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Magnetic and nonmagnetic phases in doped AB2 t- J Hubbard chains
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Laboratório de Fı́sica Teórica e Computacional, Departamento de Fı́sica, Universidade Federal de Pernambuco,

50670-901, Recife-PE, Brazil
(Received 11 May 2014; revised manuscript received 18 July 2014; published 11 September 2014)

We discuss the rich phase diagram of doped AB2 t-J chains by using data from density matrix renormalization
group and exact diagonalization techniques. The J vs δ (hole doping) phase diagram exhibits regions of itinerant
ferrimagnetism, incommensurate, resonating valence bond and Nagaoka states, phase separation, and Luttinger
liquid (LL) physics. Several features are highlighted, such as the modulated ferrimagnetic structure, the occurrence
of Nagaoka spin polarons in the underdoped regime and small values of J = 4t2/U , where t is the first-neighbor
hopping amplitude and U is the on-site repulsive Coulomb interaction, incommensurate structures with nonzero
magnetization, and strong-coupling LL physics in the high-doped regime. We also verify that relevant findings
are in agreement with the corresponding findings in square and n-leg ladder lattices. In particular, we mention
the instability of Nagaoka ferromagnetism against J and δ.
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I. INTRODUCTION

The t-J version of the Hubbard Hamiltonian [1] is a key
model for understanding strongly correlated electron systems.
The model is defined through only two competing parameters:
the hopping integral t , which measures the electron delocaliza-
tion through the lattice, and the exchange coupling J = 4t2/U ,
where U � t is the on-site Coulomb repulsion. In fact, several
versions of the simplest Hubbard Hamiltonian, with a single
orbital at each lattice and the on-site Coulomb repulsion, have
been extensively used to model a variety of phenomena, such
as the metal-insulator transition [2], quantum magnetism [3]
and high-Tc superconductivity [4]. Moreover, exact solutions
[1] and rigorous results [5,6] have played a central role in this
endeavor.

We emphasize Lieb’s theorem [7], a generalization of
the one by Lieb and Mattis [8] for Heisenberg systems,
which asserts that the ground state (GS) total spin of a
bipartite lattice at half filling and U > 0 is given by SGS =
|NA − NB |/2, where NA (NB) is the number of sites on
sublattice A (B); indeed, Lieb’s theorem has greatly enhanced
the investigation of new aspects of quantum magnetism [6].
In particular, we mention the occurrence of ferrimagnetic
GS, in which case we select studies using Hubbard or t-J
models [9–15], including the Heisenberg strong-coupling limit
[16–18], on chains with AB2 or ABC topological structures
with SGS = 1/2 per unit cell [9–13,16,17], which implies
ferromagnetic and antiferromagnetic long-range order [10].
Further, the inclusion of competing interactions or geometrical
and kinetic frustration [19–21] enlarges the classes of models,
thereby allowing ground states not obeying Lieb or Lieb
and Mattis theorems. These studies have proved effective
in describing magnetic and other physical properties of a
variety of organic, organometallic, and inorganic quasi-one-
dimensional compounds [19,22].

Of particular physical interest are doped systems, although
in this case rigorous results are much rarer [6]. One exception
is Nagaoka’s theorem [23], which asserts that for J = 0 (U →
∞) the t-J model with one hole added to the undoped system
(half-filled band) is a fully polarized ferromagnet, favored

by the hole kinematics, if the lattice satisfies the so-called
connectivity condition [24]. A long-standing problem about
this issue is the stability of the ferromagnetic state for finite
hole densities and finite values of J . Numerical results have
indicated [25,26] that two-dimensional lattices display a fully
polarized GS for J = 0 and δ � 0.2, where δ = Nh/N , with
Nh (N ) the total number of holes (sites), while analytical
studies [27,28] have suggested that this state is stable up to
Jt ∼ δ2.

