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We examine non-Abelian topological defects in an Abelian lattice model in two dimensions. We first construct
an exact solvable lattice model that exhibits coexisting and intertwined topological and classical orders. The anyon
types of quasiparticle excitations are permuted by lattice symmetry operations like translations, rotations, and
reflections. The global anyon permutation symmetry has a group structure of Ss, the permutation group of three
elements. Topological crystalline defects—dislocations and disclinations—change the anyon type of an orbiting
quasiparticle. They exhibit multichannel order-dependent fusion rules and projective braiding operations. Their
braiding and exchange statistics breaks modular invariance and violates the conventional spin-statistics theorem.
We develop a framework to characterize these unconventional properties that originate from the semiclassical

nature of defects.
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I. INTRODUCTION

The search for Majorana fermions [1] has attracted tremen-
dous attention in recent years [2—6] due to their potential
application in topological quantum computation [7-12]. With
the discovery of topological insulators [13-20], the quest has
shifted from p-wave superconductors [21-24] and quantum
Hall states [25-27] to superconductor-ferromagnet (SC-FM)
heterostructures with quantum spin Hall insulators [28-32]
and strong spin-orbit coupled semiconductors [33-35]. The
more exotic fractional Majorana fermions that carry richer
fusion and braiding characteristics are predicted at the SC-FM
edge [36-39] of fractional topological insulators [40-44] and
helical one-dimensional (1D) Luttinger liquids [45].

Fractional Majorana fermions can be conceptually studied
by twist defects in exact solvable lattice models. These include
Ising-type dislocations in the Kitaev toric code [46-48],
fractional Majorana-type dislocations in the Wen plaquette
Zy-rotor model [49,50], and colored Majorana defects in a
string-net model [51]. Twist defects even appear at dislocation
line defects in 3D topological phases [52,53]. Similar non-
Abelian defects can be constructed as dislocations in Abelian
topological nematic states [54,55] such as a multiple Chern
band with symmetry [56,57], described by genons in effective
field theory [58] and classified by Wilson structures of
nonchiral gapped edges [59-62].

The underlying topological state of all systems mentioned
above carries an ungauged symmetry, e.g., charge-flux duality
in the toric code [7] and Wen plaquette model [63], color
permutation symmetry in the color code [64], and bilayer
symmetry in a topological nematic state [54]. Symmetries also
appear in many strongly correlated systems such as electronic
liquid-crystal phases of a doped Mott insulator [65] and spin
liquid [66]. They intertwine with topology and offer a finer
classification of topological phases [59,67-72]. Even if the
symmetry is not broken spontaneously by a Landau order
parameter, it may still be weakly broken in the Kitaev sense
[46] by anyon labeling. Extrinsic twist defects further break the
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symmetry locally by winding the anyon labels. In this article,
we demonstrate, using twist defects in an exact solvable lattice
model, some fundamental distinctions in fusion and braiding
[12,46,73,74] that separate semiclassical symmetry defects
from quantum deconfined anyons [75,76] in true topological
phases [77-79] such as the Kitaev honeycomb Ising phase [46]
or quasitopological phases [80] such as the physical Pfaffian
quantum Hall state [25-27].

Topological defects involve windings of certain nondy-
namical extensive order parameters [81], such as pairing
phase, Dirac mass, spin polarization, etc. The semiclassical
order parameter forbids quantum superposition of different
defect configurations. Although defect excitations in SC-FM
heterostructures have exponentially localized wave functions
and twist defects in integrable models only violate symmetry
locally at a point, they should be treated as quasiextensive
objects because of the bulk order parameter associated with
each of them. This extensiveness provides the means to
circumvent locality restrictions [82-84] and gives rise to
non-Abelian statistics in (3 + 1) dimensions [85-87].

In this article, we address three major consequences of the
quasiextensive nature of twist defects in an exact solvable
topologically ordered Abelian system with symmetry.

(1) Noncommutative fusion. Contrary to a non-Abelian
discrete gauge theory [9,88,89], where fluxons are labeled
by conjugacy classes, twist defects are instead labeled by
symmetry group elements and the fusion of defects depends
on their order.

(2) Modified spin statistics. Topological spin for a defect A
can only be robustly defined through a 27 x ord(}) rotation,
where ord(A) is the order of the defect, so that the initial
and rotated systems are classically indistinguishable. The
exchange phase is then identical to this new definition of spin
[90].

(3) Modified modular invariance. Unlike modular func-
tors in conformal field theory [91-93], fractional quantum
Hall states [77,94,95], or topological quantum field theories
[73,74,96,97], defect exchange and braiding does not obey the
full modular group SL(2;Z), but is restricted to a congruent
subgroup.
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A. Outline and summary

We begin in Sec. Il by presenting an Abelian Z-rotor lattice
model on a honeycomb lattice or in general bipartite trivalent
planar graph. Its Z, version has been studied by Bombin and
Martin-Delgado [64] and is called the color code. The model
possesses a hidden non-Abelian symmetry S; = Z, X Zj3,
the permutation of group on three elements. There is a k*
ground-state degeneracy on a torus. The k* Abelian anyon
excitations can be labeled and bipartitioned into a = (a,,a,),
where each spinless component a,/, is on a 2D triangular
Zy lattice (see Fig. 11). Threefold cyclic color permutations
Az, AY 'in S3 act as rotations on the anyon lattice, leaving
the bipartite e,0 label untouched. Twofold color sublattice
transpositions Ay,Ag,Ap in Sz interchange e <> o and act as
three mirror planes on the anyon lattice. This model has fusion
and braiding properties identical to two copies of the Z; toric
code. However, the symmetry group is nontrivially extended
from charge-flux Z, duality to S3 by a threefold cyclic color
permutation.

We construct non-Abelian twist defects in Sec. ITI. A defect
is classified by a group element A in S3 that characterizes
the change of the label a — A - a of an encircling Abelian
anyon (see Fig. 14). There are two threefold defects [1/3]
and its antiparticle [m] and three twofold defects [1/2],
labeled by color x = Y, R, B. Primitive threefold defects are
constructed in the lattice level by £120° disclinations at
tetravalent/bivalent vertices, and twofold defects are associated
with +60° disclinations at pentagons and heptagons (see
Fig. 15). Quantum dimensions can be deduced either by
counting plaquette and vertex degrees of freedom (Sec. IIT A)
or evaluated by ground-state degeneracy corresponding to
the nonlocal Wilson loop algebra (Sec. IIIB). They are
given by

k2, if 3k,

1.1
k2/3, if 3|k, (-

dnys = diy = dpy = k.

Note that the dimension for the twofold defect matches that
of two copies of Zj-fractional Majorana fermion. A defect
contains a phase parameter that determines the value of a
local Wilson observable (see Fig. 21). It subdivides twofold
defects into k> species 1 and threefold defects into nine
species s when k is divisible by 3. Species labels can mutate
by absorbing or releasing Abelian anyons, a process driven
by continuously tuning the local defect phase parameter.
This species characterization of defect-anyon composites is
essential in a complete description of fusion and braiding.
The Wilson loop algebra of an arbitrary multidefect sys-
tem is studied using word presentation consisting of open
Wilson paths in Sec. IIIC, where the S;3 transformation of
defects and symmetry structure of the Wilson algebra are
discussed.

In Sec. IV, we investigate the noncommutative defect fusion
category. The objects consist of Abelian anyons and twist
defects labeled with species. Due to the semiclassical nature of
the nondynamical S; symmetry, defects are not grouped into
conjugacy classes of S3 fluxes and anyons are not projected
into S3-orbifold superselection sectors. Loosely speaking, the
fusion rules originate from the non-Abelian group structure of
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S3 and take the multichannel form

> la) = [1/2), x [1/21,

a

~ [1/3] x [1/3] x [1/3]
=~ [1/2], x [1/2],41 x [1/3]

>~ [1/2], x [1/2],-1 x [1/3], (1.2)

where x = 0,1,2 mod 3 represents the three colors Y, R, B, the
equation is unaffected by cyclic permutation of defect order
on the right, and the sum of Abelian anyons a on the left
is restricted by defect species so that the particle-antiparticle
duality requires a change of species label [1/2],, x [a] =
[1/2],,, when absorbing or releasing an Abelian anyon
in general. The second equality requires fusion degeneracy
[1/3] x [1/3] =dp13 [m], and the third and fourth equalities
exhibit fusion noncommutativity. A more precise set of fusion
rules can be found in Sec. IV A. The choice of a particular set
of splitting states (or Wilson string configurations) shown in
Fig. 32 in Sec. IV B fixes the gauge for a consistent set of basis
transformations between different maximally commuting sets
of observables, called F symbols, that characterizes the fusion
category. A few calculated examples are illustrated in Sec. IV C
and a complete list of F matrices (up to S3; symmetry) is
included in Table III in Appendix C.

We describe exchange and braiding between defects of the
same type in Sec. V. Although the noncommutative fusion
category cannot be fully braided, a subset of 180° rotation
operations or R symbols between commuting objects can be
defined and are evaluated in Secs. V A and V B by rotating
Wilson strings. While threefold defects do not carry spin,
twofold defects have nontrivial species-dependent statistics as
shown in Sec. V B and they are identified with the spin phase
of 2 x (360°) rotation. The braiding S matrices are defined
among defects of the same S3 type with entries labeled by
species. The S and T matrices for twofold defects are identified
in Sec. VC with Dehn twist ¢, and double Dehn twist tf,
respectively, on the ground states on a torus decorated with a
branch cut along the y cycle. In general, they form a unitary
group structure of the congruent subgroup I'g(2) rather than
the full modular group SL(2;Z). Physical unitary braiding
operations or B matrices between defects of the same type are
computed in Sec. VD and they demonstrate the non-Abelian
nature of twist defects. A certain compactification braiding
identity of the sphere braid group that is expected to hold in
a closed anyon system is now only projectively satisfied for
defects.

II. THE Z;-ROTOR LATTICE MODEL

We consider a Z-rotor model (or spin—% model for k = 2)
on vertices of a honeycomb lattice, or in general a bipartite
trivalent planar graph with the following properties.

(1) Tricoloring. Each plaquette may be colored with one
of three colors, say yellow (Y), red (R), and blue (B), such
that adjacent plaquettes never carry the same color.

(2) Bipartite. There is a sublattice structure so that vertices
can be labeled by black (e) or white (o) and adjacent vertices
are always of differing types.
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FIG. 1. (Color online) Trivial rwistless defects that preserve local
tricoloring (Y R B) bipartite (e,0) order. (a) Negatively curved discli-
nation with Frank angle —120°. (b) Positively curved disclination
with Frank angle +120°.

In addition, in the absence of twist defects and branch
cuts, which will be explained later, we require the graph
to satisfy the above constraints globally. On a torus, they
will be globally preserved with compatible periodic boundary
conditions, when the length of the two primitive cycles are
multiples of three. The model can be put on a closed surface
with arbitrary genus by adding an appropriate number of defect
squares or octagons (Fig. 1) on the regular honeycomb lattice.
These are trivial rwistless defects in the sense that they do not
violate the tricoloring and bipartite order.

A. The Hamiltonian

The degrees of freedom (the “spins” for k = 2) of the
Zy-lattice model live on vertices. Z; rotors are operators o
and 7 that take eigenvalues in {1,e>/k . . > k=D/k} and
commute up to a Z; phase,

T0 = Wo'T, ok =k= 1,

2.1

where w is a kth root of unity. We assume w = ¢>"/¥ hereafter.
They can be represented by k-dimensional matrices,

01 --- 0 1 0 .- 0

. : o w - 0
r=|: |, o=

0 O 1 Lo - :

1 0 0 0 0 - wt!

(2.2)

Each vertex carries a k-dimensional Hilbert space and a set of
rotors. The total Hilbert space is a tensor product over vertices,
and rotors at different vertices commute.

Given a bipartite e, 0 assignment of vertices, each plaquette
P carries two stabilizer operators,

ﬁCZHUU.l_[T‘U(J ﬁoznrv.navca

ve€P v.eP ve€P v.eP

(2.3)

where o,,7, are rotors at vertices v around the plaquette
and tensor products have been suppressed (see Fig. 2). The

T g
a a
g g T T
T oT O Yos
g T

FIG. 2. Plaquette stabilizers £, and P, as tensor products of rotors
o,T.
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bipartite structure ensures all plaquettes have the same number
of e and o vertices and two neighboring plaquettes share
exactly one e and one o vertex. Then (2.1) ensures mutual
commutativity of the plaquettes operators, which form a set of
good quantum numbers referred to as Z; stabilizers or fluxes.
The Hamiltonian is defined by the sum of stabilizers,

H=—J) (P +P)H—J) (P.+F). (24
P P

Ground states are trivial flux configurations where P,=P =
1 for all stabilizers.

It is indicative to notice that the model (2.4) describes the
topological phase of two copies of Z; version of the Kitaev
toric code. However, Hamiltonian (2.4) realizes a much richer
S3 geometric symmetry that extends the original charge-flux
Z, duality in the quantum double model. The S3 symmetry
can be understood in the microscopic geometric level by the
action of space group on the tricoloring and bipartite pattern
of the honeycomb lattice. These correspond the threefold
and twofold generators of the permutation group S3 and are
discussed in detail in Sec. III A 3. This generalizes the e-m
duality in the Kitaev toric code that involves geometrically
switching vertices and plaquettes.

The ground-state degeneracy of the Hamiltonian (2.4) on a
trivalent graph on any closed orientable genus g surface can
be evaluated by counting vertices and independent plaquette
stabilizers. Denote the total number of vertices by #V and the
number of plaquettes by #P. For a regular honeycomb lattice
on a torus, #V = 2 x #P, which is commensurate with the
two stabilizer operators Eq. (2.3) located at each plaquette.
However, there is an overcounting since certain products of
stabilizers are identical to the identity. The number of these
relations is independent of system size and therefore gives rise
to a topological ground-state degeneracy (k* on the torus if the
honeycomb is globally tricolorable).

As mentioned earlier, the model can be put on any closed
orientable surface without violating local tricolorability and
the e,0 sublattice structure, by adding square or octagon
defects as shown in Fig. 1. The Gauss-Bonnet theorem (or
Euler characteristic) requires

#octagons — #squares = 6(g — 1). 2.5)
Since an octagon/square carries two greater/fewer vertices than
a hexagon,
#V =2 x #P +4(g — 1) (2.6)
on a genus g surface.

We first investigate this overcounting in the case when
the trivalent graph is globally tricolorable. This is an addi-
tional topological constraint that ensures that the tricoloration
remains unchanged around a nontrivial cycle. In particular,
the total number of plaquettes must be a multiple of three
and appropriate twisted periodic boundary conditions must be
applied if individual cycles have lengths not divisible by three.

Given a global Y RB coloration of the plaquettes PY, PR,
and PB, stabilizer operators (2.3) are overcounted by the
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following four cocycle relations:
T T
-1 (1) e (1)
pY PR PR PB
T ]
=[1# (]_[ ﬁf) =[]2* (]_[ ﬁf) .2
PY PR PR PB

These can be understood by observing that the product of
all vertex rotors can be given by the product of plaque-
ttes of a particular color, i.e., [, ov, [T, 7. =[Ipr P} =
[1px PX =1ps PP and similarly for the other set, P,. Thus,
the number of independent stabilizers is

#stabilizers =2 x #P — 4 2.8)

and the ground-state degeneracy (GSD) of a globally tricol-
orable graph on a genus g closed surface is

GSD = k#V*#StabiliZerS — k4g. (29)

B. Wilson algebra and ground-state degeneracy

A ground state can be written as an equally weighted sum
of plaquette operators acting on a suitably chosen state. One
example is

1 Lt
0)y = —— P oy, =1, =+1), (2.10
|0) W_v]:[(;) >|o T ), (2.10)

where |o,, = 1,, = +1) is the tensor product eigenstate state
of o for each e vertex and t for o vertex, and ' = k*7~2 is
a normalization factor. It is a simultaneous eigenstate for all
plaquette operators P, |0) = P, |0) = |0). The ground state can
be interpreted as a condensate of trivial Wilson loops. A Wilson
loop is a string of rotors that commutes with each stabilizer
and trivial if it can be written as a product of stabilizers. They
are labeled by the e,0-sublattice type and colors Y R B, so that
a Wilson loop along the boundary of a domain 2 is of the form

weQr =[] 2 Prh, (2.11)
PCQ

wEQ: = [T 22" rh, 2.12)
PCQ

for x € {0,1,2} labels the colors {Y,R,B} mod 3, and the
product is taken over either e or o plaquettes of two comple-
menting colors x =+ 1 inside the open domain €2. Operators in
the interior of €2 cancel each other and leave a string of rotors
along the boundary 92 connecting a strand of plaquettes of
the same color x. This is illustrated by Fig. 3 for x = B.
There is an important redundancy in the color labels. A blue
string can split into a yellow and red pair, both propagating
in the opposite direction. This can be done by multiplying
plaquettes on the string and results in a pair of tricolor, trivalent
sources and drains as shown in Fig. 4. Similarly, a parallel
triplet of copropagating Wilson strings of three different colors
can be locally canceled by plaquette operators. The color

redundancy can be summarized by the fusion
Yo X Re x B =Y, X R, x B, =1, (2.13)

with 1 being the vacuum.
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FIG. 3. (Color online) Contractible Wilson loop on a honeycomb
lattice. (a) Product of yellow plaquette operators IS.Y and inverses of
red plaquette operators (PX)~" inside a domain 2 leaving a string
of o and 7 rotor operators W(32)® (on highlighted e and o sites)
along the boundary d€2 that connects a series of blue plaquettes. (b)
Schematics of the boundaries W (9$2)%, where the arrows denote the

rotors o,7 or o ~', 7! along the strings in the lattice.

