]. The reason is that these
diagrams become important close to and below the critical
scale [40], where the effective interactions and their scale
derivatives already developed a strong dependence on momen-
tum and frequency. The assignment according to the “bosonic”
singularity yields a better treatment of the strong momentum
and frequency dependence of the scale-differentiated effective
interactions. In Sec. III B, we demonstrate that this assignment
allows to capture the singular renormalization of the amplitude
mode by long-range phase fluctuations in a fermionic s-wave
superfluid. The two-loop renormalization contributions to
the effective interaction in the (Nambu) particle-hole and
particle-particle channels read

(
d

d�
V

PH,�
αβγ δ

)
2L

=
∑

a,b,c,d

G�
abG

�
cd

[(
uαbcδ + V

PH,�
αbcδ

)(
V̇

PP,�
dβγ a − V̇

PH,�
βdγ a

) + (
V̇

PP,�
αbcδ − V̇

PH,�
bαcδ

)(
udβγ a + V

PH,�
dβγ a

)

− d

d�

(
V

PP,�
αbcγ V

PP,�
dβδa + V

PH,�
αβca V

PH,�
bdγ δ + V

PH,�
αdγ a V

PH,�
bβcδ

)
1L

]
, (22)

(
d

d�
V

PP,�
αβγ δ

)
2L

= −
∑

a,b,c,d

G�
abG

�
cd

[(
uαβca + V

PP,�
αβca

)
V̇

PH,�
bdγ δ + V̇

PH,�
αβca

(
ubdγ δ + V

PP,�
bdγ δ

)

+ d

d�

(
V

PH,�
αbδc V

PP,�
βdaγ + V

PP,�
αdaδ V

PH,�
βbγ c − V

PH,�
αbγ c V

PP,�
βdaδ − V

PP,�
αdaγ V

PH,�
βbδc

)
1L

]
. (23)

Taking into account the one-loop contributions and the two-loop contributions with nonoverlapping loops yields the channel-
decomposed flow equations at two-loop level

d

d�
V

PH,�
αβγ δ =

(
d

d�
V

PH,�
αβγ δ

)
1L

+
(

d

d�
V

PH,�
αβγ δ

)
�̇

+
(

d

d�
V

PH,�
αβγ δ

)
2L

, (24)

d

d�
V

PP,�
αβγ δ =

(
d

d�
V

PP,�
αβγ δ

)
1L

+
(

d

d�
V

PP,�
αβγ δ

)
�̇

+
(

d

d�
V

PP,�
αβγ δ

)
2L

. (25)

These flow equations are illustrated diagrammatically in
Figs. 7 and 8. The two-loop contributions are computed using
( d
d�

V
PH,�
αβγ δ )1L and ( d

d�
V

PP,�
αβγ δ )1L. In the next section, we give a

few remarks about the assignment of diagrams in the two-loop
channel-decomposition scheme.

C. Discussion of assignment of diagrams

The channel-decomposition scheme derived in Sec. II B
is exact to the third order in the effective interaction. Due
to the use of an approximation for the three-particle vertex
of that order for its derivation, no �̇ insertions appear in
the scale-differentiated effective interactions in the two-loop
contributions. However, within the same order of approxima-

tion the �̇ insertions can be added to the scale-differentiated
effective interactions in the two-loop contributions, because
this introduces terms of O((�(4)�)4). The resulting channel-
decomposition scheme would correspond to the two-loop flow
equations for the two-particle vertex proposed by Veschgini
and Salmhofer [35]. For the attractive Hubbard model, we
checked such an assignment and found only minor differences
in the results in the presence of a not too small external pairing
field. Note, however, that this may change in other contexts. For
pairing field flows, including the �̇ insertions in the two-loop
contributions leads to a somewhat stronger renormalization of
exchange propagators, but qualitatively similar results. In the
numerical study of the attractive Hubbard model, we therefore
did not include the �̇ insertions in the two-loop contributions.
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d
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δ
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•
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γ

δ α
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−
γ
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−

γ

δ
•

α

β

FIG. 7. Diagrammatic representation of the two-loop renormal-
ization group equation for the effective interaction in the (Nambu)
particle-hole channel V PH,�. The first term on the right-hand side
represents the one-loop contributions where ∂�,G = ∂�,S + ∂�,�

acts on fermionic propagators. The other terms in the first line
represent two-loop box diagrams where ∂�,V is a shorthand for
a scale-derivative acting on effective interactions and yielding the
one-loop result. The other terms represent two-loop vertex correction
diagrams where the effective interactions with dots represent the
one-loop contribution.