Further, a ubiquitous phenomenon in doped strongly cor-
related materials is the occurrence of inhomogeneous states,
particularly spatial phase separation in nano- and mesoscopic
scales [29] and incommensurate states [29,30]. In underdoped
high-Tc materials, dynamical and statical stripes in copper
oxide planes have been the focus of intensive research [31].
Concerning two-dimensional t-J or Hubbard models, phase
separation into hole-rich and no-hole regions was discussed
in the large- and small-J limits [32]. However the precise
charge distribution in the ground state remains controversial.
The use of distinct and refined numerical methods has pointed
to striped [33] or uniform phases [34]; recently, it was claimed
that the origin of this issue relies on the strong competition
between these phases [35]. For the linear t-J Hubbard chain
the physics is more clear [36], and phase separation takes
place for J = 2.5 to 3.0, depending on the doping value, but
it is absent in the small-J regime.

In this work, we use density matrix renormalization group
(DMRG) [37] techniques and Lanczos exact diagonalization
(ED) to obtain the ground-state phase diagram and the low-
energy-excitation properties of the doped t-J model on AB2

chains [9] for J = 0.0 to 0.4. We verify the occurrence of
an itinerant modulated ferrimagnetic (FERRI) phase in the
underdoped regime, regions of incommensurate (IC) states
and Nagaoka ferromagnetism (F), and two regions of phase
separation (PS), in which IC and F states coexist with the
resonating valence bond state (RVB), respectively. In addition,
we find that the RVB state is the stable phase at δ = 1/3 and
identify a crossover region that ends at the onset of a Luttinger
liquid (LL) phase at δ = 2/3, above which the LL physics [38]
sets in.
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FIG. 1. (Color online) (a) GS phase diagram for the AB2 t-J model (error bars account for the discrete values assumed by δ in a finite-size
system). The phases are illustrated in panel (b): modulated ferrimagnetism (FERRI), incommensurate (IC), Nagaoka ferromagnetism (F),
short-range resonating valence bond (RVB) states, phase separation (PS), and Luttinger liquid (LL). The estimated transition lines δFERRI,J ,
δPS,J , and JF,δ are also pointed out. (c) Ground-state total spin SGS is normalized by its value in the undoped regime: SL ≡ (Nc/2) − 0.5, as
function of δ for the indicated values of J and N = 3Nc + 1 = 100.

II. PHASE DIAGRAM

The t-J model reads

Ht-J = − t
∑

〈i,j〉,σ
PG(c†iσ cjσ + H.c.)PG

+ J
∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
, (1)

where ciσ annihilates electrons of spin σ at site i, ni is
the number operator at site i, and PG = ∏

i(1 − ni↑ni↓) is
the Gutzwiller projector operator that excludes states with
doubly occupied sites. In our simulations, we set t = 1 and
have considered chains with Nc (N ) unit cells (sites). In
ED calculations, closed boundary conditions are used with
Nc = 8 (N = 3Nc), while in the DMRG simulations open
boundary conditions are used and the system sizes ranged from
Nc = 33 (N = 3Nc + 1 = 100) to Nc = 121 (N = 364). We
retain from 243 to 364 states in the DMRG calculations, and
the typical discarded weight is 1 × 10−7.

The ground-state (GS) phase diagram, shown in Fig. 1 (a),
displays the regions of the above-mentioned phases, illustrated
in Fig. 1(b), including the estimated transition lines and the
crossover region. A special feature of the AB2 chain is its
symmetry [12,13,17] under the exchange of the labels of the
B sites in a given unit cell l [identified in the FERRI state,
Fig. 1(b)]. This symmetry implies a conserved parity pl =
±1 in each cell of the lattice. The phase diagram of a chain
with Nc unit cells is calculated by obtaining the lowest energy
for all subspaces with x contiguous cells of parity −1 and
the others Nc − x cells with parity +1, with x = 0, . . . ,Nc,
for fixed δ and J . In the phase diagram shown in Fig. 1(a),
p ≡ ∑Nc

i=1 pl = +1 for δ � 1/3, p �= ±1 in the PS region,
and p = −1 for δ < δPS,J . The magnetic configuration of a
phase is identified by the total spin SGS, local magnetization,

magnetic structure factor, and spin correlation functions. In
what follows, we characterize the phases shown in Fig. 1(a).