In general, a closed Wilson loop is built by joining colored,
directed paths emanating from sources and drains. Each
colored path is a string of o*! and t*! rotors that connects
plaquettes of that color as illustrated in Fig. 5,

wl=[]e' [T w2=[]"]e. @14

The signs of the rotors are dictated by the arrow directions
in Figs. 3(b) and 5. For instance, rotors along a string switch
signs about a £60° or 180° corner as shown in Fig. 3. It is
straightforward to check that closed Wilson strings commute
with all stabilizers through phase cancellation. Evidently, any
product of plaquette operators is a closed Wilson string, which
can be pulled out of the condensate ground state (2.10) without
an energy cost. However, the converse is not true: A closed
Wilson string is not necessarily the product of plaquettes.
There are nontrivial cycles on the genus g > 1 surface that
do not bound an open domain.

On a genus g surface, there are 2g nontrivial primitive
cycles C;, where Cy_1,Cy are the two cycles associated with
the /th handle (see Fig. 6). Each one can be labeled by sublattice
type e,0 and color Y RB. Together, the Wilson loops form a
noncommutative algebra with the algebraic relations

[WEC I =1, (2.15)

[WECHE . WEHET=WEHFW(ECHXI=0, (2.16)

WECWCe =T IWEepewenl, @17

o,
“’\ "B
‘&. “

%
1 00,
® ®.

drain

Y

/ source

FIG. 4. (Color online) Color splitting of Wilson string through
tricolor, trivalent sources and drains. Product of rotor operators are
taken over highlighted e and o vertices.
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FIG. 5. (Color online) Product of rotor operators along a Wilson
string WX =[] oy, 7,, and WX =[] 1,0, forx =Y,R,B.(0,7) >
(o~!,771) upon arrow reversal.

where the x’s run over the colors YRB and the pairing
(C}',C}) is determined by intersection number between
Wilson strings, summarized in Fig. 7. The intersection form
(x,%) 1is bilinear and symmetric. It counts the total Z;
phase accumulated by interchanging rotor operators o,7 at
overlapping vertices according to Eq. (2.1). Intersection is
invariant under cyclic permutation of colors and changes sign
if the direction of one of the Wilson string is reversed. The color
fusion rule Eq. (2.13) forces null intersection between Wilson
cycles of the same color. Since primitive cycles only intersect
when they correspond to the same handle, the intersection
(CX‘ CX2> is zero unless i = 2/ — 1, j = 2l or vice versa, in
which the number according to Figs. 6 and 7(b) would be

0 for x1 = x2.
(o .cit)=1-1 forxi=x2—1,
1 for x; = xo + 1,

(2.18)

for x = Y,R,B = 0,1,2 modulo 3.
The three colors are not independent due to color fusion
(2.13). For example, the products of the parallel triplets,

WECHIWECHEWECHE = WECHIWECHEW(EC)HE =

(2.19)

since these can be written as products of plaquette operators
and act as the identity on the ground state. Therefore,
there are k®$-independent Wilson loops generated by the
primitive cycles W(C)Y, W(C)E, W(C))!, and W(C)R, for
i=1,...,2g,

An orthonormal basis for the ground-state Hilbert space can
be written using the Wilson algebra starting with the particular
ground state |0), in Eq. (2.10). Define the normalized ground

FIG. 6. (Color online) Primitive cycles on a genus g = 3 surface.
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24 I

FIG. 7. (Color online) Intersection of Wilson strings of opposite
.0 types. (a) Abelian Z, phases e*?""/* accumulated by passing a
o-Wilson string in front of an intersecting e one of different color.
Intersections are highlighted at bold vertices. (b) Schematics showing
intersection number (*,%) = —1,0, + 1 between different directed
Wilson strings.

state,
mnj. =1 [ [We)!]" [WeHE]" ¢ 10)., (220)
i=l,...,2g
where m = (m;), n = (n;) have integers modulo k entries, for
i=1,...,2g. The e-Wilson loops W(C;)¥ form a maximal set

of commuting generators and share simultaneous eigenstates.
The eigenvalues can be evaluated using the intersection
relation (2.17) and (2.18),

W(C,){Im.n), = ¢ ©% ™D m n),, 2.21)
where the Z; phase is given by
¢j(m.n) = (=1)[n; 1y (8 — 85)
+mj (83 = 87)], (2.22)

modulo k, where x =0,1,2 index the colors Y,R,B. As
different ground states in Eq. (2.20) are distinguished by their
eigenvalues with respect to the e-Wilson loops, they must be
mutually orthogonal. The k*¢-dimensional space of degenerate
ground states forms an irreducible unitary representation of the
Wilson algebra.

1. Obstruction to global tricolorability

‘We spend the remainder of the section on the Wilson algebra
and GSD when the trivalent graph is not globally tricolorable.
The topological obstruction is characterized by closed branch
cuts where same color plaquettes share edges and vertices [see
Fig. 8(a)]. Branch cuts are not physical domain walls as the
Hamiltonian (2.4) does not depend on an explicit plaquette
color definition. A closed branch cut that runs along a trivial
loop can be removed by cyclic permuting of the colors inside
the area bounded by the loop. A branch cut going along a non-
contractible cycle is, however, irremovable (unless canceled
by another branch cut). This topological color inconsistency
has a reducing effect on the Wilson algebra and consequently
GSD. A similar issue of branch cuts also arises for Z; toric
code over a checkerboard lattice on a torus [49], where the
charge-flux duality is realized as the bicolor structure of
checkerboard plaquettes. The situation in the tricolored model
(2.4) is qualitative different as the Wilson algebra and GSD in
the presence of branch cuts depend on the divisibility of k by 3.
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(b)
(@) ¢
Wy ~
o
L]
. —
.
'." pa—
branch cut
p IR gl X o TR g TR R
branch ¢ut ©
.
0._0
branch cut

FIG. 8. (Color online) (a) Color branch cut along a zig-zag edge
where same color hexagons share edges and vertices. (b) Wilson
strings and Abelian anyon changes color across a threefold branch
cut. (c) A closed Wilson string ¥, composed of k/3 copies of the
open path that closes at the unicolor drain.

For simplicity, we only demonstrate the case when the
model is put on a torus and there is a single branch cut along
a nontrivial cycle, say the meridian direction. This can be
achieved by adapting a twisted boundary condition on a regular
honeycomb lattice through introducing a lattice displacement
along an zig-zag edge illustrated in Fig. 8(a). We see in
Sec. III that an open color branch cut ends at a conjugate
pair of non-Abelian threefold rwist defects. Therefore, the
twisted boundary condition can be constructed by dragging a
threefold defect around a cycle. Note that this is fundamentally
different from threading a non-Abelian quantum flux in
a true topological phase as the underlying semiclassical
configuration explicitly breaks SL(2;7Z) modular invariance.
The branch cut picks out a particular nontrivial cycle on the
torus and the Wilson algebra does not close under the SL(2; Z)
action. Modular transformations are discussed in more detail
in Sec. VC.

A Wilson string will change color through cyclic permuta-
tion across the branch cut, as shown in Fig. 8(b). As aresult, the
longitudinal cycle no longer corresponds with a Wilson loop
as the string will not close back onto itself after passing across
the branch cut. Wilson loops along the meridian direction,
on the other hand, are still closed as they do not intersect
the parallel branch cut. However, they will change color if
the entire loop is dragged around the torus. This gives rise
to a color ambiguity since meridian Wilson loops of different
colors are now interchangeable through plaquette stabilizers,
and they are indistinguishable on the ground states. The color
fusion rule ¥ x R x B =1 then implies all meridian Wilson
loops to be of order 3, W(C,)* = 1. Being built by Z rotors,
a Wilson loop is automatically of order k, as seen in (2.15).
Therefore, unless k is divisible by 3, the meridian Wilson loop
is trivial and is a product of plaquette operators,

W(Cepo = [ BT BE)(PE)™.  (2.23)
P

where s is an integer so that 3s = 1 mod k.
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When k is a multiple of 3, the meridian Wilson loop
W(C)e/o is not a contractible boundary and it intersects
with a closed Wilson string W(X)./ in the longitudinal
direction consisting of k/3 tricolor trivalent sources and a
unicolor k-valent drain depicted in Fig. 8(c). It commutes
with all plaquette stabilizers because of the color fusion
Y x R x B =1 at the tricolor sources and Z; fusion Y* = 1
at the unicolor drain. W(X),/ is equivalent to dragging the
Abelian anyon «,,, (Fig. 11), a nontrivial anyon invariant
under cyclic color permutation only when & divisible by 3,
around the longitudinal cycle. The Wilson algebra is then
generated by W(X)., W(C2)e, W(Z1)o, and W(Cy), that
satisfy the following algebraic relations:

(W(Z1)eso)’ = (W(C2)oo)’ = 1, (2.24)
[W(Z1)e. W(C2)l = [W(Z1)o, W(C2)o] =0, (2.25)
W(Z)W(C)o = € PW(C)W(T2)e,  (226)
W(C)W(E1)o = " PW(ENW(Ca).  (227)

This gives rise to a GSD of 9 = 32 on a torus.

The GSD on a torus is identical to the total number of
deconfined anyon types [98,99]. On a globally tricolorable
graph, Abelian anyons can be uniquely labeled by the particle
numbers mod k of fundamental constituents Y,, R,,Y,, R,, and
thus the GSD is k*. When there is a color ambiguity from a
noncontractible branch cut, there will be fewer particle types,
which are now referred as species because Y, = R, = B, and
Y, = R, = B,. The three colors and Z; fusion implies Bf o =
BX /o = 1. Hence, there will not be nontrivial species unless
k 1s a multiple of 3, in which case they will be labeled by
the particle number of the two fundamental generators B,, B,
modulo 3. This gives rise to a 32-fold degeneracy on a torus and
corresponds to 32 species of threefold defects distinguishable
by X./., discussed in more detail in Sec. III.

C. Abelian anyon excitations, effective field theory,
and S; symmetry

Excitations of the Hamiltonian (2.4) are eigenstates of
plaquette stabilizers (2.3) with nonunit eigenvalues. They can
be constructed by letting open Wilson (also called Jordan-
Wigner) string operators W(S).,. act on a ground state |GS):

19S)ejo = W(S)oaIGS). (2.28)

Open Wilson strings (e or o) do not commute with local Wilson
loops [W(L), and W(L),, respectively] surrounding the end
points in S (see Figs. 9 and 10). Since trivial closed Wilson
loops condense in the ground state, the excitation state [0S)
in (2.28) depends only on its plaquette eigenvalues at the end
points of the string S rather than the path itself, as long as it
does not wrap an extra nontrivial cycle. The excited state (or,
in general, a collection of states due to GSD) can therefore
be labeled by local Abelian anyon configurations (2.31) and
(2.32), measured by the eigenvalues of plaquette stabilizers,

P,08);, = e K080, (2.29)

because 3S = Y PT — Y P~ are directed plaquettes where
the open string S ends (see Figs. 9 and 10 for sign definition).
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290¢
‘ * Beye ofo

FIG. 9. (Color online) Abelian anyon excitations (highlighted
hexagons with signs) connected by open Wilson strings. Products
of rotors are taken over highlighted vertices along strings with
appropriate signs according to the arrow rule in Fig. 3(b).

Anyons are, in general, detected by local Wilson loops
that encircle the quasiparticle excitation (see Fig. 10) with
eigenvalues given by Wilson string intersections (see Fig. 7).
Primitive anyons are labeled by color, Y, R, B, and sublattice
type, o,0 with fusion relation

Xejo X =2+ X Xejo = Yoo X Ro/o X Bo/o =1 (2.30)
—

k
for x = Y,R, B, so that no Wilson loop measurement can tell
apart these combinations from the trivial vacuum 1 without

enclosing a proper subset. Composite anyons [a] are labeled by
particle numbers (modulo k) of independent primitive anyons,

[a] = (Yo)"' (R)"(Yo)?(R.)™, (2.31)
_ a, = yiey + IiegR,
a = (a,,a,), {ao = Wof! + ok, (2.32)

for y1,y»,71,72 in Zy. The k* anyon are mutually distinguish-
able by Wilson loops. They are represented as a pair of
Zy-valued 2D vectors, a, and a,, on two triangular lattices
(see Fig. 11), one for e anyons another for o anyons.

Abelian anyons support single-channel fusion,

[aosao] X [bubo] = [a- + bovao + bo]s (233)

and carry unit quantum dimension djz) = 1. A basis of the 1D

splitting space V[!“J]r[b]] is given by letting the Jordan-Wigner

string in Fig. 12(a) act on the ground state (2.10) (projected
locally inside the dotted line with fixed boundary condition).
We adopt the time-ordering convention that a e string always

(2)

L, e—string

-

B, ®) [aﬂ ao]

4
jov]
:
L
A
/
! 7
/
j=p)
> =
a
.
o-string
o-string

L, e—string

FIG. 10. (Color online) (a) Abelian e anyons (hexagons) con-
nected by a Jordan-Wigner o string. Anyons are probed by Wilson
loops £, and £,, which detect a R, 'andaY,”' = R, x B, inside,
respectively. (b) Diagrammatic representation of a composite anyon
so that a e anyon is attached with a o string and vice versa.

PHYSICAL REVIEW B 90, 115118 (2014)

FIG. 11. (Color online) e- or o-type Abelian anyons (black or
white dots) on an integer mod k triangular lattice. The boundary
of the hexagon is identified so that opposite dots along boundary
lines represent the same anyon. The vacuum is represented by the
origin and the three fundamental anyons ¥, R, and B = Y~'R~!
represented by the primitive lattice vectors ey, ez, e = —ey — e
for e type or f¥, £& £8 = —f¥ — R for o type.

acts on the ground state before a o one:

) = (), (), Jes1.

The string ordering is a gauge choice for splitting state. This
is generalized to twist defects in Fig. 32 in Sec. IV.

Exchange and braiding operations are represented by
Abelian Z; phases. They stem from intersection between the
anyon world lines and Jordan-Wigner strings, which can be
shown to be identical to the linking number between world
lines of anyons [7,100,101], such as those shown in Fig. 13.
The R symbol of exchanging Abelian anyons [a] and [b] under
the basis choice of splitting space V[E'j_[,;’]] in Eq. (2.34) and
Fig. 12(a) is given by

(2.34)

RIallb]

L7 T . 2 / !
tTaoltryb. — i == (yary—r2yy)
la+h] = € €

(2.35)

and is illustrated in Fig. 12(b) for a, = y,f¥ + rof® and
b, = yjey + rieg. The topological spin of an anyon can be
evaluated by a 360° rotation (Fig. 13) or exchange, giving the

intersection,

\5\ y O [be,b.] [a., a,]
- _ ( ) L Tag zm/b. (\

[as + bs. a, + by

[a + b, a, + b

[as + b, a, + by

a][b
FIG. 12. (Color online) (a) Basis choice of splitting space VL ilbj

The black and gray lines are Jordan-Wigner e and o strings,
respectively. (b) The R symbol of exchanging Abelian anyons [a]
and [b] under the basis choice for splitting space Vﬂfj in (a). The
phase is obtained by passing the gray line in front of the black one at

the intersection.
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FIG. 13. (Color online) Topological spin of the Abelian anyon
(Y )1 (R (Y,)2(R,)™ evaluated by 360° rotation.

time

spin-statistical phase

Ofa) = Bl = [:é\,/‘g] -
The full braiding between anyons [a] and [b] is given by the
symmetric

227 T
i5ag iy ae

(2.36)

[b. bo]
1 - 1 2x(alis Tio
Stalto) = 7z (o} = 72 (acioybetboioyae) (5 37y

where the normalization D = /", d2 = k? equals the total
quantum dimension of the Abelian topological phase that is
responsible for its topological entanglement entropy [102] and
is added so that the S matrix is unitary. Both spin 6 and braiding
S are gauge invariant.