The scheme presented in the last section is relatively
compact, because we only distinguished between singularities
arising from fermionic propagators or effective interactions
when assigning diagrams to interaction channels. For very
small external pairing fields, it may be advantageous to further
distinguish between one-loop box diagrams with normal or
anomalous fermionic propagators. The reason is that the
anomalous self-energy receives strong renormalizations in
the pairing field flow due to the singular behavior of the
amplitude mode. Insertions of the resulting �̇ in the one-loop
box diagrams may lead to artificial logarithmic singularities
in non-Cooper channels when assigned as described above.
These can be avoided by assigning the one-loop box diagrams
with anomalous fermionic propagators in such a way that the

d

dΛ
γ

δ α

β

= −1
2
∂Λ,G

β

α

γ

δ

− ∂Λ,V

γ

δ

β

α

− ∂Λ,V

γ

δ α

β

+ ∂Λ,V

δ

γ

β

α

+ ∂Λ,V

δ

γ α

β

−
γ

δ

•
α

β

−
γ

δ
•

α

β

−
γ

δ

•
α

β

−
γ

δ
•

α

β

FIG. 8. Diagrammatic representation of the two-loop renormal-
ization group equation for the effective interaction in the (Nambu)
particle-particle channel V PP,�. The first term on the right-hand
side represents the one-loop contribution. The last term in the
second line and the contributions in the third line represent two-loop
vertex correction diagrams. The other contributions are two-loop box
diagrams. The notation is the same as in Fig. 7.

transfer momentum is transported through the diagrams by
the effective interactions. The one-loop box diagrams with
normal fermionic propagators do not cause difficulties and
should be assigned as described above. These subtleties matter
only for very small external pairing fields (well beyond those
that were accessible in the numerics). Therefore we decided
to present the two-loop channel-decomposition scheme in
the simpler form above, but consider the more sophisticated
version in the estimates in Sec. III B. We checked that
the alternative assignment of one-loop box diagrams with
anomalous propagators indeed yields very similar results in
the numerically accessible range of external pairing fields.

III. ATTRACTIVE HUBBARD MODEL

In this section, we study the ground state of the attractive
Hubbard model on the square lattice as a prototype for a singlet
superfluid [41] using the two-loop channel-decomposition
scheme. Progress in experiments with cold atoms in optical
lattices sparked renewed research interest in this model in
the last decade, because it can be simulated in such systems
[42,43].

The attractive Hubbard model describes spin- 1
2 fermions

with a local attractive interaction on a lattice. Its Hamiltonian
is

H =
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓, (26)

where c
†
iσ and ciσ are creation and annihilation operators

for fermions with spin orientation σ on lattice site i. The
interaction parameter U is negative. The hopping of fermions
is restricted to nearest- and next-nearest-neighbor sites with
amplitudes −t and −t ′, respectively, yielding the dispersion
relation

ε(k) = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky. (27)

In the following, we use t ≡ 1 as the unit of energy.
The ground state of this model is an s-wave spin-singlet

superfluid at any fermionic density. For t ′ = 0 and n = 1
(half-filling), superfluidity is degenerate with charge-density
wave order. The model has been studied in its ground state
and at finite temperatures with a variety of methods, including
resummations of perturbation theory [44–47], quantum [48–
51] and variational [52] Monte Carlo methods, dynamical
mean-field theory [53–55], and functional renormalization
group [16,18,23,24].

A. Parametrization and approximations

We now describe the approximate parametrization of the
interaction vertex and self-energy, which allow for a numerical
solution of the two-loop flow equations. The parametrizations
are similar to those of Ref. [18].

In order to describe the superfluid state, we use Nambu
fields [see Eq. (2)]. In this representation, the fermionic
propagator is a 2 × 2 matrix and reads

G�(k) =
(

G�
++(k) G�

+−(k)

G�
−+(k) G�

−−(k)

)
=

(
G�(k) F�(k)
F�∗(k) −G�(−k)

)
,

(28)
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where G�(k) and F�(k) are its normal and anomalous components, respectively. The propagator is connected with the regularized
bare propagator G�

0 and the Nambu self-energy �� by the Dyson equation (G�)−1 = (G�
0 )−1 − ��. G�

0 reads

(G�
0 (k))−1 =

(
ik0 − ξ (k) − δξ�(k) + R�(k0) �0

�0 ik0 + ξ (k) + δξ�(k) + R�(k0)

)
, (29)

where ξ (k) = ε(k) − μ and δξ�(k) is a counterterm. The
regulator function

R�(k0) = i sgn(k0)
√

k2
0 + �2 − ik0 (30)

regularizes the fermionic singularities by replacing small
frequencies k0 with |k0| � � by sgn(k0)�. The external
pairing field �0 appears in the bare propagator, because it
serves as a regulator for pairing field flows [18], in which
�0 is eliminated after integrating out the fermionic modes at
� > 0. The Nambu self-energy is given by

��(k) =
(

��(k) �0 − ��(k)
�0 − ��∗(k) −��(−k)

)
, (31)

where the off-diagonal entries are chosen in such a
way that the fermionic gap is ��(k). The counterterm
is related to the normal component of the self-energy
via

δξ�(k) + ��(0,k) = 0 (32)

for k on the Fermi surface at all �, such that the Fermi surface
remains fixed during the flow. Similar to Ref. [18], we neglect
the momentum dependence of the self-energy but keep its
dependence on frequency,

��(k) = ��(k0), ��(k) = ��(k0), δξ�(k) = δξ�.