III. FERRIMAGNETISM AND TRANSITION TO IC STATES

At δ = 0 and J �= 0, the insulating Lieb ferrimagnetic state
with total spin quantum number SGS = SL ≡ Nc/2 − 0.5 ≡
SL is found for a chain with open boundary conditions,
N = 3Nc + 1 = 100, with an A site on each side. In order to
evaluate the stability of this state against doping, we calculate
SGS as a function of δ from the energy degeneracy in Sz.
As shown in Fig. 1(c), as hole doping increases from δ = 0
to a critical value δ = δFERRI,J , the value of SGS decreases
linearly from SL to 0 or to a residual value, signaling a smooth
transition to the IC phase. However, for low-enough J , SGS of
the IC phase increases linearly with δ up to δ = δPS,J , the line
at which PS occurs [see Fig. 1(a)], or up to the boundary, JF,δ ,
of the Nagaoka F phase. This unexpected behavior calls for an
explanation.

In order to understand the behavior of SGS for low J we have
calculated the profiles of the magnetization, 〈Sz

l 〉, in the spin
sector Sz = SGS, and of the hole density, 〈nh,l〉, for J = 0.1
(see Fig. 2). To help visualize the data, we use a linearized
version of the lattice, as illustrated in Fig. 2(a). As shown
in Fig. 2(b), for δ = 0.04 the holes distort the ferrimagnetic
structure, which display a modulation with wavelength λ ≈
17, in antiphase with that exhibited by the hole (charge)
density wave. We have thus identified a modulated itinerant
ferrimagnetic phase in this underdoped regime. On the other
hand, as shown in Fig. 2(c), for δ = 0.18 the magnetization
has local maxima in coincidence with those of the hole-density
profile. In this case, the IC phase is characterized by the
presence of ferromagnetic Nagaoka spin polarons [28,39] due
to a hole-density wave with λ ≈ 4. Our results point to a value
of J (∼0.2) below which ferromagnetic “bubbles” appear as
precursors of the F phase found for J < JF,δ [see Fig. 1(a)].

115123-2



MAGNETIC AND NONMAGNETIC PHASES IN DOPED . . . PHYSICAL REVIEW B 90, 115123 (2014)

B+B21 B+B21 B+B21 B+B21A
(a)

A A AA

4321l = a 0

0.5
<Sz

l>
(b) δ = 0.04J = 0.1<nh,l>

-0.5

0

0.5
(c) δ = 0.18J = 0.1

FIG. 2. (Color online) (a) Effective linear chain (spacing a ≡ 1) associated with N = 3Nc + 1 = 100 sites for J = 0.1 used to illustrate
the hole, 〈nh,l〉, and spin, 〈Sz

l 〉, profiles. (b) δ = 4/100 (FERRI phase) and (c) δ = 18/100 (IC phase).

For J = 0.3, SGS = 0 in the IC phase, as shown in Fig. 1(c).
In Figs. 3(a) and 3(b) we present the magnetic structure factor

S(q) = 1

SL(SL + 1)

2Nc+1∑
l,m

eiq(l−m)〈Sl · Sm〉, (2)

where l, m, and S refer to the lattice representation shown
in Fig. 2(a), for this value of J and doping ranging from
δ = 0 up to δ = 0.12. In a long-range-ordered ferrimagnetic
state, sharp maxima at q = 0 (ferromagnetism) and q = π

(antiferromagnetism) are observed in the curve S(q) for δ = 0.
Adding two holes to the undoped state, sharp maxima at q = 0
and π are also observed, while broad maxima occur for δ =
0.04, indicating short-range ferrimagnetic order which evolves
to the IC phase by increasing doping, before phase separation
(IC-RVB) at the line δ = δPS,J [see Fig. 1(a)]. In the inset of
Fig. 3(b) we show the departure of the maximum of S(q) from
q = π .
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FIG. 3. (Color online) Chain with N = 3Nc + 1 = 100 and J =
0.3. (a), (b) Magnetic structure factor S(q) for the indicated values of
δ. Inset of panel (b) uses �q ≡ qmax − π , where qmax is the value of
q at which the local maximum of S(q) near q = π is observed.