Low-energy effective field theory

The model Hamiltonian (2.4) can be described by the low-
energy effective Chern-Simons theory [103,104],

1
EZ—/KIJCZI ANday, (238)
4
with the 4 x 4 K matrix
0o 0 0 -1
0 0 1 0
K=k 0 1 0 ol (2.39)
-1 0 0 O

where Y,,R,,Y,,R, are anyon charges for the U(1)-gauge
fields ay,a,,a3,a4 respectively. This Chern-Simons theory has
the same k* anyon types with identical fusion and braiding. It
also supports an identical Wilson algebra Eqs. (2.15)—(2.18)
on a genus g surface. The Hamiltonian (2.4) therefore has
the same low-energy description as two copies of the Zj
version of Kitaev’s toric code [7,105,106]. The difference
in (2.4) is the apparent S3 symmetry relating the tricoloring
and bipartite structure of the lattice, which enriches the
charge-flux (or plaquette-vertex) Z, duality in Kitaev’s toric
code. Dislocations or twist defects are topological defects that
violate certain duality or symmetry and carry a non-Abelian
signature. The lattice structure in Hamiltonian (2.4) facilitates
S3-twist defects naturally through lattice dislocations and
disclinations. Similar topological defects are more obscure
and less motivated in the low-energy Chern-Simons theory
(2.38) or double Z-plaquette model. Their field theoretical
constructions rely on an explicit branch cut in real space where
the gauge fields are discontinuous. The cut can be gauged

PHYSICAL REVIEW B 90, 115118 (2014)

away only when the K matrix is symmetric under symmetry
transformation. In a lattice description of twist defects, we see
that branch cuts are absent completely.

Although the Chern-Simons theory (2.38) is not our funda-
mental tool in this article, we expect a genon description of the
S3-twist defects similar to Refs. [54,58]. Here we identify the
S3-symmetry action on the multicomponent U (1)-gauge fields.
The permutation group S; of three elements is generated by
a noncommutative threefold and twofold symmetries that act,
respectively, as cyclic color permutation,

Yo R. B. R, B, 7Y,
As: (YO R. BO) - (Ro B, Yo)’ (2.40)
and transposition for color and rotor types,
Y. R. B. R, Y, B
Ap: (YO R, B@) — <R, Y. B.>' (2.41)
Ap represents the charge-flux duality within each copy of
Zy-Kitaev toric code pair, and Az corresponds an extra
Z3 symmetry that intertwines the two copies. These will
arise naturally as space group operators of the lattice model

described in Sec. III A 3. They are represented by the 4 x 4
matrices,

0 -1 0 0 00 0 1
I -1 0 0 00 1 0
A=1o o o —1| 2=|o 1 0o ol
0 0 1 -1 1 0 0 0
(2.42)

acting on the gauge fields (a;,a,,a3,a4). The K matrix (2.39)
is invariant under symmetric transformation, K = AT K A for
A € §3, and therefore the theory is symmetric under the S3
transformation a; — A;ja;.

Consequently, fusion and braiding are also invariant under
the symmetry transformation [a,,a,] — A - [a,,a,] according
to (2.40) and (2.41). These transformations rename the color
and sublattice labels for Abelian anyons. Cyclic color permu-
tation A3 corresponds to a threefold rotation of the triangular
anyon lattice in Fig. 11, while keeping the sublattice label e,0
fixed, and transposition A g corresponds to a mirror operation
while flipping between a e <> o. Notice that for k divisible
by 3, there are nontrivial anyons k, =&, = (Y,)*3(R,)™*/?
and i, = k! = (Y,)*3(R,)~*/> that are invariant under cyclic
color permutation (ST) - k,/; = k./.. Furthermore, unlike
over complex coefficients where the finite group S3 has only 2D
faithful irreducible representation, the two 4D matrices (2.42)
cannot be simultaneously further block diagonalized with
discrete coefficients. This means that the anyon Hilbert space
cannot be decomposed into tensor product without violating
S3 symmetry.

In mathematical terms, the symmetry group S; is a subgroup
of I', the group of relabeling of anyons, or precisely the group
of invertible functors A — A of the unitary braided fusion
category A [46]. In the lattice rotor model with K matrix
(2.39), I'; is given by the group of outer automorphisms,

aut(K)

I'y = outer(K) = ———,
inner(K)

(2.43)
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where the automorphism group,
aut(K)= O(K;Z)={g € GL4,Z): g" Kg = K}, (2.44)

is given by orthogonal transformations that leave the K -matrix
invariant, and the subgroup of inner automorphism,

inner(K) = {g € aut(K) : g - [a,,a,] = [a,,a,] mod K},
(2.45)

contain orthogonal transformations that fix the anyon lattice
7*/KZ*. As shown later in Eq. (3.19), the symmetry subgroup
S5 is inherited from and identical to the symmetry of the
underlying trivalent bipartite planar graph. For example, the
color permutation Aj is induced by a lattice translation on the
honeycomb and color sublattice transposition A p is induced by
a lattice inversion. The correspondence between symmetry of
the microscopic Hamiltonian and anyon relabeling symmetry,

w; : S3 — I'y = outer(K), (2.46)

is a first-level weak symmetry breaking according to Kitaev
[46]. Twist defects are explicit local violations of the underly-
ing symmetry, and because of (2.46) they are also symmetry
defects that alter anyon sectors.

III. NON-ABELIAN S; TWIST DEFECTS

The Y RB-plaquette coloration and e,o-sublattice types
give rise to the four fundamental Abelian anyon excitations
Y..Y.,R., R, in the lattice rotor model (2.4) (recall the color
redundancy Y x R x B = 1). The arbitrariness of color and
sublattice labeling of Abelian anyons is summarized by the
S3 symmetry generated by cyclic color permutation A3 and
transposition A in Egs. (2.40) and (2.41). A twist defect
is a topological defect that locally violates the symmetry by
altering, or twisting, the color and rotor label of an anyon that
goes around it (see Fig. 14). In other words, a Wilson string
that circles around a twist defect does not close back to itself,
and therefore, unlike Abelian anyons, which can be locally

(@) (b)

o
© & [1/3] &

YR YR

Y. R,BJ
[1/2)y I

Yo R,

x +1 x—1

7’([1/_3]7&

Yo<«R, Yo<RS

Y. R,

Y. R,

[1/2) ){
Y, R,BY

FIG. 14. (Color online) Twisting Abelian anyons (colored
hexagons) around twist defects (black crosses and colored pentagon).
(a) Cyclic color permutation, x € {Y,R,B} = {0,1,2}, of a threefold
twist defect [1/3] and its antipartner [1/3]. (b) Color and sublattice
transposition of a twofold twist defect [1/2], with color x. (c) Color
and sublattice twisting of the two threefold and three twofold twist
defects.

(1/2]r

Ys Ro
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detected by small Wilson loops such as plaquette stabilizers,
there are no local observables measuring a twist defect state.
This nonlocality is a central theme of many non-Abelian
anyons, such as vortex-bound Majorana fermions in chiral
p + ip superconductors [23,24], Ising anyon in the Kitaev’s
honeycomb model [46] and Pfaffian fractional quantum Hall
state [25]. The non-Abelian anyons associated with twist
defects considered in this article, however, are not fundamental
deconfined excitations of a true topological phase. They are
qualitatively more similar to (fractional) Majorana excitations
at SC-FM heterostructures with (fractional) topological insula-
tors [28,36—39] or strongly spin-orbit coupled quantum wires
[33,45]. Their existence relies on the topological winding of
certain classical nondynamical order parameter fields, such as
pairing and spin/charge gap [81]. The tricoloring and bipartite
structure of the lattice Hamiltonian (2.4) can be regarded as
a discrete order parameter of the condensate, and its winding
around a point defect supports the color and sublattice twisting.

A twist defect in our lattice model (2.4) is labeled by an
element A in the symmetry group S3 according to its action
on the anyon label so that when an anyon [a] = Y R Y.)? R"?
passes counterclockwise around the twist defect, it changes
into A -[a], where A is some product combination of Ap
and Aj in (2.40) and (2.41). Threefold cyclic permutation
and twofold transposition are the two conjugacy classes of
S3 and correspond to two threefold twist defects [1/ 3],[m]
and three twofold ones [1/2]y,[1/2]g,[1/2]p, respectively.
Their twisting actions on Abelian anyons going around them
are summarized in Fig. 14. The fraction label is chosen to
match with the fractionalization of Abelian anyons so that the
denominator shows the minimal number of identical defect
copies required to fuse into an Abelian channel [see (1.2)].

Crystalline defects are predicted to carry topologically pro-
tected excitations in topological insulators [81,107] and super-
conductors [108]. They are expected to hold fractional quan-
tum vortices in Fulde-Ferrell-Larkin—Ovchinnikov (FFLO)
states [109-112]. Here we realize twist defects in the lattice
model (2.4) as crystalline defects, such as the disclinations
and dislocations illustrated in Figs. 15 and 16, that center at
nontrivalent vertices for threefold twist defects, or odd-sided
plaquettes for twofold twist defects. These are topological
lattice defects that carry curvature or torsion singularities
and locally breaks lattice rotation and translation symmetry.
Through local violation of tricolorability and/or bipartite
structure of the Hamiltonian (2.4), they change the color
and/or sublattice type of Abelian anyons that go around them.
This gives rise to additional noncontractible Wilson loops,
ground-state degeneracies, and nontrivial quantum dimensions
(d > 1) associate with the twist defects.

We begin this section by writing down the local lattice
Hamiltonian for the two kinds of twist defects. Their quantum
dimensions (or ground-state degeneracies) can be deduced
by counting plaquette stabilizers and vertices. Next we show
that the topological degeneracies are inherited from nontrivial
Wilson string operators; each surrounds multiple defects.
These form a set of noncommuting physical observables with
Zy-valued measurements. As a quantum state is labeled by
its simultaneous eigenvalues of a maximal set of commuting
Wilson operators, it cannot be accidentally measured by local
observation since the Wilson strings are nonlocal operators

115118-9



JEFFREY C. Y. TEO, ABHISHEK ROY, AND XIAO CHEN

4 7 o o R
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R, Y,

FIG. 15. (Color online) Disclination twist defects (shaded pla-
quettes and vertices). Color or sublattice frustrations (question marks)
give rise to branch cuts (wavy or dashed lines) that alter anyon types
(colored lines) across. (a) A threefold twist defect generated by a
+120° disclination centered at a tetravalent vertex. Sublattice types
.0 are not affected by the defect. (b) An anti-threefold twist defect
generated by a —120° disclination centered at a bivalent vertex and
permutes colors in the opposite direction around. (c) A pair of twofold
twist defects generated by a +60°-disclination dipole. Each violates
both tricoloring and bipartite structure.

passing through spatially separated twist defects. This nonlocal
storage of quantum information between non-Abelian anyons
provides topological protection against decoherence and forms
the basis for fault-tolerant topological quantum computation
[7-12]. Similar to the algebraic relation Eq. (2.17), the
noncommutativity of Wilson operators are characterized by
an intersection form (C;“,Cj.(z) between Wilson strings. We
compute these pairings explicitly in this section and show
their covariant behavior under S5 transformation that differs
from the invariant one from the previous section. The basis of
Wilson strings and their intersection properties will be useful
for characterizing defect fusion and braiding in the following
section.

A. Lattice defect Hamiltonian

We describe the lattice model modifications at primitive
+120° disclinations centered at tetravalent or bivalent vertices
and +60° disclinations at heptagon or pentagon plaquettes (see
Fig. 15) corresponding to threefold and twofold twist defects,
respectively. Unlike the square or octagon disclinations in

PHYSICAL REVIEW B 90, 115118 (2014)

TABLE I. Types of primitive twist defects at disclinations, x =
Y,R,B.

S5 label Lattice disclinations

[1/3] +120° disclination at a tetravalent o vertex
—120° disclination at a bivalent e vertex

[1/3] +120° disclination at a tetravalent e vertex
—120° disclination at a bivalent o vertex

[1/2], +60° disclination at a x -colored heptagon

—60° disclination at a x-colored pentagon

Fig. 1, these nontrivial lattice defects require additional sets
of vertex rotors or allow less plaquette operators in order for
stabilizers to remain mutually commutative. The extra rotor
degree of freedom increases the GSD and associates nontrivial
quantum dimensions to twist defects. The S5 classifications of
primitive disclinations are summarized in Table I.

1. Threefold twist defects

Instead of accommodating a single set of rotors 0,7 and a
k-dimensional Hilbert space like an ordinary trivalent vertex,
a tetravalent vertex hosts four sets of rotors o(i),7(i) and
a k*-dimensional tensor product space. We define the rotor
operators at a tetravalent vertex by the tensor products

o)=L @11,
o)=L ®o®1; 1,
oB)=LeL®c R,
o)=Ll 0,

(=111, T,
QD) =1RTR1T I,
3=, TRTtT,
D=1, ®TRT,
where 1; is the k x k identity matrix and o,t are the

usual rotors with matrix representations (2.2). They satisfy
a modified algebraic relation

3.1)

wmnnun”our'={f gﬁ:jlfi (3.2)
o =t =1, [06)o()]=I[z()(j)]=0, (3.3)

where w = ¢*"/¥. The four adjacent plaquette stabilizers

around the tetravalent vertex uy in Fig. 17 are defined with
the new rotor operators (suppressing tensor products)

ﬁ.(l) = Tu4(1)0v1 Ty, O0v3 Tw, Ovs s
Pu(2) = 74, (2)00; Tug O, Ty Oy »

. 34
P,(3) = tu4(3)av9 Tu1pOvy1 To Oy

Po(4) = 11,(4)0,3 Ty, 0015 Tuys Oy »

FIG. 16. (Color online) A triplet of dislocation threefold twist
defects connected by two color permutation branch cuts (wavy lines).

FIG. 17. (Color online) Tetravalent and bivalent vertices u4,u>
and their nearest plaquettes.
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and similarly the o-plaquette operators P, (i) are defined by
interchanging o < t.

A bivalent vertex, on the other hand, is hosting two sets
of rotor operators and a k>-dimensional tensor product space.
The rotors are defined by

c)=0@L, =107 3.5)
o=, ®o, QQ=1’®T, :
and satisfy the algebraic relations (3.3) as well as
. . —1 -1 __ W, if i = j,
tMo (e o () = {wz’ iz GO

The two adjacent plaquette stabilizers of the bivalent vertex u,
in Fig. 17 are defined by

Pio(l) = Tuz(l)avl Ty, O3 Ty, Ous s (37)
P,(2) = fuz(z)avs T Ov; Tug Oy 5

and similarly for the o-plaquette operators.

Thanks to the modified algebraic relations (3.2) and (3.6),
all plaquette operators around a tetravalent or bivalent vertex
mutually commute. The Hamiltonian is then defined just as
in Eq. (2.4) by summing over all plaquette stabilizers. In fact,
(3.2) and (3.6) are not just sufficient but also necessary for
the stabilizers to form good quantum numbers. The k*- or k>-
dimensional tensor product rotor representations (3.1) or (3.5)
are not accidental. Their dimensionalities are topologically
protected by noncontractible Wilson strings around them and
are directly related to the quantum dimension of threefold twist
defect. These are explained in detail in the following section.

There is, however, a caveat when k is a multiple of 3. By
examining the rotor representation at a tetravalent vertex (3.1)
or that at a bivalent one (3.5), we have the additional torsion
relation

k/3

4 ky/3 2
[]‘[ rw(i)} = []‘[ ruz(n} =1
i=1 i=1

and the order three center operators that commute with all
rotors

4 k/3 2
Em = |:1_[ Uu4(i):| , Euz = |:l—[ O’le(l'):|
i=1 i=1

This means that the k*- [or k2-] dimensional tensor product
space at the tetravalent [bivalent] vertex is no longer irreducible
for the rotor algebra Eq. (3.2) [or Eq. (3.6)] as it can
be decomposed according to the Zj-valued good quantum
number according to X,, [X,,]. In this case, we restrict the
tensor product space at any tetravalent (or bivalent) vertices to
one of the k*/3- (k? /3-) dimensional sector by specifying the
Z5 phase for the central observables X, (X,,), or, equivalently,
the k* (k?)-dimensional rotor space can be broken down by the
local defect Hamiltonian

Hu4/uz = _J*(eiiqazm/uz + ei(pzjm/uz)’

(3.8)

k/3
(3.9

(3.10)

where the phase variable ¢ controls the Z3 value of X, ,, in
the ground state except at ¢ = m, & 7 /3 where level crossings
occur. Consequently, when k is divisible by 3, threefold
twist defects are further subdivided into nine different species
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SOy
¢ DWO'D
e

FIG. 18. (Color online) Heptagon and pentagon plaquettes.

distinguished by the eigenvalues of the X’s, which are local
measurements described by certain order 3 Wilson strings
described in the upcoming section.