(33)

The momentum dependence of the self-energy is not ex-
pected to be important at low fermionic densities, where
the Fermi surface is almost circular. Furthermore, it leads
only to minor changes of fRG flows for the weakly cou-
pled repulsive Hubbard model at van Hove filling [56].
By choosing the external pairing field �0 to be real, we
fix the phase of the anomalous self-energy so that ��

is also real. The frequency dependence of the self-energy
is discretized on a grid of 30 points that is denser near
k0 = 0 and becomes sparser towards higher frequencies, with
a maximal frequency around 300. Cubic spline interpola-
tion is used to determine the self-energy at intermediate
frequencies.

The interaction vertex is fully described by several coupling
functions [18,39]: C�

kk′(q) and M�
kk′(q) describe charge and

spin fluctuations, respectively. The amplitude and phase mode
of the superfluid gap are described by A�

kk′(q) and ��
kk′(q).

The imaginary part of the normal interaction in the Cooper
channel is denoted as P ′′�

kk′ (q). The real and imaginary parts
of the anomalous (3 + 1) effective interaction is described by
X′�

kk′(q) and X′′�
kk′ (q), respectively. The coupling functions are

expanded in exchange propagators that describe the singular
dependence on the transfer momentum q and fermion-boson
vertices for the more regular dependencies on the fermionic
relative momenta k and k′. As in Ref. [18], we restrict this

expansion to the s-wave channel and approximate the coupling
functions by the following Ansatz:

C�
kk′(q) = C�(q),

M�
kk′(q) = M�(q),

A�
kk′(q) = A�(q)g�

a (k0)g�
a (k′

0),

��
kk′(q) = ��(q)g�

φ (k0)g�
φ (k′

0), (34)

P ′′�
kk′ (q) = P ′′�(q),

X′�
kk′(q) = X′�(q),

X′′�
kk′ (q) = X′′�(q).

In comparison to Ref. [18], we neglect the renormalization
of the fermion-boson vertices in the particle-hole channel,
for the anomalous (3 + 1) effective interactions and for the
imaginary part of the normal interaction in the Cooper channel.
g�

a (k0) and g�
φ (k0) are kept in order to obtain a meaningful

frequency dependence of the gap function and to improve the
fulfillment of the Ward identity for the global U(1) charge
symmetry. These simplifications are justified because the
neglected frequency dependencies of fermion-boson vertices
had only a minor influence on the flow at one-loop level. The
effective interactions in the Nambu particle-hole and Nambu
particle-particle channel then read

V PH,�
s1s2s3s4

(q; k,k′) = C�(q)τ (3)
s1s4

τ (3)
s2s3

+ M�(q)τ (0)
s1s4

τ (0)
s2s3

+ 1
2A�(q)g�

a (k0)g�
a (k′

0)τ (1)
s1s4

τ (1)
s2s3

+ 1
2��(q)g�

φ (k0)g�
φ (k′

0)τ (2)
s1s4

τ (2)
s2s3

+ 1
2P ′′�(q)

(
τ (1)
s1s4

τ (2)
s2s3

− τ (2)
s1s4

τ (1)
s2s3

)
+X′(q)

(
τ (3)
s1s4

τ (1)
s2s3

+ τ (1)
s1s4

τ (3)
s2s3

)
+X′′(q)

(
τ (3)
s1s4

τ (2)
s2s3

− τ (2)
s1s4

τ (3)
s2s3

)
, (35)

V PP,�
s1s2s3s4

(q; k,k′) = 2M�(q)τ (2)
s1s2

τ (2)
s3s4

, (36)

where τ (i) are Pauli matrices (i = 1,2,3) and the unit ma-
trix (i = 0). All functions in Eqs. (35) and (36) are even
functions of momentum. P ′′� and X′′� are odd functions of
frequency, while all other functions are even. The frequency
dependence of the fermion-boson vertices is discretized as is
done for the self-energy. For the exchange propagators, we
discretize the dependence on momenta and frequencies on
a three-dimensional grid and trilinear interpolation is used
at intermediate momenta and frequencies. The frequency
dependence is discretized with 40 frequencies between q0 =
0 and 300, with grid points denser at small frequencies.
The momentum dependence is discretized with cylindrical
coordinates around q = 0 and π , similar to Ref. [38]. The
angular dependencies are resolved with three angles between
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0 and π/4. At quarter-filling, the radial dependence of the
singular exchange propagators A(q), �(q), P ′′(q), and X′′(q)
around q = 0 is discretized with 25 points between radius 0
and π , with denser distribution of points near |q| = 0. All
other exchange propagators have a weaker dependence on
momentum and are thus described with only ten points in
the radial direction.

The flow of the exchange propagators and fermion-boson
vertices is extracted from the flow equations for the coupling
functions as described in Ref. [18] by averaging the external
fermionic momenta k and k′ over the Fermi surface for
suitable choices of the transfer momentum and the fermionic
frequencies. The flow of the exchange propagators is evaluated
for k0 = k′

0 = 0. The renormalization contributions to g�
a and

g�
φ are obtained after setting q = 0 and k′

0 = 0. The flow of
the fermionic self-energy is evaluated similarly by averaging
the external fermionic momentum over the Fermi surface.