IV. PHASE SEPARATION, RVB STATES,
AND LUTTINGER LIQUID

In Fig. 1(a) the dashed line inside the PS region fix the
boundary between two types of phase separation: in one case,
the separation occurs between Nagaoka ferromagnetism and
short-range RVB states (F-RVB); while in the other, it occurs
between IC and short-range RVB states (IC-RVB). Indeed, for
0 � J � 0.063 and δF-RVB � δ < 1/3, the GS phase separates
with F and short-range RVB states under coexistence, where
δF-RVB denotes hole-density values along the phase separation
line F-RVB, thereby extending our previous result [13] that
was valid only for J = 0. However, for 0.063 � J � 0.4 the
system behaves differently. The new PS (IC-RVB) region is
here illustrated for J = 0.3, N = 3Nc + 1 = 100 sites, and
Nh = 18 holes: we thus find that there are 26 cells with
odd parity (pl = −1) associated with the IC phase, and the
remaining 7 cells with even parity (pl = +1), associated
with the RVB phase. In this case, as shown in Fig. 4, the
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FIG. 4. (Color online) Phase separation (IC-RVB) for a chain
with N = 3Nc + 1 = 100 sites, J = 0.3, and Nh = 18 holes: spin
correlation function between B spins at the same cell, 〈SB1,l · SB2,l〉,
and hole-density profile, 〈nh,l〉.
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FIG. 5. (Color online) Luttinger liquid behavior for a chain with
N = 3Nc = 24 (ED results). (a) Ratio R = uρ/

√
Dχ/π as a function

of δ for the indicated values of J . (b) Exponent Kρ as a function of δ.

hole-poor IC phase presents a local spin correlation function
〈SB1,l · SB2,l〉 ≈ 0.2, average hole density per site ≈0.16,
estimated from the sites indicated by arrows [one A site
and two B sites in the context of the effective linear chain
shown in Fig. 2(a)], and hole-density wave with λ ≈ 4; while
the hole-rich RVB phase presents 〈SB1,l · SB2,l〉 ≈ −0.4 and
average hole density per site ≈1/3, estimated from a cell
with A and B sites indicated by arrows. Therefore, apart from
boundary effects, the above results thus indicate that the phase
separation for a given J value is defined by the coexistence
of the two phases with the hole densities δIC-PS (≈0.16 for
J = 0.3) and δPS-RVB (≈1/3 for J = 0.3) fixed at the IC-PS
and PS-RVB boundaries, respectively, while the size of the
phases are fixed by the chemical doping δ = Nh/N (=0.18
for N = 100 and Nh = 18). We also remark that the stable
RVB phase observed at δ = 1/3 and 0 � J � 0.4, which has
finite charge and spin gaps, is in agreement with predictions
for J = 0.35 [12] and J = 0 [13].

For 0 � J � 0.4 and 1/3 < δ < 2/3, a crossover region
with the presence of long-range RVB states after hole addition
away from δ = 1/3 is observed [see Fig. 1(a)]. At the
commensurate filling δ = 2/3, the system presents a charge
gap, while the spin excitation is gapless, also extending our
previous result for J = 0 [13].

With the aim of investigating the LL behavior as a function
of J and δ � 2/3, we have calculated, through ED techniques,
the ratio R = uρ/

√
Dχ/π, where

χ = Nc

4
[E(Nh + 2) + E(Nh − 2) − 2EGS(Nh)] (3)

is the charge susceptibility, and E(Nh ± 2) is the total energy
for Nh ± 2 holes;

D = Nc

4π

[
∂2E(
)

∂
2

]

min

(4)

is the Drude weight, where E(
) is the lowest energy for a
magnetic flux 
 through a closed chain, and 
min is its value
at EGS;

uρ = E (kGS + �k,S = 0) − EGS (kGS,SGS = 0)

�k
(5)

is the charge excitation velocity, where �k = 2π/Nc, and
E(kGS + �k,S = 0) is the lowest energy with wave number
k = kGS + �k and total spin S = SGS = 0. If the low-energy
physics of the system is that of a LL, we should find
R = 1 [40]; moreover, the exponent governing the asymptotic
behavior of the correlation functions, Kρ , satisfies the relation
Kρ = πuρ/(2χ ). As shown in Fig. 5(a), R is indeed very
close to 1 for δ > 2/3; in addition, as shown in Fig. 5(b), we
find 0.7 � Kρ � 0.5 for δ > 2/3. Remarkably, as shown in
Figs. 5(a) and 5(b), the data for R and Kρ exhibit data collapse
as a function of δ for 0 � J � 0.4. In short, the results above
clearly indicate that, for δ > 2/3 and 0 � J � 0.4, the system
behaves as a LL in the strong-coupling regime.