Using the Euler characteristics 2 —2g = #P — #E + #V,
Eq. (2.6) is modified to

BV =2 x #P +4(g — 1) — #us + #u>,  (3.11)

where #V and #P are the total numbers of vertices and
plaquettes, respectively, and #u4 and #u, are the numbers of
tetravalent and bivalent vertices, respectively. We are interested
in how the GSD scales with #u,4 and #u; in the thermodynamic
limit. For this, we ignore the genus g and the overcounting of
plaquettes such as (2.7) that will contribute to the GSD by
a proportionality constant independent from the twist defect
number.

The total Hilbert space is a tensor product of rotor
spaces of dimension k*V+3#ust# for k not divisible by 3,
or k#VH3#uatiu: 3ty otherwise. Stabilized by the two
operators P,, P, per plaquette, the GSD scales as

GSD ~ {(kZ)#u4+#u2 , if 3 l}/ k,$k2/3)#u4+#”2 , if 3 | k,

(3.12)

where #u4 + #u, is the total number of defects, or, equiva-
lently, the quantum dimensions of a threefold twist defect are
given by

k2, if 3/k,
drjz = d[m] = {k2/3, if 3| k. (3.13)

2. Twofold twist defects

Heptagons and pentagons are odd-sided plaquettes and
therefore the two operators (2.3) will not commute with one
another (see Fig. 18). There are instead only one plaquette
stabilizer at a heptagon and pentagon (or any odd-sided
plaquettes),

7 5
p7:l_[UUiTUI’ ﬁS:l_[GUiTUi' (3.14)
p=i p=i

All faces around the heptagon and pentagon are ordinary
even-sided plaquettes. Each carries two usual stabilizers (2.3)
and commutes with the heptagon and pentagon. Similar to
dislocation operators in Kitaev’s toric code [47] or the Z;-Wen
plaquette model [49], the problem with 157 and f’s is that
they are not necessarily kth roots of unity since (o7)f =
wk*=D/2 = (—1)*~1 In general, the defect Hamiltonian can
depend on a phase

Hs 7(@) = —Ju(e " Ps 1 + ¢ PL)). (3.15)
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FIG. 19. (Color online) Energy levels of Hs; as a function of phase variable ¢. Level crossings of ground states are shown in dashed

circles. Colors label k different discrete values for p(¢).

Its ground state is labeled by the stabilizer eigenvalues }35,7 =
> P@/k for p(¢) being the integer for k odd (or half-integer
for k even) between

ko 1 k¢ 1

w2 PP =5t
There are level crossings when k¢ /27 is a half-integer (or
integer) when k is odd (even) where two eigenstates for ﬁ5,7
have the same energy and the system becomes gapless (see
Fig. 19).

We treat this phase variable ¢ as a nondynamic classical
parameter associated to a twofold twist defect. This is a
fundamental feature differing the twist defect from usual
deconfined non-Abelian anyons in a topologically ordered
system. p(¢) modulo k is a locally measurable quantity by
the pentagon or heptagon plaquette operator ﬁ5’7. In general,
twofold twist defects are labeled by small Wilson loops circling
them (discussed in the following section) and are divided into
k? species apart from their colors x. Each species has distinct
fusion and braiding characteristics such as pair measurement
restrictions and topological spin, as seen in Secs. IV and V.
Slow evolution of the phase variable ¢ — ¢ + 27/k drives
a ground state adiabatically to an excited state due to a level
crossing shown in Fig. 19. The excited state can relax to a
different ground state by absorbing or emitting an Abelian
anyon and thereby driving a species mutation of the twofold
twist defect. A successive phase winding of a series of twofold
twist defects can lead to nonlocal transportation of Abelian
anyons without actually moving the defects. This pumping
process is a Zj; analog of the U(1) Thouless charge pump
[113,114] or the Z, fermion parity pump [21,81].

The GSD of multiple twofold twist defects can be estimated
in the thermodynamic limit by counting degrees of freedom.
Assume the number heptagons and pentagons are identical
so that they do not contribute to the net curvature in the
Gauss Bonnet theorem. Since there are only one stabilizer
per pentagon or heptagon, the ground-state degeneracy scales
as kN, where N is the total number of twofold twist defects.
Therefore, its quantum dimension is given by

(3.16)

i = k. (3.17)

This matches the ~/k quantum dimension for dislocation twist
defects in Z-rotor model [49] or +/2 for Kitaev’s toric code
[47] since our Hamiltonian (2.4) is identical to two copies of

quantum double Z; model. The difference here is that there are
three types of twofold twist defects [1/2], labeled by colors y,
which is the plaquette color for primitive pentagon or heptagon
defects. Two identical twofold defects fuse to k> measurable
Abelian channels, while a pair of twofold defects of different
colors fuse into a threefold one, [1/2], x [1/2],+; = [1/3] or

[m], as discussed further in Sec. IV.

3. Composite lattice defects

Classical lattice defects are topologically classified by the
holonomy around them [115-118], such as the Burgers’ vector
B of a dislocation or the Frank angle €2 of a disclination.
The holonomy is an element in the space group counting the
net amount of discrete rotations r(£2) and translations t along
a loop around a point defect or a combination of them on
a lattice. The space group in our model on a honeycomb
lattice is the semidirect product P6 = C¢ X L, where Cg
is the sixfold rotation group and £ = Z? is the translation
group of a triangular lattice. The holonomy [r(£2),t] is path
independent as long as the loop encloses the same defects,
but it may change according to conjugacy transformation
into [r(€2),t + r(2) - d — d] if the starting and ending point
of the loop is displaced by d. Thus, lattice defects are
precisely characterized by the conjugacy classes of holonomy
{r(Q),[tla}, where r(2) = ¢/* is rotation with Frank angle
2, a multiple of 7 /3, and [t]g is the conjugacy class of
translation in the quotient group,

L, for Q =0,
L 0, for Q@ = £60°,
F@-1L | Zs for @==x120°, ¥

Zz D Zz, for 2 = 180°.

In particular, [t]g differentiates disclinations with the same
Frank angle and curvature singularity. The Z3 classification
distinguishes 120° disclinations centered at octagons such
as Fig. 1(a), tetravalent o vertices such as Fig. 15(a) and
a tetravalent e vertices. Therefore, tricolorability is violated
when [t];pp- is nontrivial in Zs. This remains true for any
composite defect with an overall £120° Frank angle. Since
the classification for £60° disclinations is trivial, all such
composite defect is holonomically equivalent to a pentagon
or heptagon which breaks both tricolorability and bipartite
structure.
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Dislocations are composite defects that consist of a collec-
tion of disclinations with canceling Frank angles and curva-
ture. The torsional singularity of a dislocation, characterized
holonomically by a Burgers’ vector B in £, originates from
the spacial separation of its constituent disclinations. For
example, each dislocation in Fig. 16 is a disclination dipole
with a tetravalent vertex (2 = +120°) separated from a square
(2 = —120°) by half a lattice spacing. Figure 15(c) shows
an overall dislocation from the +60-disclination pair. All
dislocation preserves the e,0 bipartite structure since it always
consists of the same number of pentagons and heptagons.
It violates tricolorability when its Burgers’ vector B sends
a hexagon plaquette to a different color one. Examples of
dislocation twist defects include a +120°-disclination dipole
with unequal translation pieces [t]; 1200 # [t]+1200 € Z3 (i€,
inequivalent defect centers, e,0 vertex or plaquette), such as
those in Fig. 16, and a +60° disclination dipole with different
color pentagon and heptagon.

Let £’ be the translation subgroup of L that preserves
tricoloration and that gives £/ £ = Z3 which classifies £120°
disclinations in (3.18). Any dislocation with Burgers’ vector in
L’ and any £120° disclination with trivial Z5 translation piece
[t]i20- are twistless defects that do not violate tricolorability
and bipartite structure such as those in Fig. 1. The P6
honeycomb space-group symmetry collapses when there are
twistless dislocations and 4+120° disclinations in the lattice
that break discrete £’ translation and C3 rotation symmetry,
respectively. Certain discreteness in the space group that
represents tricoloration and bipartite structure is, however,
left over. The presence of twistless lattice defects breaks the
space-group symmetry into the residue

C6l><[,

Cing ~brli=5
3

(3.19)
which is, not surprisingly, identical to the group of symmetry
between Abelian anyons (2.40) and (2.41) or gauge fields
transformed by (2.42) in (2.38). In a trivalent bipartite graph,
defects are holonomically classified by the residue group S3.
For instance, a pentagon defect is indistinguishable from a
heptagon one as +60° disclinations are interchangeable by
absorbing or releasing a square or an octagon disclination. A
primitive dislocation is equivalent to a tetravalent vertex by
releasing a square disclination and in the long length scale
indistinguishable from a pentagon-heptagon dipole separated
by one lattice spacing.

B. Nonlocal Wilson algebra

Figure 14 shows how an Abelian anyon changes type around
a twist defect and its Wilson string does not close back to itself
after one cycle. A closed Wilson string is either nonlocal so
that it encloses multiple twist defects or wraps around a twist
defect multiple times. The former contributes to a GSD as it
intersects and therefore does not commute with other nonlocal
Wilson strings. The latter can be represented by an Abelian
phase as it can be shrunk to the point defect and will not
intersect with other Wilson strings.

All nonlocal Wilson loops are generated by primitive ones
shown in Fig. 20 [and another one in Fig. 32(g), which is not
used in this section]; each encircles two twist defects. A par-
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ticular arbitrary choice of branch cut is assigned in the figure
to keep track of color and sublattice transformation according
to Figs. 14 and 15. Twist defects are further subdivided into
species according to the Abelian phase eigenvalues of local
Wilson loops, ®, around a twofold twist defect, and X,, %,
around threefold twist defects when k is divisible by 3. Each
circles a single defect multiple times, as shown in Fig. 21.
®, are continuum versions of defect pentagon and heptagon
operators (3.15), and X,,%, are related to the good quantum
numbers associated with each tetravalent and bivalent vertex
(3.9).

1. Threefold twist defects

A threefold twist defect is characterized by its threefold
anyon color twisting described in Fig. 14. It can be generated
by primitive dislocation, tetravalent or bivalent lattice discli-
nation, or any composite defect with the same overall color
permutation character. We consider a system of N threefold
twist defects [1/3] for N is some multiple of three so that the
system can be closed on a sphere; i.e., the N defects fuse to
the trivial Abelian anyon channel. All nonlocal Wilson loops
are combinations of the one in Fig. 20(a) between neighboring
defects and we label the one enclosing the ith and (i + 1)th
defect by Af;5 | and A7 (see Fig. 22), where y is the color
of the string at the fixed view point (gray square). Due to color
redundancy Y x R x B =1, it is enough to take y = Y,R.
And the final loop Ay_; n can be expressed in terms of the
previous ones because the system is closed and the Wilson
100p enclosing all N defects is trivial;

x,e/0

H ./4);(1./2031 1 ( 3 11,:;/2_0)T = =1 (3.20)

because [i]3 = i modulo 3 cyclically permutes the color .

Since e-Wilson loops mutually commute, the 2(N — 2) e
loops form a maximal commuting set of Wilson operators. The
Wilson algebra,

2
i (AL A
AqulAjo_e T (Al !!“.A

W\@ﬁ ~ AX7‘/O

R,B (© + D)oo ) Doe
< > .@ - w.@
BX-*/° € ZX

FIG. 20. (Color online) Prototypes of nonlocal closed Wilson
loops around twist defects. (a) A closed string A**/°, either entirely
e type or o type, enclosing two threefold twist defects [1/3] (black
crosses). It can be equivalently represented by a loop (left) or a closed
branched path with a tricolored source and drain (right) [119]. Wilson
strings change colors x € {Y,R,B} = {0,1,2} across threefold branch
cuts (wavy lines). (b) A Wilson loop B%*/° surrounding a threefold
twist defect [1/3] and its antiparticle [1/3]. (c) A Wilson loop Z*
containing two twofold twist defects of the same color [1/2], (colored
pentagons). Up to an Abelian phase, the loop can be flipped inside
out and changes color and sublattice types according to Fig. 14(c).

jj+lAll+1’ (321)
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FIG. 21. (Color online) Local Wilson loops that circle a single
defect. (a) Species identification of a twofold twist defect by small
Wilson loops ©®, that circle twice. The e string is chosen by
convention to sit below a o one at the intersection. (b) A local Wilson
loop, %, or X, surrounding a single threefold twist defect k /3 times.
It consists of a k-valent unicolor source and k /3 tricolored drains or is
equivalently constructed by dragging the color permutation invariant
Abelian anyon K./, = (Y.o)*3(R.;,)¥* (see Fig. 11) around the
defect. It exists only when k is divisible by 3.

is determined by the symmetric pairing matrix [ = (x,%)
between colored strings. It is nonzero only when |i — j| < 1
and can be evaluated by local intersection number according
to Fig. 7. All nontrivial intersections are shown in Fig. 23.
Note that the result is independent from the arbitrary choice of
branch cut. The intersection form for N threefold twist defects
is given by the 2(N — 2) x 2(N — 2) symmetric matrix I,

I L, 0 0 ... 0

i n L 0 ... 0

o 1 b L ... 0
01]:

(AiiviAjjsd=10 0 JE )

o 0 0 0 .. I
(3.22)

-2 1 o1
10:(1 _2>, 11=10A3=<_2 1), (3.23)

where the (N — 2) rows and columns of the intersection matrix
(3.22) are enumerated according to the loops {A; ;1 :i =
I,...,N —2}, its 2 x 2 matrix entries (3.23) act on color
degree of freedom x = Y,R,and A3 = (! ~})isacyclic color
permutation. Iy comes from the intersection between Wilson
loops about the same defect pair (first two diagrams in Fig. 23),
while /; comes from the intersection between Wilson loops
about adjacent defect pairs (last three diagrams in Fig. 23).
We notice that the Wilson algebra (3.21) is symmetric under
cyclic color permutation A;El : x — x £ 1,butisnotinvariant
under color and sublattice transposition Ag : Y,/ <> Ro/..
This can be understood by observing that the Wilson loop in
Fig. 20(a) violates transposition explicitly. Color label x of the
Wilson operator Alxl:rlo in Fig. 22 is defined with respect to a
base point, and a change of base point does not commute—and

x.®/0
-Ai-,i+1

eee X X ...
i—1 i+2

FIG. 22. Wilson loop A%, and A%, between the ith and (i +

i+ ii+1
1)th threefold twist defect. The sublattice type e,0 and color x = Y, R

is view at the base point (gray square) on the loop.
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hence is inconsistent—with all transpositions Ay, Ag,Ap. In
fact, color and sublattice transposition switches a threefold
defect into its antipartner,

Ap:[1/3] < [1/3], (3.24)
and the intersection form is covariant under A g,
A% Ty - Ag = =Tz, (3.25)

where Ap = o, acts on the colors x = Y,R and H[W] is
the intersection matrix for N anti-threefold defects. In the
microscopic lattice level, transposition Ap originates from
inversion which interchanges the e,0 sublattice type and
switches [1/3] <> [1/3] according to Table I for primitive
disclination twist defects. This can also be understood in the
continuum by seeing transposition interchanges the Abelian
anyon twisting between [1/3] and [m] in Figs. 14(a) and
14(c).

For later convenience, we adapt the multiexponents notation
m = (my,my, ...,myn—_s,myy—4) for Wilson operator product

N-2

(AY™ =TT (AG)"™ (Af)™

i=1

(3.26)

and similarly for the dual ones (A°)™, where m; are integers
modulo k.

When k is not divisible by 3, starting with the particular
ground state |0), in Eq. (2.10) fixed by the e-Wilson operators
(A*)™10), = |0),, the dual o-Wilson operators generate all
ground states by product combinations,

|m)o = (-Ao)m |0>o (327)

These are simultaneous eigenstates for the maximally com-
muting set of e-Wilson operators. The matrix elements of .4°
and A° with respect to this basis are given by

-2

(m'|[(A*)"|m) = ¢/ T Ims (3.28)

m’,m>

(m'[(A*)"m) = Sy .mein> (3.29)

where I is the intersection form in (3.22).