By discretizing the dependencies on momenta and frequen-
cies, the functional flow equations were transformed into a
system of around 20 000 nonlinear ordinary differential equa-
tions with three-dimensional loop integrals on the right-hand
sides. These loop integrals were performed with an adaptive
integration algorithm. The system of differential equations was
integrated using an adaptive third-order Runge-Kutta routine.
Depending on the parameters, the numerical integration of a
flow on 32 CPU cores required around three days at one-loop
level and between two and four weeks at two-loop level. Due
to the large number of flowing couplings and the fact that
the computations of their renormalization contributions are
independent at a given scale, the flow equations are well suited
for parallelization.

The numerical integration of the flow equations was started
at a large finite scale �0 ≈ 100, which is of the order of several
times the bandwidth. The fermionic modes for � > �0 were
treated in second-order perturbation theory, yielding exchange
propagators of the order of −U 2/�0 for q = 0, so that the
contributions from � > �0 are small compared to U . Treating
the high energy scales in perturbation theory also provides a
well defined starting point for the flow of the fermion-boson
vertices, which were set to one at �0. The normal self-energy
receives a sizable contribution from the tadpole diagram at
any finite �0, yielding ��0 = −δξ�0 ≈ U/2 + O(�−1

0 ). The
anomalous self-energy ��0 is determined self-consistently
from the gap equation at scale �0, but the corrections to �0

are small [of order O(U/�0)].
Due to the truncation of the hierarchy of flow equations

and the approximations for the coupling functions, the Ward
identity for the global U(1) charge symmetry is violated in the
two-loop flows [22]. We did not systematically study how large
these violation are quantitatively. For computing the results in
Sec. III C, the Ward identity was enforced by a projection
of the coupling constants as in Ref. [18]. At low scales, this
procedure effectively amounts to determining the Goldstone
mass from the Ward identity instead of the flow equation.

B. Analytical estimates for infrared behavior

Before presenting results from numerical solutions of the
flow equations, we discuss the infrared behavior of the vertex
in a fermionic s-wave superfluid in the BCS regime at zero

temperature. We assume that the fermionic modes at � > 0
have been integrated out in the presence of an external pairing
field �0. The latter regularizes the phase mode of the superfluid
gap and is treated in a pairing field flow [18] in this section.
For simplicity, we assume a circular Fermi surface, but its
shape is not expected to influence the conclusions. The infrared
behavior at one-loop level was discussed in Ref. [18]. In
this section, we discuss only estimates for the most singular
contributions to the flow at two-loop level. The flow equations
including all terms are rather lengthy and can be found in
Ref. [22].

At small transfer momenta and frequencies, the exchange
propagators in the Cooper channel and for the imaginary part
of the anomalous (3+1) effective interaction are well described
by

��0 (q) ∼ − 1

�0 + Z
�0
� q2

0 + A
�0
� q2

,

P ′′�0 (q) ∼ − q0

�0 + Z
�0
P ′′ q

2
0 + A

�0
P ′′ q2

,

(37)
X′′�0 (q) ∼ q0

�0 + Z
�0
X′′ q

2
0 + A

�0
X′′ q2

,

A�0 (q) ∼ − 1√
�0 + Z

�0
A q2

0 + A
�0
A q2

,

where the superscripts indicate that �0 is the flow parameter.
The Ansätze for ��0 , P ′′�0 , and X′′�0 are consistent with a
resummation of all chains of Nambu particle-hole diagrams
[18] and can be justified nonperturbatively for ��0 and P ′′�0

using Ward identities [20,21]. The Ansatz for A�0 is consistent
with the expected singular infrared behavior of the amplitude
mode in an interacting Bose gas and reproduces the singular
infrared scaling that was described in Refs. [23,24] in terms of
divergent wave function renormalization factors. The above-
mentioned works indicate that the coefficients A

�0
i and Z

�0
i in

the Ansätze remain finite when defined as above. We assume
that all other exchange propagators are less singular in the limit
where the external pairing field vanishes. Below we show that
these assumptions are justified and the Ansätze consistent with
the infrared behavior of the flow. The fermion-boson vertices
are set to one in this section, as they are not expected to
influence the singular behavior.

In the presence of a superfluid gap and close to the Fermi
surface, the fermionic propagator behaves like

F�0 (k + p) ≈ 1

��0
, G�0 (k + p) ≈ − ip0 + vF p · ekF

(��0 )2

(38)

for small p and k = (0,kF ), together with appropriate ultravio-
let cutoffs, where vF is the Fermi velocity and ekF

a unit vector
pointing in the direction of kF . In this section, we neglect
the normal self-energy and assume that it can be subsumed
into Fermi liquid like renormalization factors, which do not
influence the singular infrared behavior as they remain finite
(see below).