V. STABILITY OF NAGAOKA FERROMAGNETISM

In this section, we provide strong evidence that, for 0 �
J � JF,δ and 0 < δ � δF-RVB, the kinetic energy of holes is
lowered in a fully polarized ferromagnetic state, an extension
of Nagaoka ferromagnetism [23,24], with the GS energy equal
to that of noninteracting spinless fermions: EGS = EF.

The estimate of JF,δ is based on the data for the shift (EGS −
EF)/Nc as a function of J , as illustrated in Fig. 6(a) for δ close
or equal to 0.1. We stress that the shift decreases as Nc increases
for 0 < (J/JF,δ) < 1 and goes to zero in the thermodynamic
limit. In addition, one should notice that, by examining the
data above and below J = JF,δ , particularly for N = 3Nc +
1 = 364 sites, ∂EGS/∂J appears to be discontinuous at J =
JF,δ in the thermodynamic limit, thus suggesting a first-order
transition to the IC phase at (J/JF,δ) = 1. In Fig. 6(b) we show
that our estimated transition line, JF,δ , [see also Fig. 1(a)] is
almost not affected by finite-size effects and implies δF,J ∼√

J as δ → 0, as found from analytical results [27,28] for
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FIG. 6. (Color online) (a) Shift EGS − EF per unit cell, where EF is the energy of the fully polarized ferromagnetic state, as a function of
J/JF,δ for the indicated values of Nc and δ. (b) Instability line of the Nagaoka ferromagnetic phase. (c) Spin and (d) hole profiles, 〈nh,l〉 and
〈Sz

l 〉, respectively, for a chain with N = 3Nc + 1 = 100, δ = 0.1, and the indicated values of Sz and J .
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the t-J model in a square lattice. In particular, for J = 0 the
instability of the Nagaoka state occurs at δ ≈ 0.23, which is
very close to the values of hole doping estimated for n-leg
ladder systems [25] and the square lattice [25,26].

The spin profile for a chain with N = 3Nc + 1 = 100, J �
0, and δ = 0.1 is also in very good agreement with the Nagaoka
state, as shown in Fig. 6(c), although boundary effects are
visible for J � 0; in fact, Sz changes from 45 to 39 (on average,
three spins at each boundary are not fully polarized), but one
should notice that the change saturates as J slightly increases
above zero. This fact is corroborated by the hole density shown
in Fig. 6(d), whose data for the referred states with Sz = 39 at
δ = 0.1 are very well described by the Nagaoka profile.

VI. DISCUSSION AND CONCLUDING REMARKS

The presented phase diagram of doped AB2 t-J chains is
remarkably rich. Indeed, several magnetic and nonmagnetic

phases manifest themselves in a succession of surprising
relevant features, some of which are similar to those observed
in the square and n-leg ladder lattices: all in a simple doped
chain. In particular, we emphasize the modulated ferrimagnetic
structure, the occurrence of Nagaoka spin polarons in the
underdoped regime and small values of J , incommensurate
structures with nonzero magnetization, the strong-coupling LL
physics in the high-doped regime, and the instability of Na-
gaoka ferromagnetism against J and doping. Therefore, these
chains are unique systems and of relevance for the physics
of polymeric materials, whose properties might also represent
challenging topics to be explored via analog simulations in
ultracold fermionic optical lattices.
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J. Bonča, and O. P. Sushkov, Phys. Rev. B 85, 245113
(2012).

[29] E. Dagotto, Science 309, 257 (2005).
[30] S. Chakrabarty, V. Dobrosavljević, A. Seidel, and Z. Nussinov,
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