We notice that 31! has integer entries, and therefore the
intersection matrix I is invertible (with Z; entries) when there
is an integer s with 3s = 1 mod k; in other words, k is not
divisible by 3. This means different ground states |m), in
(3.27) can be distinguished by their set of eigenvalues for
the e-Wilson operators, and thus (3.27) forms a complete
orthonormal basis for the ground state. Alternatively, one can
label the ground states using e-Wilson operator eigenvalues
o« = (y1,F1s -, YN-2,FN-2) by

|¢¥). = (Ao)m|0>u

where y;,r; are integers modulo £, so that the matrix elements
of Wilson operators are

m=1"ea, (3.30)

2

(@ | (A at) = ¢ TN Sy 4, (3.31)

(@' I(A")"|ot) = 8o Ina-

One can put the ground states |a), on the Cartesian product of
N — 2 periodic 2D lattices shown in Fig. 24(a). Each lattice
point a¢; = y;e; + r;e; on the integer mod k triangular lattice

(3.32)
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FIG. 23. (Color online) Intersection (brown dots) between nearest and next-nearest e- and o-type Wilson loops.

represents the eigenvalues e27i/k e2mini/k for ALY | ARS,.
The GSD for a closed spherical system with N threefold twist

defects is given by

GSD = k*N-2, (3.33)

which matches the quantum dimension dj; /3 = k* predicted
by counting lattice degree of freedom in Eq. (3.13).
When £ is divisible by 3, there is a nontrivial center that
commute with all Wilson operators. It is generated by
e/o Y,e/0\—k/3 R,e/0\k/3
iy = (Ai,i+1) (‘Ai,iJrl)
= B(El) T =T ez, (334
where the eigenvalues of the local Wilson operator £°® =
e?™is/3 and £° = ¢**%/3 in Fig. 21(b) distinguish the nine
species s = (S,,5,) € Z3 @ Z3 for each of the threefold defects
[1/3]s. Itcan be shown, up to plaquette stabilizers, that the local
Wilson loop X;/° around a tetravalent (or bivalent) e /o vertex
is 7! (2,,) in Eq. (3.9) or 1 around a o/e vertex. Therefore,

the Z5 phases for the small loops /° are determined by local
defect Hamiltonian (3.10). The species are interchangeable by
tuning the defect phase ¢ — ¢ +27/3 in (3.10) that drive
the system into an excited state and locally relax back to a
ground state by emitting or absorbing an Abelian anyon. This
process changes the Z3 values for £* and X° and thus switches
the species. This extra phase degree of freedom provides a

(b)
k=6

FIG. 24. (Color online) Eigenvalue lattice for the e-Wilson oper-
atorsforeachi = 1,2, ... ,N — 2. (A} A% ) = (e270i/k e2ririfky
at the lattice pointa; = y;e; + r;e,. (a) Lattice for k not divisible by 3.
(b) Lattice for k divisible by 3 with shifted origin s, that depends on the
75 value of (3.34). The thickened sublattice contains the eigenvalues
allowed by (3.34).

possibility for nonlocal transport of Abelian anyon along a
series of coupled [1/3] defects that is a unique feature only
when k is a multiple of 3.

The ground states |m), in (3.27) do not form an orthonormal
set as they overcount the GSD. In fact, the allowed eigenvalues
eI for (A*)" are restricted by the species s*/° in (3.34).
The ground states |a) now form a sublattice in Fig. 24(b),
which contains a third of lattice points in the origin triangular
lattices. The GSD is thus reduced by 3 for each defect:

2\ N=2
GSD = (’L) .
3

This matches the quantum dimension dj;,3) = k%/3 in (3.13)
predicted by microscopic lattice derivation. A complete de-
scription for the Wilson structure of threefold defects when 3
divides k can be found in Appendix B.

(3.35)

2. Twofold twist defects

A twofold twist defect is characterized by its twofold
twisting of Abelian anyons circling around, as shown in
Fig. 14. It can be realized as pentagon or heptagon defects in
the lattice, or any composite defects that violate tricolorability
and bipartite structure. Since there are three transpositions
Ay,Ag,Ap in the permutation group Sz, twofold defects are
classified into three types according to colors, [1/2]y, [1/2],
and [1/2] . We consider a closed collection of N twofold twist
defects for some even N. We assume for simplicity that all
defects are of the same color type, say blue (B), and they fuse
to the overall vacuum channel and the system is compactified
on a sphere. A more general discussion on coexisting multitype
defects is given in the upcoming section.

The twofold defect [1/2]p is further subdivided into k>
species according to eigenvalues of two local measurements
at the defect, the small Wilson loops ®, [see Figs. 21(a) and
25] that circle the defect twice for x = Y, R, B. For primitive
pentagon or heptagon defects, they are identical (up to a Z

Xo Xe
e @ cee
Z) 2

iyi+1

FIG. 25. (Color online) Wilson operator Z;,, with color x =
Y,R,B and e-sublattice type at the based point chosen at the gray
square. Local Wilson loop ©F = w', w = ¢2*//¥ about the i th defect
with x-colored and e-sublattice starting point.
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intersection

X X X
O; O :

FIG. 26. (Color online) Two local Wilson operators O/ and O, |
can be deformed, joined, and unlinked into a pair of nonlocal Wilson
loops of type x, and x/ related by twofold symmetry transformation
induced by defects.

phase) to the defect plaquette operator 135,7 in Eq. (3.14),
and therefore their eigenvalues w', w = *™/*, are fixed
by the local defect Hamiltonian (3.15). Similar to 135,7, the
self-intersection of the small Wilson loop ®, causes a minus
sign for even k so that (®,)* = (—1)*~! for x not equal to B,
the color of the twofold defect. This means that /, is an integer
modulo k for k odd but a half-integer modulo k£ when & is
even and x # B. Color redundancy ¥ x R x B = 1 requires
ly +Ig + 1 = 0. The two independent phases 1 = (ly,lg) in
Ly ® Zy for k odd or in (Z + 1/2); & (Z + 1/2); for k even
form the species label for [1/2]z.

The prototype of a Wilson loop is depicted in Figs. 20(c)
and 25. We denote the Wilson loop enclosing the ith and
(i + Dth defect by Z/; | according to the string color x =
Y,R,B observed at the base point (gray square). We can
assume the loop always originates as a e-sublattice-type string
from the base point because different sublattice types are
interchangeable up to a phase as shown in Fig. 20(c). The
phase is fixed precisely by the local Wilson loops ®F = wh

= w1t and an unlinking procedure illustrated in
Fig. 26 and is shown in the right side of the equation
Zre ghe = ei%(a;ﬂﬂsj_lﬂhlg,)

Li+1<0i+1 (336)

where the colors x,x’ = Y,R,B are indexed by 0,1,2 mod
3, and (x’,0) and (x,e) are related by the transposition that
characterizes the twisting of twofold defects defined in Fig. 14.

All Wilson operators can be generated by the prototype
zl, forx =Y,R(recall B=Y 'R )andi=1,...,N —
2 since Z])\(,fl’ n can be generated by the compactification

relation
N/2
H 2%71,23' = =1 (3.37)
j=1

.....

maximal commuting sets of Wilson operators because loops
in the same set do not intersect. The Wilson algebra is
characterized by the intersection relation between the two sets,

X x’ — ! Z;i—lZi’ZZX'/Z' W x
25 10250 =€ F W= Z

X
2 2j412%i-12i>

(3.38)

where the pairing I = (x,%) can be deduced by counting
intersections between adjacent loops in Fig. 27 according to
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213;‘71,2] Z;;,Q‘yﬁ»l Zéj—l.zg ZZIE,ZjJrL
. R R,

Q=-===@ @==r=@ Q@==-=@

2j-1 2j 2j+1 2j+1
a R, * o

Z;;’—Z,Qj—l Z;/j—l.zj 25—2,2771 ZZF;—LZ]‘

. . Ity R,
' - . ' - .. . -l - ..

2j-2 2j-1 2j 22
R, + o -

FIG. 27. (Color online) Intersection (brown dots) between ad-
jacent Wilson operators ZJ; ,,; and ZJ;,, ., about blue twofold
defects [1/2]p. Only different colors and sublattice-type strings
intersect.

the rules set by Fig. 7, and is given by the (N — 2) x (N —2)
invertible matrix I,

1= (25100 200) = ® o, (3.39)
0 1 1 -1
JY:(I _1>, JR:(_I 0>’
(3.40)
-1 0
8= ( 0 1) :
1 0 0 0
-1 1 0 0
L= 11 L I C AN
0 0 0 ... 1

where the (N —2)/2 rows and columns of Jy in (3.41)
run over the maximal commuting sets of Wilson loops
{Z2i—10i}i=1,...N2-1 and {23} 2j11}i=1,...N/2—1, TESPECtivEly,
and the 2 x 2 entries J = Jy,Jg,Jp are the correspond-
ing matrices for the three types of twofold defects
[1/2]y,[1/2]&,[1/2]p that act on the x degree of freedom
of ZX, for x = Y, R. Contrary to threefold defects, the Wilson
algebra specified by the intersection form (3.39) preserves
transposition but is not symmetric under color permutation. It
is evident from Table I and Fig. 14 that twofold defects change
type upon color permutation,

A3 [1/21, — [1/2],41,

where x = 0,1,2 mod 3 index the colors Y,R,B, and the
intersection matrix is Az covariant,

(3.42)

AT Tppy, - As =g, (3.43)

where Az = (? :}) acts on the color degree of freedom y =
Y,R.

Given an arbitrary choice of branch cut that specified the
sublattice type e,0 of all vertices, one can write a particular
ground state (up to a normalization constant),

k—1 k—1
|0) o 1_[ |:Zw—rp;l§ir:| l_[ |:Z ﬁr:| low, =, = 1),
r=0 0

i P r=

(3.44)
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where D; = 135,7 are the pentagon or heptagon plaquette
operators in Eq. (3.14) at the ith defect, and P = 13.,130
runs over all other even-sided plaquettes. Here p; are integer
(half-integer) mod k for k odd (even) that specify the ground-
state eigenvalues D;10) = w”'|0) determined by local defect
Hamiltonian (3.15). All ground states can be generated by
Wilson operators,

|m> = (Zeven)m|0>’ (345)
N/2—1
Zyen)™ = Z)0in) T ES )" (346
Coe™ =[] (2320)" (5 20)" . (3.:46)
j=1
N/2—1
m __ Y maj— R myj
(Zodd) - 1_[ (sz_sz) (sz_sz) ) (3~47)
j=1

wherem = (m, ...,my_,) are the multiexponents for Wilson
loops. Assuming the branch cuts are chosen to avoid cutting
across the odd Wilson loops Z5;_1,»; such as those in Fig. 27,
the odd Wilson operators fix the particular ground state
(Z5aa)™ |0) = |0). The matrix elements of observables are
given by

2

(' [(Zoq0)"|m) = & TV Ims (3.48)

(M'|(Zeven)" M) = S m+n- (3.49)
Since I is invertible, ground states |m) are completely
distinguished by their eigenvalues with respect to Z,qq and
therefore form an orthonormal basis for the ground-state
Hilbert space. The GSD is given by

GSD = kN2 (3.50)
and matches the quantum dimension dy,;; = k predicted in
(3.17) by counting lattice degree of freedom.

It would be more convenient for later considerations in
fusion and braiding if the ground states are labeled by the
Abelian anyon fusion channels [a;] = [a],a/] of the jth pair
of twofold defects (see Fig. 28), where aj = y/ey + rieg
and a/ = y;f¥ + rjfF are discrete vectors in the Abelian
anyon lattice (Fig. 11). The e part of the anyon channels
a, = (y]‘,r]‘, . ,y,N/z_l,rfv/z_l) can be read off from (3.48)
for the ground state |m):

a, = —io,J @ Jom. (3.51)

Equation (3.36) ensures a constraint on the o part of the Abelian

fusion channels a, = (y},r}, ..., y2*7 K> 1) 5o that
a, = Jom + 0., (3.52)
[aj-1] [a;] (a41]

FIG. 28. (Color online) Abelian anyon channel [a;] = [aZ,a/] of

the jth pair of twofold defects measured by Wilson loops Z;j—ll I

PHYSICAL REVIEW B 90, 115118 (2014)

where 0, = (01, ...,05/2-1),0; = (GY,GIR), depends only on

defect species I; = (I} ,IF), for ©F = w'
0, =f—J '(Lj_1 +b)), (3.53)

where f = f¥ fX £ = (1,0),(0,1),(—1, — 1) are basis vectors
in the o-anyon lattice in Fig. 11 and J = Jy,Jg,Jp are
matrices in (3.40) determined by the color of twofold defects
[1/21y,[1/2]g.[1/2]5.

Under the fusion channel basis, the matrix elements for the
Wilson operators are

(@'[(Zoaa)"|a) = & TN 0G0 (3.54)

(a/ | (Zeven)n |a> = 53’.,3. —ioyIn,

where the Abelian fusion channels a = (a,,a,) are constrained
by

(3.55)

a, =J lio,a, +90.. (3.56)

Notice that the vacuum fusion channel may not be allowed
by (3.56). This is because the (2j — 1)th defect is not the
antipartner of the (2)th, in general, unless the right-hand side
of Eq. (3.36) or 0., is trivial; i.e., the species labels satisfy

L1 +h; = Jt. (3.57)

We end this section with a cautionary remark on the phase
variables of local defect Hamiltonians (3.10) and (3.15) in
a closed system. Similar to Z,-fermion parity in a closed
electronic system, there is a Z3 @ Zz-anyon parity in a
closed system of threefold defects for k divisible by 3 and
a Zy & Zy-anyon parity in a closed system of twofold defects.
They are good quantum numbers that imply global restrictions.
The closeness condition (3.20) requires the species labels
s; = (s7,s7) of the threefold twist defects to satisfy

N

[ =50 =1 (3.58)
i=l1

for k divisible by 3. While for twofold defects, (3.37) similarly
requires the species labels I; = (I},IF) to obey

N
N
;li = EJf,

where f=f" fR f8 depending on the color type of
[1/2]y,[1/2]g,[1/2]. The species s; and l; are, however,
completely determined by phase variables ¢; of local defect
Hamiltonians (3.10) and (3.15) in the lattice level, and there
are no reasons for the local phases to be restricted by the global
closeness conditions (3.58) or (3.59). When the local defect
phase variables ¢; are incompatible with (3.58) or (3.59),
there is a topological obstruction in obtaining the absolute
lowest energy state. For instance, the state in Eq. (3.44) would
be identically zero, |0) = 0. The system would be forced to
have local excitations where energy is not locally minimized.
There will be two phases depending on the relative magnitude
between J,, the energy scale of defect Hamiltonians (3.10)
and (3.15), and J, the underlying energy scale of the original
model (2.4). For J, <« J, excitations would be bounded and
localized at defect centers, and Egs. (3.58) and (3.59) would

(3.59)
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S viewing curves S

rearrange

FIG. 29. (Color online) Viewing curve or open Wilson strings (directed dashed lines) 4; around the ith twist defect starting and ending at
a fixed viewpoint (gray square). (a) Series rearrangement of twist defects without passing defects across viewing curves. (b) Redefining the
viewing curves (A, A7) < ()76,):’7) in the same system by passing A; across the sixth defect, thereby changing the color of the seventh one.

be effectively restored. Therefore, the Wilson algebras and
ground-state degeneracies described before would still persist.
If J, > J, there will be delocalized Abelian anyon excitations
causing an infinite number of ground states. We consider only
the former scenario.

C. Word presentation of Wilson algebra

We describe a presentation of the group of Wilson algebra
in a system with multitype twist defects. A defect type is
defined by its S3-twisting action on Abelian anyon labels (see
Fig. 14) when an Abelian anyon is dragged along a path around
the defect. Examples of these paths are shown by the viewing
curves Xi in Fig. 29; each encloses one and only one defect. An
Abelian anyon [a] = (Y,)”'(R,)" (Y,)*(R,)"? will be twisted
into A; - [a] according to (2.40) and (2.41) if it moves along
Ai, where A, is an element in S; that distinguishes the type of
the ith defect by [1/3], [1/3], or [1 /21, The defect type or
A; may depend on the viewing curve A; for a multitype defect
system that contains twofold defects. Defects can be arranged
and ordered in series, as shown in Fig. 29. A reordering of
viewing curves will, in general, alter the defect type. Upon
switching the viewing order of the ith and (i + 1)th defects,
their S5 classifications change according to conjugation,

(A Air) > (ALALD = (AT A1 A Ay, (3.60)

where this is demonstrated by redefining the viewing curves
for the sixth and seventh defects in Fig. 29. This can be
understood in the microscopic lattice level by observing that
the e,o-sublattice type of a threefold defect center or the
Y R B-plaquette color of a twofold defect center depends on
the viewing path in the presence of other defects. Twist defects
are therefore coarsely classified by the conjugacy classes of
S3, which include the class of threefold defects [1/3],[%]
and the class of twofold defects [1/2],. However, we do not
consider these conjugacy classes as superselection sectors as
the S3 symmetry is not gauged, unlike in Refs. [9,88,89].

We denote the alphabet [A:]a to be an open Wilson string
of dragging an Abelian anyon a = [a,,a.] along the viewing
curve A; starting from the base point (gray square in Fig. 29).