The most singular contributions at two-loop level arise from
diagrams involving scale-derivatives of the phase mode. The
two-loop vertex correction diagrams of this kind involve an
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integral of the form
∫

d3p

(2π )3
∂�0�

�0 (p), (39)

where we suppressed the fermionic propagators and the second
effective interaction. The integrals should be evaluated with
some ultraviolet cutoff arising from the decay of the fermionic
propagators at high frequencies and the lattice. In case the
integrals do not cause problems at the upper integration limit,
we send the cutoffs to infinity as the interesting behavior arises
from the region around p = 0. Neglecting the contributions
from the (finite) �0 derivatives of the renormalization factors
for the dependence on momenta and frequencies, this integral
yields
∫

d3p

(2π )3

1

(�0 + Z
�0
� p2

0 + A�0p2)2
∼ 1

A
�0
�

√
Z

�0
� �0

. (40)

In the following, the renormalization factors for the momentum
and frequency dependencies are suppressed, as they are
assumed to be finite and nonsingular in the limit of a vanishing
external pairing field and thus do not change the infrared
behavior qualitatively. When multiplying this contribution
with a finite effective interaction, as in the flow equations for
the exchange propagators in the particle-hole channel, it may
give rise to nonanalytic behavior but not to divergences as a
function of �0 after integrating the flow. In the flow equations
for the exchange propagators in the particle-particle channel,
more singular contributions appear either from propagator
renormalization or two-loop box diagrams.

The two-loop box diagrams are potentially more singular
than the vertex correction diagrams, as they contain loops
containing two exchange propagators for the phase mode. The
biggest change in the infrared behavior in comparison to the
one-loop approximation is found for the amplitude mode A�0 .
Evaluating the two-loop box diagram for external momenta
k = k′ = (0,kF ), the leading contributions read

d

d�0
A�0 (0)|2L

∼ −
∫

d3p

(2π )3
[F (k + p)2∂�0 (A�0 (p)2 + ��0 (p)2

− 8X′′�0 (p)2 + P ′′�0 (p)2) + 8 Im G(k + p)

×F (k + p)∂�0 (X′′�0 (p)��0 (p))] + . . . . (41)

The ellipsis represents less singular terms in �0 that either
involve less singular exchange propagators or where their sin-
gularities are suppressed by momentum and frequency factors
stemming from the fermionic propagators. The most singular
contribution arises from the squared exchange propagator for
the phase mode, for which an estimate yields

d

d�0
A�0 (0)|2L ∼

∫
d3p

(2π )3
��0 (p)

d

d�0
��0 (p) ∼ �

−3/2
0 .

(42)

After integration, this gives rise to the expected infrared scaling
behavior of the amplitude mode [20,21,23,24], expressed in

terms of an external pairing field,

A�0 (0) ∼ �
−1/2
0 . (43)

More generally, in dimension 2 < d < 4 it reads A�0 (0) ∼
�

(d−4)/2
0 , which is similar to the behavior of the longitudinal

susceptibility in the nonlinear sigma model in an external
magnetic field [57] (here, the case d = 2 + 1 is relevant).

The leading contributions to the charge mode look similar
to Eq. (41), but with the anomalous fermionic propagators
replaced by normal ones,

d

d�0
C�0 (0)|2L ∼ −

∫
d3p

(2π )3
Re G(k + p)2

× ∂�0 (A�0 (p)2 + ��0 (p)2) + · · · . (44)

The momentum factors resulting from the normal propagators
weaken the singularity of ��0 (p)2, so that the integral yields

d
d�0

C�0 (0)|2L ∼ �
−1/2
0 and thus C�0 (0)|2L ∼ �

1/2
0 + const.

The leading renormalization contribution to the anomalous
(3+1) effective interaction reads

d

d�0
X′�0 (0)|2L ∼ −

∫
d3p

(2π )3
Re G(k + p)F (k + p)

× ∂�0 (��0 (p)2 − A�0 (p)2) + · · · (45)

and is slightly more singular than d
d�0

C�0 (0)|2L due to the
presence of one anomalous fermionic propagator. A simple
estimate hints at a logarithmic singularity of X′�0 (0), but
its prefactor vanishes due to the approximate particle-hole
symmetry in the vicinity of the Fermi surface. In the magnetic
channel, the two-loop box diagrams yield a logarithmically
singular contribution to d

d�0
M�0 (0)|2L, which does not give

rise to singular behavior after integration. The two-loop contri-
butions to the phase mode are less singular than the propagator
renormalization diagrams. Note that simple estimates as above
for propagator renormalization diagrams with �̇ insertions
would yield a contribution to the phase mode that diverges
as �

−3/2
0 . Such a divergence would be inconsistent with

Eq. (37) and would lead to a drastic violation of the U(1) Ward
identity. We did not detect such a contribution numerically
(see Sec. III C), potentially due to cancellations caused by
Ward identities.