The ordering of a, and a, will only affect the Wilson operator
by an over phase due to self-intersection, and, if necessary,
we adapt the convention that the a, string acts before and sits
below the a, one. The Wilson algebra of the defect system
consists of closed Wilson loops presented in series of the
alphabets,

m

WO = [ 5] = [T ae G6D
r=I1

where C is the loop of the ordered composition 1;, * - - - * A;,
and the Wilson string begins at the fixed base point as the
Abelian anyon a, which moves and transforms along C. In
order for W(C) to be closed, the Abelian anyon has to close
back onto itself and the S3 transformations have to satisfy the
closeness relation
(A

. AizAil) ca=a. (362)

The alphabets inside the bracket in the middle of (3.61) have
a fixed ordering. Interchanging the order of the alphabets
in general will give an entirely different Wilson string that
might not even be closed. The product order on the far right
of Eq. (3.61), however, will only contribute an overall Z;
phase to W(C) and will not affect its intersection with other
Wilson operators. Abelian anyon fusion (2.33) implies the
simplification

[hilalAils = [Ailasn- (3.63)

For instance, the Z-torsion ka = 0 implies that )A»fx‘“d =1
for ord = 2,3 is the order of twofold and threefold defects;
the tricolor redundancy requires )A\? =1 if the ith defect is
a threefold defect and A;4;4;4;4;4; = 1 if the ith and jth
defects are twofold defects of different colors. If the system of
N defects is closed on a compact surface without boundary,
we have

(3.64)
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TABLEII. Alphabetic presentation of the Wilson loop generators
in Figs. 20, 21, 22, and 25. e, and f* are primitive lattice vectors in
the e- and o-anyon triangular lattices in Fig. 11, respectively. &,
is the threefold invariant nontrivial /o anyon in Fig. 11 when & is
divisible by 3.

Wilson loop prototypes Word presentation
'AIXI:>1 [é”‘*’l]—ex [%i]ex
Aziil [)‘i‘*']] £x [)‘i]fx
x/° Aile,

Zi)‘(H—I [i’ 5\ ]

e [Aiki],

Ignoring the overall Z; phase, (3.61) is of the form

N N
E a;, = E A,»a[.
i=1 i=1

The alphabetic presentation of the Wilson loops considered in
the previous sections are summarized in Table II.

By a slight deformation, one can assume that all intersec-
tions between two Wilson operators are at the fixed base point.
The algebraic relation of Wilson operators are given by

N
Witail = [ [(Aila,

i=1

(3.65)

2

Wi{a;}IW[{b;}] = '+ @D Wb, W [{a;}],  (3.66)
where the intersection form I = (x,x) is
i i—1
({a;}.{b;}) = Z(a, Aa)- | Y b =D A | (B.67)
j=1 j=1
for a; =[al,al] = [yley + rleR,ysz +rifR] and b; =

[bi,bi] = [y ey + r}eg,y; ¥ + r5tk], where the antisym-
metric dot product is defined by

ai-b; = @) io,b, — (b)) io,al

= y’zrij - rfy;j - réyij + y;réj. (3.68)
Using the prototype basis identified in Table II, the intersection
form (3.67) reproduces the intersection matrices (3.22) for
threefold defects and (3.39) for twofold defects. As a result
of self-intersections such as those in @f , in general, W[{a;}]
need not be a kth root of unity.

We notice the dot product (3.68) and subsequently the
intersection form (3.67) and Wilson algebra (3.66) are invariant
under global symmetry transformation,

(a;,b;)) — (a;,b)) = (A -a;,A - by), (3.69)

A — A= AANATT, (3.70)

for any A in S3. The color and sublattice transformations
of Abelian anyon have already been described in (2.40) and
(2.41) in the previous section. The symmetry transformation
for defects (3.70) are summarized by

Ay (ML) = GGG

ap: (BL1G1) — (GRELGL,.)-

(3.71)

(3.72)
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where x = Y, R, B are the color types of twofold defects, and
A3 and Ap are cyclic color permutation and transposition
described in (2.40) and (2.41), respectively. For k divisible by
3, the threefold defect species labels s = (s,,5,) € Z3 D Z3
transform according to

Az:s—>s =s, Ap:s— s =—0o,s. (3.73)
The species labels for twofold defects 1 = (Iy,lg) transform

according to

sil= 1 = (A7, (3.74)
(A;HTL, for [1/2]y,
Ap:1=>1 =1 All,  for [1/2]g, (3.75)
1, for [1/2]g,

where A; = (! 7}) represents cyclic color permutation. As a
result of (3.71) and (3.72), twist defects do not only transform
the labels of an orbiting Abelian anyon but also the type of an
orbiting twist defect.

IV. NONCOMMUTATIVE FUSION

We describe the quantum bases and transformations for
twist defects. Our system consists of deconfined Abelian anyon
excitations of the Z;-gauge theory as well as semiclassical
twist defects that locally violate the S3 symmetry.

Abelian anyons form the basis for all quantum states and
measurements. There is a correspondence between anyon
operators, nonlocal Jordan-Wigner strings that leave local
excitations at their ends, and excitation states formed when
Jordan-Wigner operators act on a ground state. The anyon
charge of an excited state can be locally measured by plaquette
stabilizers or closed Wilson strings accumulated by dragging
a conjugate anyon around it.

None of the above holds for defects. Twist defects are not
excitations of a Hamiltonian describing a topological gauge
theory. There are no “defect operators” that correspond to
quantum states by their action on the vacuum. Instead, states
are generated by noncontractible closed strings of anyon
trajectories around defects. If one switches the type of a
defect even within the same conjugacy class, for example,
[1/3] < [m] or [1/2]y <> [1/2]g, a closed anyon trajectory
may become open by violating Eq. (3.62). Hence, in the
semiclassical description, one cannot take superposition be-
tween states for different defect configurations; the probability
amplitude for a defect to be a particular S3 element is either
0 or 1. Moreover, defects cannot be used as a tool for
measurement. No quantum states are observed by expectation
values of unitary operations involving moving a twist defect in
acycle. Therefore, anyons and twist defects are fundamentally
different. The distinction stems from the fact that, unlike the
underlying Z-gauge symmetry, the tricolor and bipartite S3
symmetry is a classical nondynamical physical symmetry and
is weakly broken [46] by anyon labels. We assume there is only
a finite (in particular nondense) population of twist defects
so that the system admits an almost global tricoloration and
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bipartite structure except along finite length branch cuts (a set
with measure zero), and hence a gauging of S3 symmetry is
unnecessary.

Analogous physical examples include any defect het-
erostructures between superconductors, (anti)-ferromagnets,
and (fractional) topological insulators [28,36—-39] or strong
spin-orbit coupled semiconductors [33,34,45], where the
pairing phase, magnetic spin order, band inversion mass gap,
and Fermi energy are all treated as nondynamical variables. For
vortices in chiral p + ip superconductors [22—-24] and across
the topological insulator to superconductor interface [28,85],
the pairing phase vortex and branch cuts in the fermion sign,
are treated as classical objects. In the study of crystalline
dislocations and disclinations in topological insulators and
superconductors [81,107,108], the underlying lattice is also
regarded as stationary.

In practice, although an Abelian anyon label [a] = [a,,a,]
may be twisted during a cycle around defects, the change
is traceable in the classical level as there are no super-
positions of defect configurations. This means there is no
need to consider superposition of quantum states of different
anyon labels within a S; multiplet, unlike a discrete gauge
theory [9,88,89]. Therefore, under the semiclassical defect
treatment, the superselection sector of Abelian anyon [a]
stays unchanged and, in particular, a Ss3-orbifold superse-
lection sector [120] redefinition [a]i ={A-(a,xa): A€
S3} according to irreducible representation of Sz X Z2 is
unnecessary and inappropriate. Similarly, the twist defects
should not be regarded as quantum S; fluxes [9,88,89], as
they are distinguished by their anyon twisting characteristics
according to group elements rather than conjugacy classes
of S3. Since defects are classical objects, their trajectories
are also classical. In particular, although a triple exchange
between [1/2]y and [1/2]g or a single exchange between
[1/3] and [m] that goes 360° around a [1/2], would
leave the defect configuration invariant, there would still
be no quantum interference between direct and exchange
scattering of different type defects because defect trajectories
are classically traceable. There is an underlying lattice or,
in general, gravitation environment that could accidentally
measure and distinguish the two scattering paths. Therefore,
there is no reason to identify defects according to conjugacy
classes.

In this section, we describe the fusion and braiding
characteristics of a defect system. The objects are quantum
deconfined Abelian anyons and semiclassical S3-twist defects.
Two objects can be fused by projecting out any Wilson
strings or defect trajectories that go between them and treating
the composite as a single entity. Contrary to conventional
topological gauge theory, the composite outcomes or fusion
channels may depend on the order of the two initial objects
and the location of the viewpoint. This follows from the
non-Abelian nature of the group S;. For instance, [1/2]y %
[1/2]z = [1/3]but[1/2]x x [1/2]y = [1/3]. The objects thus
form a fusion category [12,46,73,74] with a noncommutative
fusion product. We establish a basis convention for the
quantum states involved in a fusion or splitting process. This
gives us a consistent convention for the F' symbols, which are
basis transformations between the different fusion orderings
(xxy)xz=x x(y X 2).
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A. Fusion rules

We are considering the fusion and splitting of the collection:
O = {[al,[1/31,[1/3],[1/2],.1}. @1

Here [a] = [a,,a,] labels the Abelian anyons, for a, and a,
are 2D Z-coefficient vectors in the triangular anyon lattice
in Fig. 11, and 1 = [0] is the vacuum. [1/3]s and [m]S are
threefold defects characterized by its anyon twisting shown
in Fig. 14(a), and s = (s,,S,) € Z3 @ Z3 label the species
of defects distinguished by local Wilson operators %,,%, in
Fig. 21(b). Since threefold defects are subdivided into species
only when k is divisible by 3, we automatically set

s=0, for3[k. 4.2)

[1/2], 1 are twofold defects characterized in Fig. 14(b) for x =
Y,R,B, and 1 = (Iy,l) label the defect species distinguished
by local operator ®y,®g in Fig. 21(a). Depending on the color
x of the defect and the evenness or oddness of k, Iy and [y are
either integers or half-integers modulo k so that

o2rilve — @k

b = (=),

4.3)
Mathematically speaking, the species labels s and 1 are
irreducible representations of the centralizer subgroup Cz:(A)

of Abelian anyons in Z; invariant under the twisting action
A € 83 of the corresponding defect.
Fusion and splitting of objects are described by the equation

X xy:ZN)fyz,

ze0

4.4)

where the fusion matrix N, = (N}, ) has non-negative integer
entries. Ny, counts the multiplicity of distinguishable ways
the ordered pair (x,y) can be identified together as the object
z. Identification can be done by projective measurements that
send Abelian anyons around the objects, a multiple number
of times if necessary. The antiparticle X of an object x is the
unique object so that N\, = Nl =1and N ;y = 0 whenever
y # X

Fusion between Abelian anyons is given by addition on the
anyon lattice

[a] x [b] =[a+ b].

Fusion between Abelian anyons and defects changes the
species labels,

4.5)

[a] x [1/3]s = [1/3]s x [a] = [1/3]y, (4.6)
[a] x [1/3]s = [1/3]s x [a] = [1/3]y, 4.7
[a] x [1/2],0 = [1/2],1 x [al = [1/2],0,  (4.8)

where the species labels of the incoming and outgoing channels
are related by including the anyon [a] inside the local Wilson
opertor ¥, /, for threefold defects and ®y,r for twofold ones,

3 5.
S, =S¢ — —k,i0ya,,

! e for 3|k, 4.9)
/ 3 T

s, =8, + %KO ioya,, for 3|k, 4.10)

I'=1+ioy(a, + Aja.), 4.11)
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where a, = (y1.71), 8, = (y2,72), ko = ko = (k/3, — k/3) are
threefold fixed anyons, o, is the Pauli matrix, and A, is
the transposition action of the twofold defect [1/2], and is
represented by A, =io,J, for J, defined in Eq. (3.40) or
(C3).

Fusions between threefold defects for k not divisible by 3
are given by

[1/3] x [1/3] = K*[1/3], (4.12)

[1/3] x [1/3] = k*[1/3], (4.13)

[1/3] x [T/31 = [1/3] x [1/3] = ) "[al.  (4.14)

The multiplicity k> in (4.12) and (4.13) and the k* number

of Abelian anyon channels in (4.14) match the quantum

dimension d/3; = d[m] = k2 shown in (3.13) and (3.33). For

k divisible by 3, the fusion rules are decorated with species

labels and modified to accommodate the reduced quantum

dimensions dfj /31 = d[m] = k?/3 shown in (3.13) and (3.35),
2

k
[1/3]s, x [1/3]s, = —[1/3]s,4s,

3 (4.15)

- 2

— k
[1/3]s, x [1/3]s, = ?[1/3]sl+52s (4.16)

[1/31, x [T/3], = [T/3]y, x [1/3], = Y [al,  (4.17)

where the sum in (4.17) is taken over the k*/3 anyons that
satisfy the constraints

k k
g(s.l~|—s.2)=—lc.Tiaya., §(s§+s§):x§iayao, (4.18)

so that the eigenvalues for the product of local Wilson operators
., X2, are preserved. Thus, the antiparticle of a threefold
defect has the inverse species label:

[1/3]s = [1/3]-s, [1/3]s = [1/3]s.

Fusion between twofold defects of different colors is
noncommutative. For k not divisible by 3,

(4.19)

[1/20,01, % [1/2]01a, = [1/3], (4.20)
(/21,510 % [1/2],0, = [1/3], @21)
(/21,0 % [1/2],0, = 3 [a], (4.22)

where the sum of (4.22) is restricted over the k2 Abelian anyons
that satisfy Eq. (3.56), i.e.,

a, = J; 'lioya, — (I + )] + 17, (4.23)

where a, = (y1,71), a, = (y2,12), J, are given in (3.40) for
x =Y,R,B, o, is the Pauli matrix, and £* =7 % 8 =
(1,0),(0,1),(—1, — 1), respectively, are basis vectors in the
o-anyon lattice in Fig. 11. The fusion constraint (4.23) is to
ensure the eigenvalues of the product of local Wilson operators
O] ©f stays unchanged [see Fig. 26 and Eq. (3.36)]. This
shows that the antiparticle of a twofold defect has a reciprocal

PHYSICAL REVIEW B 90, 115118 (2014)

) : k

(a
3
(b) : Ko ] 1
@=c¢>»
Ko Ko + K.
FIG. 30. (Color online) Relation betwefispecies labels of the
fusion [1/2],1, x [1/2],+1y, = [1/3]s or [1/3]s for k divisible by
3. (a) The left-hand side equals O} 0" = w/r—lr, w = 2i/k,
x = Y,R,B is the color of the twofold defect. (b) The right-hand
side equals £]'¥, = el F6oms) where i, = (Y.)Y3(R.)~/3 and
Eo = (Yo)ik/s(Ro)k/3~

but shifted species label:

(/2L =[1/2],5. T=—1+ Jf (4.24)

(x is not a summation index). We define the self-reciprocal
species ly so that ) =1y. This can be chosen regardless of
whether k is even or odd so that

k+1

lo = (Ig.I§) = —ioy £ (4.25)
This is the unique such species for odd k but there are three
other self-reciprocal species when k is even, differing from the
above 1y by (k/2,0),(0,k/2),(k/2,k/2). For k divisible by 3,
(4.20) and (4.21) are decorated by species labels and become
multichanneled,

(/200 x [1/20000, = 3 [1/31, (4.26)

(/200 x 1121, = Y (73, @27)

where the sums are restricted to the three species labels s =

(Se,55) that satisfy
(_1)(k—l)(l—8§)ei%’(xo—s.) — o TG A1} (4.28)

This can be proven by comparing the local Wilson operators
in Figs. 21(a) and 21(b) by a linking process shown in Fig. 30.

Fusion between twofold and threefold defects never com-
mutes,

[1/2],1 % [1/3]s = [1/3]s x [1/2],.
= Z/[l/z]xﬂ,lu
-
[1/31s % [1/2]y510 = [1/2],510 x [1/3];

=311/
-

where the species labels s and 1 will not affect the k> fusion
channels I’ unless k is divisible by 3, where the number of
fusion channels is reduced to k?/3 and is restricted by

(4.29)

(4.30)

ei%”(l;,—l’R) _ (_1)(k—1)(1—6§)ei%T(sc—s.-‘rly—lR). 431

This can be deduced by comparing the local Wilson operator
@1;/ 3@;"/ ? around the twofold defects before and after fusing
with [1/3]. The factors are given by the linking process in
Fig. 30(a).
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The quantum dimension d, of an object x, dictates the
scaling behavior of the ground-state degeneracies in the
thermodynamic limit. These are illustrated in Eqgs. (3.33) and
(3.50) for threefold and twofold defects. The GSD for N
identical object x can also be read off from the fusion rules
governed by the fusion matrices N, = (N ;y),

X X X X
+J\ 1] eoe eee + y:x+ l1/2+ iji]

BN - Ha 3 M2

G.S.D.|

{yi} {pi}
E YN —1 Y3 Y2 Y1

IyN 1N1’yN 2" NIyle’yl le
{yi}

o], e 58

where the GSD is counted by the numbers of distinguishable
fusion channels and fusion multiplicities labeled by y; and u;,
if AV identical objects x can fuse into the vacuum channel.
Equation (4.32) is nontrivial if A/ is a multiple of the period
of the fusion matrix N,, the number of x’s required to fuse to
the vacuum x x x x --- x x = 1. Using the Perron-Frobenius
theorem, the quantum dimension d, is given by the largest
(absolute) eigenvalues of N,. Since the fusion rules preserve

the dimensions,
dd, =) Nid

and an object has the same dimension as its antiparticle, d, =
dz, the quantum dimension can be read off by the square root
of number of Abelian anyon fusion channels of x x ¥. This
matches the lattice Hamiltonian prediction (3.13) and (3.17).

(4.33)

B. Splitting and fusion spaces

Splitting spaces have already been defined for Abelian
anyons [a] x [b] = [a+ b] in Fig. 12(a), where a particular
local basis state is chosen by fixing an orientation and ordering
of Jordan-Wigner strings. Although arbitrary, a fixed set of
basis states for splitting and fusion is implicit in any braided
fusion theory for a consistent collection of basis transfor-
mations (F matrices) and braiding operations (R matrices)
to be written. We explicitly choose a basis set of splitting
states using a particular local configuration of superposition of
Wilson strings. This provides a direct understanding of fusion
channels and multiplicities on the quantum state level and sets
the stage for describing basis transformation and braiding in a
multidefect system.

Consider a nontrivial fusion channel z of x x y so that
N, # 0. The splitting of z into x and y can be defined in the
microscopic level by locally inserting lattice points (i.e., rotor
spaces) and replacing z with a finer trivalent graph that contains
x and y. For example, any vertex on the honeycomb lattice can
be blown up into seven vertices by bulging, i.e., replacing the
three nearest hexagons by three octagons surrounding three
squares. Repeating as needed, any primitive disclination can
be replaced with composite disclinations with the same overall
Frank angle (curvature) and translation type (torsion). Suppose
(z) is an € neighborhood around z and Q¢(z) = R2 — Q(z)
is the complement environment. A ground state with object z
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is an entangled sum of tensor products

GS): o Y Q)i be) ®

b.c.

1€2(2); b.c.) (4.34)

over possible boundary conditions (b.c.). Since the local
Hilbert space becomes larger after splitting z — x x y, the
old and new ground states |GS), and |GS),,, respectively,
should be related by replacing the local ground state |€2(z))
with a splitting state |u) € V{, that matches the boundary

condition:
T Yy
z (4.35)
z b.c.

= Z [R2°(2); b.c.) ® |u;b.c.). (4.36)
b.c.

GS(11))xy o Y |9°(2);bec.)

b.c.

In general, the splitting space V¢, could be degenerate,
in which case there are distinct ways for z to split into
x Xy, giving rise to multiplicity Ny, = dim(V,). These are
labeled by p and distinguished by Wilson observables. The
corresponding splitting state | i) is fixed, not only projectively
but also with a definite phase, by picking a convention for
splitting Jordan-Wigner strings and branch cuts. By definition
fusion spaces are adjoints of splitting spaces, diagramatically
represented with reversed time-ordered arrows and generated
by the bra state (u|.

We choose the convention in Sec. III C so that a viewpoint
is fixed below an ordered series of objects along a horizontal
axes, all branch cuts are above the horizontal axes, and there is
a consistent color and sublattice calibration of Abelian anyons
on the lower half plane. An object is equipped with

(i) a Jordan-Wigner tail directed from below with its
constituent o string sitting above (i.e., acting on the vacuum
after) and to the left of the e string;

(i) a S3-branch cut directed from above that matches the
defect type of the object.

Representations of general objects are shown in Fig. 31.
The corresponding local state is given by acting the Wilson
operator on the particular bare ground state,

k—1 k—1
GS)o o< [ | [Z w"”"ﬁi’j| I1 [Z ﬁ’} oy, =Ty =1),
i r=0

P r=0
(4.37)

where D; is the defect operator for the ith defect, the phase
w~P ensures X, = 1 at a bare [1/3] defect, and ®Y/F =

(12l

’

@ faay | ®

(©)
i [1/3]s
1/3)s = H WﬂuI =

= () (1)

FIG. 31. (Color online) Representation of objects. Solid black
and gray lines are e and o strings. Wavy and dashed lines are
threefold and twofold branch cuts. s = (s,,s,) labels [1/3] and [1/3]
for k divisible by 3, for s,,5, = —1,0,1. 1 = (Iy,lg) labels [1/2],,
for x =Y,R,B, so that 1 —1y(x) € Zy ® Z, where lp(x) is the
self-reciprocal species label in (4.25).

-

o-string
string

3= —ioy (1= 1o(x))

, N
—rp .7--.
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(d)

/2, .ol

/3],

FIG. 32. (Color online) Wilson string configurations for splitting states in Eq. (4.38). Crosses and pentagons represent threefold and twofold
defects. Threefold defects are equipped with a species label s only when & is a multiple of 3. Solid black and gray lines are Wilson e and o
strings, respectively. All o strings act after and sit above all e ones except B™ in (e). All closed black e strings act trivially on |GS), in Eq. (4.37),
while closed gray o strings are nontrivial on |GS), unless contractible. The phase ¢(n) in (g) is given by Egs. (4.39) and (4.40) for w = e*™//¥,

wh“ 00 at a bare [1/2], defect. The plaquette operator product
is taken over both sublattice types 13. and 130, and e,o-vertex
sublattice types are assigned according to the particular branch
cut configuration and calibrated from the fixed viewpoint.
Splitting states ) € VY are obtained by acting a pre-
scribed Wilson operator configuration (Fig. 32) onto the
particular bare ground state (4.37) restricted to €2(z):

z Y x Yy
d =0 i | 1GS)o.

The prescribed Wilson operator configurations O are chosen
and shown in Fig. 32. The anyon label of each Wilson string
is set to match that of individual objects x,y,z as defined in
Fig. 31. So that different fusion channels z correspond different
Wilson string configurations and orthogonal splitting states.
Closed Wilson loops A™, 5™ are the two prototypes shown in
Figs. 20(a) and 20(b), and the multiexponents notation m =
(my,my) is adapted so that, for example, A™ = (AY )1 (ARym
is observed at the viewpoint fixed at the gray square. The
multiexponents m = (m,m;) live on some 2D triangular Z;

(4.38)

lattice, such as those in Fig. 11, which labels Abelian anyons,
and when k is divisible by 3, m = (si11,71,) live on a reduced
lattice as shown in Fig. 41.

Multiplicity occurs for the splitting [1/3] x [1/3] =
dp1/3) [1/3] shown in Fig. 32(d) and the degeneracy is generated
by the nontrivial Wilson loops A™ defined in Sec. III B 1.
It might be more physically natural to label the degenerate
state [m) = A™|GS)( according to eigenvalues & = Iym of

the observable A7 = el ZTH“T“, where the intersection matrix I
was defined in (3.22). When £ is divisible by 3, the eigenvalues
are given by & = Iym + sy, where s is related to the species
labels for the [1/3] as discussed in Egs. (B4) and (BS).

The normalized sum in Fig. 32(e) for splitting [1/3] x
[1/3] = > _a[al is to ensure the splitting state is an eigenstate
of B;),; closed Wilson loops surround the threefold defect
pair that measure the overall Abelian anyonic fusion channel
[a]. No such summation is required for Fig. 32(c) for
splitting [1/2], x [1/2], = Z;[a] since the splitting state is
automatically an eigenstate for Z™ (e loops that enclose both
twofold defects) thanks to the definition (4.37) for |GS), while
any Z™ can be turned inside out into some Z™ as shown in
Fig. 20(c), Fig. 26, and Eq. (3.36).
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The normalized sum in Fig. 32(g) for splitting [1/2], ; x
[1/3] = [1/2],+1,r is to ensure the overall Wilson loops ®/Y/R
defined in Fig. 21(a) or Fig. 25 surrounding both the twofold
and the threefold defects are in the condensate and can be
absorbed by the local ground state. The phase factor ¢(n)
ensures that the splitting state carries eigenvalues ®), /R =

whr, w = e2/k because I = (I},,l}) is the overall species

label. It is given by

k
Q11,2 =1 my[zfx 4= (AX+1 AX)n:|. (4.39)

The splitting state for the reversed order [1/3] x [1/2],411 =
[1/2], v is defined using a mirror image of Fig. 32(g) with the
modified phase factor
kel

Prixiil, (n) =n’ io, 2f + (A Ay—pn|. (4.40)
Equations (4.39) and (4.40) are phase differences between the
overall double Wilson loop and the local one that encloses
only the constituent one. These are evaluated in Appendix D.

Because k is divisible by 3, the summation is taken only over
the k?/3 vectors fi in the reduced triangular lattice (Fig. 41).

C. Basis transformation

In a defect system, ground states are labeled by eigenvalues

of observables. Examples were given by the eigenstate |a) in
21 T

(3.30) of a threefold defect system measured by A? = ¢' %™ *
and the eigenstate |a) in (3.54) of a twofold defect system
with Abelian anyon fusion channel [a] = [a,,a,] observed
by (Zpqa)" = €' Fnlioa In g general multidefect system,
one can pick an arbltrary ordering of the defect series (see
Fig. 29) and label ground states according to a complete set of
maximally commuting observables generated by the Wilson
loop prototypes in Fig. 20 between defect pairs, such as 3%*/°
and Z%, which observe Abelian the anyon fusion channel, and
A%-*/°_which measures fusion degeneracy.

A particular choice of maximally commuting observables
can be represented by a fusion/splitting tree (examples are
shown in Fig. 33), where directed branches and trivalent
vertices are specified by fusion/splitting channels x; and
fusion/splitting degeneracy p ;, respectively. Fusion channels

Ha H3 H2 H|
‘353”52331, /14/1%//2/11

|z3yayn; pravsCarn)

N L S

1
|I5y2x] ; /MVsVle

FIG. 33. (Color online) Basis transformation of defect states by
composition of fundamental F' moves. A; are objects, x;,y; are admis-
sible fusion channels, and u;,v;,¢; label splitting space degeneracies.
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are labeled by objects in (4.1), which are either Abelian
anyon [a] or twist defects [1/2] or [1/3]. All fusion channels
should be admissible so that Ng, at each trivalent vertex
is nonzero; i.e., x X y — z is allowed. Fusion degeneracy
only occurs for [1/3] x [1/3] = d}1/3) [m], in which case the
vertex is labeled by splitting state |oa) measured by Wilson
operator Al = e ' and generated by AT, m = [ la,
shown in the splitting diagram Fig. 32(d). Ground states are
therefore of one-to-one correspondence to the set of admissible
internal fusion channels and degeneracy states and are denoted
by [{x;};{nt;}) and shown in Fig. 33. Note that the state
[{xi};{m;}) is not only projectively defined. Its U(1) phase
is well defined by acting on the particular ground state |GS),
in Eq. (4.37) with the prescribed Wilson string configuration
for individual splitting states chosen in Fig. 32.

A different set of maximally commuting observables
represented by another fusion/splitting tree gives rise to a
different representation of ground states |{y,}; {v,}). Since
these are energy eigenstates of the same defect system, they
are related by some unitary basis transformation

= > FI v

(v} Avg}

H{oxi s i }) (4.41)

This can be broken down into a sequence of fundamental
moves, known as F symbols, each involving a rearrangement
of three adjacent branches that reorders fusion by associativity
(x x y) x z = x x (y x z). An example of such a sequence is
shown in Fig. 33.

Consider a system containing the ordered objects A1,12,)3
which fuse to the overall object 14. Similar to (4.35), the ground
state can be expressed as an entangled sum of tensor products
between the local ground state around the objects and the
environment with matching boundary conditions. With fixed
boundary conditions, local ground states are tensor products
of splitting states

A Ay A N

™ >— Y> ® \/> (4.42)
" n x A

A3 Ao A1 e \ \ y
i >= Y> ® \(> (4.43)
NV y M

defined by acting on the bare ground state |GS)( in (4.37) and
(4.38) with Wilson operators prescribed by Fig. 32. These two
ground states are related by the unitary basis transformation

Az A A Az AN
Y,v1,V2
12} — )\3)\2)\1 (2
P >— E [FM 0 ), (4.44)
m T2, 41
A Y,V1,V2 A

where F-matrix entries are given by the inner product
A3 A A[As A Ar
Y,V1,V2
AsA2 A _ A
[F)\4 } = A . (445)
o112 V1 N o |
4 4

The overall basis transformation between any two fusion trees
or maximally commuting sets of observables is independent
from the sequence of F moves in between. This cocycle
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consistency is ensured by the pentagon equation “FF =
FFF” and MacLane’s coherence theorem (see Refs.
[46,121]). Instead of solving the algebraic pentagon equation,
we compute the F matrices directly from definition (4.45)
with the gauge degree of freedom fixed by the prescribed
splitting states in Fig. 32. An exhaustive list of F matrices
for k not divisible by 3 is given in Table III in Appendix C.
Here we demonstrate a few simple examples for the purpose
of illustration.

Consider the basis transformation of two Abelian anyons
sandwiching a threefold defect, a x [1/3] x b. According to
Fig. 32(a), the splitting states tensor products are represented
by the union of two splitting diagrams,

a [1/3 b
[1/3] [1/3]>

[GS)o

a [1/3 b
\263]> —
/3

= | A 7@;-}*) GSY,
L« N —

where the deformation of Wilson strings is facilitated by the
Wilson loop condensate in the ground state. The F' symbol is
given by their overlap and is an Abelian phase,

(4.47)

1 T A
— a, 3 p,
pell/se _ | NG N
s (e ) [ o
\ b ) a
- - . (4.48)
_ waO 10y A 25be—b, zaywa.‘

where a,,a,,b,,b, are Z;-valued 2D vectors living on the
anyon lattices (Fig. 11). Az is the 2 x 2 matrix ¢ ~}) rep-
resenting cyclic color permutation, and (A3 — 1) is invertible
with Zj, entries only when k is not a multiple of 3.

Next we consider the transformation for [1/_3] x [1/3] x
[1/3]. The splitting states tensor product for first fusing
[1/3] x [1/3] is represented by gluing Figs. 32(a) and 32(e),

[1/73] [1/3] [1/3] 1
== |GS)o

\a<<]/3] > K zn: .// \

] Z (73 @] /3

- X X )| 1GS)o,

Tk - . f\“\

L A.rla'_
(4.49)

where the black dumbbell-shaped Wilson loop can be absorbed
by the ground state |GS)( leaving a link between a,, and n. The
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splitting states tensor product for first fusing [1/3] x [1/3] is
given by

(73] [1/3] [1/3) [
1 >:

[1/3

|GS)o

|GS)o, (4.50)

where the fusion degeneracies are labeled by m = I, o
and m = I, '&, because Iy = —Ip = ioyA3(Az — 1) is the
intersection matrix in (3.23). The k* x k* F matrix is given by
the overlap between the two splitting states:

A,

o

l Ag la'(sn

k 2 : . m+m —A;'m
n

& e go 451)

ioyAzae

[73101/3]11/3)
Fi/si }

:%w

Last, we consider the transformation for twofold defects
of the same color type, [1/2],1, x [1/2]41, X [1/2]41, =
[1/2],1. The splitting-state tensor products are given by
pasting together the Wilson strings in Figs. 32(b) and 32(c).
Fusing the first pair gives

S | 1GS)E

4.52)

—ioy(1 —1o(x))

where any gray string attaching to a defect [1/2], ), brings
an Abelian anyon —ioy[l; —lo(x)] into the defect, for i =
1,2,3 [see Fig. 31(c)], and A, =io,J, is the 2 x 2 matrix
representing the transposition that characterizes [1/2], [see
Eq. (3.40) or (C3)]. Fusing the last pair gives

HENE >

—ioy (1 —1o(x

(4.53)

where the black loop b, can be absorbed and eliminated by
the ground-state condensate. Notice the bare ground states
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TABLE III. List of admissible F' symbols for £ not divisible by 3.