The change in the infrared behavior of the vertex also
impacts the self-energy. The normal self-energy does not
receive singular contributions, as C�0 (0) and X′�0 (0) remain
finite and the fluctuation contributions are integrable in two
dimensions at zero temperature. The flow of the anomalous
self-energy is altered due to the singular behavior of A�0 (0) ∼
�

−1/2
0 to

d

d�0
��0 = −A�0 (0)

∫
d3p

(2π )3
S

�0
F (p) + . . . ∼ �

−1/2
0 , (46)

where S
�0
F is the anomalous component of the single-scale

propagator, which depends only weakly on �0. At one-loop
level, one obtains d

d�0
��0 ∼ O(1). The anomalous self-energy

thus becomes nonanalytic at two-loop level as a function of
the external pairing field,

��0 − ��0=0 ∼ �
1/2
0 . (47)
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More generally, this result reads ��0 − ��0=0 ∼ �
(d−2)/2
0 in

2 < d < 4 dimensions. Such a nonanalytic behavior is also
found in the magnetization of the nonlinear sigma model in an
external magnetic field [57].

C. Numerical results

We now present results for the effective interactions and
the self-energy from numerical solutions of the flow equations
at two-loop level for a quarter-filled system (n = 1/2), where
the Fermi surface is almost circular. The results were obtained
by first integrating out the fermionic modes at � > 0 in the
presence of an external pairing field of the order of �MF/100,
where �MF is the mean-field gap, and subsequently reducing
the external pairing field in another flow.

In the presence of a not too small external pairing field,
the flows at two-loop level are qualitatively similar to those
at one-loop level. This can be seen in Fig. 9, which shows
the flow of the amplitude and phase mode of the gap at
vanishing momentum and frequency, A�(0) and ��(0), for
a quarter-filled (n = 1/2) system with t ′ = −0.1 for different
values of U . The critical scales �c (the scales where |A�(0)| is
maximal) are, however, reduced due to fluctuation corrections
at two-loop level. The same observations can be made for
the flow of the anomalous self-energy at zero frequency,
which is shown in Fig. 10 for the same parameters as in
Fig. 9. In the presence of a not too small external pairing
field and for |U | � 3, the � dependence of the anomalous
self-energy is still qualitatively similar to that in mean-field
theory, �� ≈ √

�2
c − �2 for � < �c, even at two-loop level.

This means that the critical scale and gap are mainly reduced
by fluctuations above �c. For smaller external pairing fields
or larger values of |U |, the agreement worsens because the
gap at � = 0 gets somewhat larger than expected from the
above relation. This indicates an increasing impact of phase
fluctuations and is accompanied by a change in the behavior of
A�(0) for small �. Instead of a monotonic decrease in absolute
value below the critical scale as shown in Fig. 9, A�(0) first
decreases in absolute value below the critical scale and then
slightly increases at low scales. For �0 ≈ �MF/100, this effect

0 0.5 1

Λ

−100

−50

0

Φ
Λ
(0

),
A

Λ
(0

)

AΛ, 1L, U = −3

AΛ, 2L, U = −3

AΛ, 1L, U = −2

AΛ, 2L, U = −2

ΦΛ, 1L, U = −3

ΦΛ, 2L, U = −3

ΦΛ, 1L, U = −2

ΦΛ, 2L, U = −2

FIG. 9. (Color online) Renormalization group flow of the am-
plitude (A�) and phase (��) coupling functions at fixed external
pairing field at one-loop (1L) and two-loop (2L) levels for different
interactions U for n = 1/2, t ′ = −0.1, and �0 ≈ �MF/100.

0 0.5 1

Λ

0

0.1

0.2

0.3

Δ
Λ
(0

)

1L, U = −3
2L, U = −3
1L, U = −2
2L, U = −2

FIG. 10. (Color online) Renormalization group flow of the super-
fluid gap at fixed external pairing field at one-loop (1L) and two-loop
(2L) levels for different interactions U for n = 1/2, t ′ = −0.1, and
�0 ≈ �MF/100.

was either absent (|U | � 3) or small, so that long-range phase
fluctuations were mostly treated in the pairing field flows.

The momentum and frequency dependence of the self-
energy and exchange propagators is qualitatively similar to
the one-loop approximation [18]. The same holds for the
flows of the effective interactions in the magnetic, charge and
anomalous (3+1) channels. We therefore do not show results
for these quantities.

The impact of phase fluctuations can be studied in a
controlled way by eliminating the external pairing field in a
second flow. The results of such pairing field flows are shown
in Figs. 11–13. Figure 11 shows the reduction of the anomalous
self-energy in pairing field flows at one- and two-loop level
for U = −3, t ′ = −0.1, and n = 1/2, which is mainly caused
by amplitude and long-range phase fluctuations. Depending
on the initial size of the external pairing field, the anomalous
self-energy is reduced around 10% in the pairing field flow,
with a slightly stronger reduction for larger initial external
pairing fields. The �0 dependence of the gap at one- and
two-loop level is linear to a very good approximation. This is
expected at one-loop level. At two-loop level, the numerically

0 0.005 0.01

Δ0

0.3

0.325

0.35

0.375

Δ
(0

)

1L
2L

FIG. 11. (Color online) Pairing field flow of the anomalous self-
energy at one-loop (1L) and two-loop (2L) levels for U = −3, t ′ =
−0.1, and n = 1/2. The external pairing field �0 is used as the flow
parameter and was chosen as �0 = �MF/50 in the fermionic flow.
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0 0.025 0.05 0.075 0.1

(Δ0)1/2

0 10−3 0.01

Δ0

0

0.1

0.2

−
(A

(0
))

−
1

1L
2L

FIG. 12. (Color online) Pairing field flow of the amplitude cou-
pling function A at one-loop (1L) and two-loop (2L) levels for the
same parameters as in Fig. 11.

accessible external pairing fields are too large for resolving
the expected nonanalytic behavior on the scale of Fig. 11.
Fitting ��0 = a + b�

1/2
0 + c�0 to the �0 dependence of the

gap at two-loop level yields only a small coefficient for the
term ∼ �

1/2
0 .

The amplitude mode A�0 gets strongly renormalized during
the pairing field flow as can be seen in Fig. 12, which compares
the one- and two-loop approximations for a quarter-filled
system with U = −3 and t ′ = −0.1. In both cases, the flows
for � > 0 were computed in the presence of an external pairing
field �0 = �MF/50, which was reduced by a factor ≈50 in
the pairing field flow. Smaller external pairing fields were not
accessible within our framework of approximations due to
remnants of the violation of the Ward identity for the global
U(1) charge symmetry that cannot be cured with the above-
mentioned simple projection method for enforcing the Ward
identity.3 The results in Fig. 12 are plotted in such a way that
the scaling in Eq. (43) would yield a linear dependence near
�0 = 0. Fluctuations at two-loop level clearly lead to a strong
renormalization of the amplitude mode and tend to suppress
(−A(0))−1 towards zero. However, due to the limited range
of accessible pairing fields, the behavior in the limit �0 → 0
is not apparent from this plot. From the numerical data, we
also cannot draw conclusions on the behavior of the effective
interactions in the particle-hole channel in this limit for the
same reason. Figure 13 shows the inverse of the derivatives
of the amplitude and phase coupling functions at q = 0 with
respect to the external pairing field as computed during the
same pairing field flow as in Fig. 12. From Eqs. (37) and (42),

3As a consequence of the violation of the Ward identity for the
U(1) charge symmetry, the frequency dependence of �(q) at � = 0
deviates slightly from the quadratic dependence in Eq. (37) at low
frequencies, yielding a small plateau. This cannot be cured with our
simple projection scheme for enforcing the Ward identity. At very
small external pairing fields, this plateau leads to an overestimation
of phase fluctuations, which also gives rise to the small offset seen in
Fig. 13 for (dA�0/d�0)−1.

0 0.002 0.004

Δ0

0

10−3

0.002

(d
A

Δ
0

d
Δ

0
)−

1
(0

),
(d

Φ
Δ

0

d
Δ

0
)−

1
(0

) (dAΔ0/dΔ0)−1

50(dΦΔ0/dΔ0)−1

FIG. 13. (Color online) Pairing field flow of the inverse of the
derivatives of the amplitude A and phase � coupling functions with
respect to the external pairing field �0 at two-loop level for the
same parameters as in Fig. 11. The red and magenta lines are fits
to the expected dependence on the external pairing field (see text).
For a better presentation, the result for the phase mode is rescaled by
factors of 50.

one expects (d�/d�0)(0) ∝ �−2
0 and (dA/d�0)(0) ∝ �

−3/2
0 .

In Fig. 13, the numerical results are compared to fits using the
function f (�0) = a + b�n

0, where n = 2 for (d�/d�0)−1 and
n = 3/2 for (dA/d�0)−1, showing good agreement with the
expected dependence on �0. The small offsets near �0 = 0
are remnants of the violation of the Ward identity for the global
U(1) charge symmetry.

Figures 9 and 10 already gave an impression of the
renormalization of the critical scale and the gap by fluctuations
at two-loop level. The impact of these fluctuations also depends
on the size of U . This can be seen in Fig. 14, which shows
the gap ratio �/�MF as a function of the interaction for a
quarter-filled system with t ′ = −0.1. � = �(0) is the gap as
obtained from extrapolating pairing field flows to the limit
�0 → 0 and �MF is the gap in mean-field approximation.
The one-loop results are in very good agreement with those
of Ref. [18] despite the differences in the approximations

1 2 3 4

|U |

0.3

0.4

0.5

Δ
/Δ

M
F

1L
2L
1L, static

FIG. 14. (Color online) Gap ratio �/�MF as a function of U from
one-loop (1L) and two-loop (2L) flows for n = 1/2 and t ′ = −0.1.
Also shown are results from a static approximation (1L, static) in
which all frequency dependencies are neglected.
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for the momentum and frequency dependence of exchange
propagators. The observed increase of �/�MF with |U | is
consistent with the behavior in the limits U → 0− and U →
−∞. These limits are accessible in perturbation theory [58,59]
or by mapping the attractive Hubbard model at finite doping to
the Heisenberg model in a magnetic field, respectively. Results
for the staggered magnetization in the latter were obtained
numerically in Ref. [60]. In the coupling range considered, the
gaps at two-loop level are 5%–20% smaller than at one-loop
level. For smaller values of |U |, it is difficult to compute the gap
from a numerical solution of the flow equations, because the
gap and the critical scale decrease exponentially. It is expected
that the two-loop result approaches the one-loop result for
smaller values of U , because the phase space for fluctuations
at two-loop level decreases with |U |. It is interesting that
the gap ratios at one- and two-loop level approach each
other with increasing |U |. This may indicate that the Katanin
scheme overestimates certain fluctuation contributions, which
are compensated by two-loop contributions with overlapping
loops at larger |U |. Figure 14 also shows results from a static
one-loop approximation, in which the frequency dependence
of the self-energy and vertex is neglected. Note that the
gaps from this approximation are even smaller than those
from the two-loop approximation, indicating that the former
overestimates the impact of fluctuations when using the
frequency regulator in Eq. (30).

IV. SUMMARY

We have analyzed flow equations for the two-particle
vertex in the fermionic functional renormalization group at
two-loop level and reformulated them effectively as one-loop
equations. In two-loop contributions with overlapping loops,
the insertion of two vertices that are connected by a full
and a single-scale propagator can be reexpressed through the
one-loop result for the scale-derivative of the vertex. This is
similar in spirit to the replacement of tadpole insertions by
scale-derivatives of the self-energy in the Katanin scheme.
The reformulation is exact to the third order in the effective
interaction, sheds light on the physics described by the
two-loop renormalization contributions, and allows for their
efficient numerical treatment.

The proposed scheme is based on a decomposition of
the vertex in charge, magnetic, and pairing channels. Using
this decomposition, the singular dependence of the vertex on
momenta and frequencies can be described within a reasonable
numerical effort also at two-loop level. The scheme allows to
continue renormalization group flows into phases with broken
symmetries, which we demonstrated for the superfluid ground
state of the attractive Hubbard model.

Using simple estimates for the most singular diagrams,
we analyzed the infrared behavior of the vertex and the
self-energy in the ground state of an s-wave superfluid in the
BCS regime. We find that the two-loop scheme captures the
expected singular behavior of the amplitude mode as well
as the nonanalytic behavior of the order parameter in the limit
where the external pairing field vanishes. In a description using
auxiliary bosons for the order parameter, this infrared behavior
is governed by a non-Gaussian fixed point [21,23]. Thus our
approach captures non-Gaussian fluctuations, although the
related fixed point structure is less transparent than in the
partially bosonized approach.

We argue that the vertex in the ground state of a fermionic
s-wave superfluid in two dimensions does not exhibit infrared
singularities beyond those in the Cooper channel that are
already known from the singular infrared behavior of inter-
acting bosons. Our formalism yields a unified description of
the reduction of the anomalous self-energy by particle-hole
and collective fluctuations. In comparison to the one-loop
approximation, the obtained superfluid order parameters at
two-loop order are slightly smaller.

The formalism presented in this article may be useful
also in other contexts. As it treats all interaction channels on
equal footing and captures single-particle as well as collective
fluctuations, it might be a convenient tool for the study of
competing orders in systems of correlated fermions, like
the repulsive Hubbard model, possibly in conjunction with
mean-field theory for the low-energy modes below the scale
for symmetry breaking [61]. Quite generally, it may be helpful
for applying the fermionic functional renormalization group
at larger interactions.

ACKNOWLEDGMENTS

I would like to thank N. Hasselmann, T. Holder,
C. Honerkamp, C. Husemann, S. Maier, W. Metzner, B. Obert,
M. Salmhofer, and K. Veschgini for valuable discussions.

[1] For a review, see W. Metzner, M. Salmhofer, C. Honerkamp,
V. Meden, and K. Schönhammer, Rev. Mod. Phys. 84, 299
(2012).

[2] D. Zanchi and H. J. Schulz, Phys. Rev. B 61, 13609 (2000).
[3] C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 (2000).
[4] C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice,

Phys. Rev. B 63, 035109 (2001).
[5] A. Eberlein and W. Metzner, Phys. Rev. B 89, 035126

(2014).
[6] S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck,
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3499 (1999).
[48] M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys.

Rev. Lett. 69, 2001 (1992).
[49] N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).
[50] R. R. dos Santos, Phys. Rev. B 50, 635(R) (1994).
[51] J. M. Singer, M. H. Pedersen, T. Schneider, H. Beck, and H.-G.

Matuttis, Phys. Rev. B 54, 1286 (1996).
[52] S. Tamura and H. Yokoyama, J. Phys. Soc. Jpn. 81, 064718

(2012).
[53] M. Keller, W. Metzner, and U. Schollwöck, Phys. Rev. Lett. 86,
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