F matrices

Fabc 1

[1/3]ab alioy L5b,
Frijs) w }

ab[1/3] blioy 23 a,
Friz wr
a[1/3]b aTto\ b.+b io
F[1/3 w A3 1=
Ry, 1
F[]/lz/]z])‘ W oy Aybe

X

plisnsal? P

[m] o u+wva.
Fall/3/3] B woﬂ'%aa 8

[1/3] o "‘*i"y(As)za-
gl )’ ! Tl ioy 7 an gBioy Asas

(1731 «
Fg]/ﬂ[m]a wagiay ]i\—f\}b.
RT3 w(ao—b:))riav lfﬁz a,

o -
Fgl/ﬂa[m] wh iy A3 A2ra.talioy A be+alioy 171/\3 a,

(1721 [1/2]xa  pall/2],[1/2]x
F, , By

1

L/l /21y w—aTioyAybs
U228 pall /20, 17201 allioy =y (e —ioy (1 +2)+ 3 (A ao—£X D)
[1/31 > L [1/3]
1/20 11 [1/21 118 F{a;[/l}/]zh,bn/zhﬂ.]l wilioy a7 Be—ioy (1 +)+ 5 (Ayao—£1 1))
(1731 ’
FU2LaAl 2D pl1/21al /2] 1
(1731 [1/3]
FA/2AAL G320 1

(1241 2 7 [1/2—1
[1/21a01/31a al1/31[1/2],1
w2y Foa,y
(1721 al1/3)a al1/3][1/2], )
[]/2])(*”/ ’ [1/2])(,]']’
[1/2]y 1al1/3] F“/3]a[1/2]X,l
[1/2JX+111/ ’ ll/2JX+1 v

[[11//22]]%13[1/ F“l//;]]a 1/21x1 alioy 1—][\3 [iay(l—l’)+%(fx’]—fX—AXaO)]
x—r -1V
1/3101/3111/3118 of $a,
[F ]uc w > 6(A2)Tot+za‘a.
[|/3][1/3][1/ﬂ 1, @ iqa a—a
/303173 ? @D Ay g iy Asas
[FI/S] ]ai 1< 80[ (A5 Xy
I:Fnl//%[lﬁ [1/3] ] kizwbgi”y AS‘,I(a.+b.)+aombe.
a
[ [1I//22]]X“/2]X“/2]X] iwa Tioy Ay,
X a
[1/2] 1 (1721 [1/2] (1720, [1/215 [1/2]y 41 1
[1/2]+1 > /2l k
[Ill//;]]xilj}[1/2]X,lz[]/2])(il,ll wprioy[gf“r%Axp]
xFLI
1 .
p= m“’yal +hL+L—1-3l(x £1)—2l(x))
[[11//2211)(;113[1/2]X11.12[1/2]X,|| prioy[%fXJr%AXp]
PESH
P=75o7; ————ioy(hi + L+ L —14+1y(x £ 1)
[F[[ll//sz]]x,.2 [1/21.1, [1/3]]“/2]x+1-1 lwagla}. T;,[iaya,+12>+7<fx4+AXao>]
k
a
I:F[II/;J[]/zlx.lz[]/21;(,11 lwa ioy iy lioy (i) + 3 4+ A a0)]
[1/31 (/201 k
12
F%JX'IZUBJ“/ZJX’I‘ /20 l1,()*1’T"<7,\‘[%f)(7]Jr%/\x—lP]
(731 /201 .
p=° +h—L+l(x—1D—l(x+1)

Wi ooy U=k (O XA a0)]

. A . -
alioy, 1713\3 lioyA=1)+ 1 (E1~1—X—A, _ja,)]

w

wavaA 3oy A-1)+ 5 @ H X — Ay a,)]
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TABLE IIl. (Continued.)

F matrices

[ [1/2JX+1,1,[1/2JX_1111/31][1/2]X+1.1

F, - _
(1731

[F[1/3H1/21x.12[l/zlx—u] ]“/31

a
(172111
1721 [1/3111/2] 41

Fa
(1721 —10, 11721 1, 11731 /200
[ (1731 ][1/3],a
[1/3101/21 1, [1/20 41, 17302
[ 173 ][1/21H,1
[ u/zJXH,lz[1/31{1/21%1,][‘/lefu/
173 (/20,11

[1/3101/3101 /21,1, /-1
[1/2]y411, (T3l

1214, [1/3101/317 113 )
[F /20, 14 ]
=Ll (/2041

2
(1/3101/3101/21, 1/2h-11

(1211,

/2 /30731
g,

[1/2]y 411

[ [1/3101/21,, 1/3][1/21“11'

[1/21,.1,

F,
[1/21x-11

(17214115

_ 1/2 ’
[F[l/s][l/z]X,.l[l/s]T -t
[1/21,-11

1 alioy olglioy(+h)+ 5 (Ay41a0+X 1))
zw 3

. A .
1 aZmyH{z[a.+zoy(11+|2)+%(Ax,lau+fx+l)]

1
2
1 ADTHATL -l —1p(x—1)

8

15“
k= AT —(ADT L+ (x+1)
%wp ioyAyp
P=ioy =1 +1 =L+l + D —lo(x)
%pria,[%fX+%<Ax7rAx+1)p]
— | T T —IN\T
p= —I_Azzcry(A3oz +14+ AL+ (A7) L =3lh(x — 1)
%prioy[éfX*‘+%<AX—AX+1)pJ
p= ﬁicr).(Aga —1—(AHT — ATl + 31(x + 1))

al oy 73 L lioy(—lo)+ 3 #X —£X 1+ Ay a0)]

1
kw

. A .
lwag ioy gy lioy(=l)+ 5 (0% 7 LAy a0)]
k
k%priay[%fXJr%AXp]

p= %Axiay(ll +L—-1-T1-=3l(x))

1 w_pTia,[ng*w%AX,lpJ

P= %Ax,liﬂ)-(l + | 11 — 12 - 310()( - 1))

IGS)é/R for the two cases in Eqgs. (4.52) and (4.53) depend on
different branch cut configurations and are therefore distinct
from each other. Wilson loops circling the first two defects
are in the condensate for |GS) but send the |GS)R to a new
ground state. The two bare ground states are related by

G =+ Z { @] GS)§  (4.54)

and in particular X (GS|GS)§ = 1/k. The F matrix is given by
the overlap between (4.52) and (4.53),

[F[EX[;}XMXE S [OROMOIIEEY

_ (4.55)

T,
a_io,Aybo
we 1Ty AxPo,

| =

where the two loops can be passed across each other, leaving

a phase, and absorbed in the bare ground states |GS)£ /R Note
that the intermediate Abelian channels are restricted by the

species labels
I=1+L+1-3hx)

= ll + iay(ao + Axao) = 13 + iG}'(bo + Axbo), (456)

and therefore the F matrix is of dimension k2.
Quantum dimension of an object x can be read off by the
first entry of a F matrix, 1/d, = |[F***])],

1 F[%J[?}[g] o 1
dim L0 TR
[1/3] 3 0

1 _ [F[%]X.l[%]x_ﬂ%]x.]o _ 1
dpi 2, (3 ok
where O is the vacuum, the reciprocal species for twofold
defect is given by 1= —1+4 2l x) as shown in (4.24) so that
the intermediate vacuum channel is admissible, and the full
F matrix for threefold defects can be found in Table III in
Appendix C. This matches the prediction from the fusion
matrices N, = (N;y) in Eq. (4.32), ground-state degeneracies
in (3.33) and (3.50), and the counting of the degrees of freedom
(3.13) and (3.17) at the lattice level. We note that the first
entries of the F matrices in Eq. (4.57) and (4.58) are purely
real, implying the triviality of any bending phase or Frobenius-
Schur indicator for a self-reciprocal defect, », = +1.

4.57)

(4.58)
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V. DEFECT EXCHANGE AND BRAIDING

We are interested in unitary transformations induced by
exchanging and braiding twist defects. These operations can
be interpreted in the continuum limit by moving objects
adiabatically along some braiding trajectories in real space
or treated on the lattice level as a basis transformation induced
by changing the viewing order of objects while keeping the
lattice fixed. An example of this is shown in Fig. 29 where
the ordering of the sixth and seventh defects are switched by
a redefinition of viewing curves without physically moving
them. After exchanging a pair, the S3 type and species label
of one of them may be twisted by the action of the other
according to conjugation (3.60) and transformations (3.73),
(3.74), or (3.75), respectively. Due to this noncommutativity,
the set of objects (4.1) does not admit complete braiding in the
sense of a conventional braided fusion category [12,46,73,74].
In this article we only consider operations that leave object
labels and frames invariant, i.e., braiding between objects that
mutually commute in S3. These include exchanging (i) a pair
of Abelian anyons, which is well known and already discussed
in Fig. 12 and Eq. (2.35), (ii) a pair of threefold defects, and
(iii) a pair of twofold defects of the same color. We find that
partial braiding is sufficient for defining topological spin as a
discrete characterization of defect exchange statistics.

Counterclockwise exchange of commuting objects x and
y defines a unitary operation R} :V;> — V" between
splitting spaces so that

Y T
R R

)

G.D

The R matrix can be computed by counterclockwise rotating
Wilson strings in the splitting states and reexpressing them in
the canonical form defined in Fig. 32 through deformation and
unlinking. The simplest example is given by exchange of a
pair of Abelian anyons R2?, = w® %% shown in Fig. 12 and
Eq. (2.39).

Since they depend on the choice of splitting states, R
matrices are, in general, gauge dependent. In fact, if x # y,
180° exchange is not a cyclic evolution as the system does
not close back onto itself. Exchange between identical objects
R¥* and 360° braiding between different objects R;” R:" are,
however, gauge-invariant quantities (or gauge covariant if there
are fusion degeneracies).

We define the topological spin of an object x by its exchange
statistics,

1 1
_ _ T TT
o= )1 ST ()

This is a rational U(1) phase, 8" =1 for some integer m,
accumulated by ord(x) x 360° rotation of the defect [122],
where ord(x) is the order of the group element x in the
symmetry group or equivalently the minimal number of copies
of x’s that fuse to the overall vacuum channel. Note that a
single 360° rotation does not give a topologically protected
phase because the defect system does not go back to its initial
configuration. This can be seen by rotating the branch cut

5.2)
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attached to a twofold defect,
= (5.3)

where a single twist is irremovable but a double twist is
cancelable since a pair of twofold branch cuts annihilate.

Given defects Aj, and A, of the same symmetry twisting
type X in Sz, we define the defect braiding quantity,

1 1 Ay Ay oA ALy
S)\ — 7@%. Ny — daT Ra12 h Ral2 2
11> D, D g ' ( '

54

where the normalization D} = Y, dfl is defined by summing
over all species labels and is identical to the total quantum
dimension of the underlying Abelian anyon system D, =
D = /Y, d? = k*. Equation (5.4) is a generalization of the
topological S matrix that characterizes mutual braiding of
semiclassical defects of the same symmetry type. Together
with the topological T matrix,

T, = Sun,06h, » (5.5)
that characterizes self-exchange defined in (5.2), they form
a unitary representation of a set of defect modular trans-
formations. For instance, if A =1 is the trivial defect, its
species labels are the Abelian anyons a, and S!,T! are the
braiding (2.37) and exchange (2.36) matrices, respectively,
of the underlying Abelian theory that unitarily represent the
modular group

St =ttty

SL(2;Z)=< il

felyly = tytyty, $tety 1)t = 1>,
(5.6)

where 7, and t, identify with Dehn twists along the two cycles
of a torus, and the matrices S' and S' 7! identify with 90° and
120° rotations, respectively. However, for nontrivial defect
A, modular transformations are, in general, restricted to a
congruent subgroup that fixes one cycle, and the $* and T*
matrices have different geometric interpretations.

A. Statistics of threefold defects

For simplicity, we only study defects when k is not a
multiple of 3. The R matrix for exchanging a pair of [1/3]
defects is evaluated by deforming the Wilson loop .A™ in the
splitting state for [1/3] x [1/3] in Fig. 32(d):

B m> - [ %) 1651

(1/3]

/3

i

— Azm

[GS)o =

)

6.7
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Recall « = Iym; the R matrix is given by the overlap

"~ (TS

—(A;H)Tar
(i3] e )T
. [1/3][1/3]
The matrix R[1/3]

(5.8)

for the antiparticle can be read off by

replacing Az with A3 in (5.8). According to (5.2), threefold
defects carry trivial spin,

(31031
9[1/3] = TI’(R[:H]3 ) =1.

This can be understood by seeing there is no orientation frame
or any Wilson string attached to a threefold defect.

The phase of exchanging [1/3] and its antiparticle [1/3] is
obtained by rotating the splitting states for [1/3] x [1/3] in
Fig. 32(e),

(5.9)

|GS)o

[GS)o

(5.10)

Hence, the R symbol is given by the intersection phase

eI

aTio, —_a, (i
R, w I Ry’ =

W ORI (5.11)

In particular, the 360° braiding between [1/3] and [1/3]
equals the topological spin of their overall Abelian anyon
fusion channel,

(1/3]S L [1/3] — —
( — RE][%}REH%] — wafiffya- =0

a. (5.12)

a

The 360° braiding between a pair of [1/3]’s gives a threefold
transformation of the degenerate splitting space [1/3] x
[1/3] = k*[1/3]:

=g (5.13)

g?w
_ [ plRI3] 4120
[1/3) éwﬁ]: {Rl/g B
S e

This process can be untwisted by dragging the viewpoint once
around the overall [1/3] defect, thus changing the color of

-1
the Wilson loop A™ — A2 ™ between the pair of [1/3] and
sending @ = [ym — Al a. We note this is a unique feature for
semiclassical twist defect when the color degree of freedom is
nondynamical.
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B. Statistics of twofold defects

The exchange phase between a pair of twofold defects of
the same color x is given by rotating the splitting state in
Fig. 32(c),

B : BL...> _

(5.14)

The a, loop on the right can be directly absorbed in the bare
ground-state condensate while the —io,[l, — lo(x)] one on the
left is absorbed after crossing a black string. The remaining
Wilson strings can be reexpressed in the form of the original
splitting-state configuration in Fig. 32(c) by adding a local
double Wilson loop at the right defect. The R symbol is
therefore given by the Abelian phase,

/(7/(12

(3]0, 3], o bix
et )

(5.15)
—Axao)]

— w [12+ ioy, (£X
where f* = (1,0),(0,1),(—1, — 1) for x =Y,R,B, respec-
tively, and A, =1io,J, is the transposition matrix defined
in (3.40) or (C3). The phase of the double Wilson loop on the
bare twofold defect is evaluated by counting self-intersections
and is illustrated in (D5) in Appendix D. The topological spin
of a twofold defect depends on its species label 1 and is given
by the sum (5.2) over exchange (5.15),

[]Xl[ L
O, =1 ZR =

where the summation is taken over the k> possible overall
Abelian anyon fusion channel restricted by (4.23) orio,(a, +
Aya,) = 2[1 — lp(x)], and the closed form solution is obtained
by using the identity Y"*Z) w2 = Jkw* =8 for m =
k mod 2. The spin can also be understood by the orientation
frame provided by the Wilson string ¢ = —ioy [l —lo(x)]
attaching to a twofold defect [see Fig. 31(c)]. Upon 4m
rotation, the string is dragged around the defect and can be
untwisted by a local double loop. Therefore,

ORI

NTr; T
U gy AT1+E2
w2l oy A

(5.16)

(5.17)

2
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(5.18)

ol
x
|
@ i
Il
g
—~
>
x
.
Q
ol
L)
et
+
Nl=
L

o

which matches (5.16) exactly [see Eq. (D5) in Appendix D).

Equation (5.16) or (5.18) are invariant under species
conjugation 1= —1— io % = -1+ 2lp(x) or ¢ = —c¢, and
therefore a twofold defect carries the same topological spin
as its antiparticle. The bare twofold defect with self-conjugate
label 1 = ly(x) = —%i o, or ¢ = 0 carries trivial spin.

The 360° braiding between a pair of twofold defects gives
a phase that identifies the spin of the overall Abelian fusion
channel,

R T
ST _ pll Bl i, _

a

T .
a, 10y

—w ae — g2 i1z =200 (x) —ioy Axao]

(5.19)

where the overall Abelian channel is restricted by (4.23) or
ioy(a, + Aya,) =1 + 1 — 2lo(x).

C. Defect modular transformations

We compute the topological S and 7" matrices for twofold
defects (S =T =1 for threefold defects), interpret them
geometrically as restricted Dehn twists on a decorated torus,
and study the group structures for small k. From definition
(5.4) and the 360° braiding (5.19), the S matrix has k> x k>
entries

1 (31, 50300, B 3, 5
St = 3 D Rl RS
a

— k_12 Z waf[ll—lz—inAXao]’ (520)
a

where w = ¢*™/k and 1, = —1, 4 2ly(x) is the reciprocal

species label. The quadratic Gaussian sum can be expressed in
a closed form depending on k modulo 4. Let §1 =1; — 1,. For
k odd,

Sip, = g E A, (5.21)
for k = 0 mod 4,

¢ _ {%WT“’MI“', for A,81={0,0} mod 2,
l]lz -

0, otherwise,

k

(5.22)
and for k = 2 mod 4,

17 T
%w461 i ATBL - for
O ’

A,81={1,1} mod 2,

Sy, = :
" otherwise.

(5.23)

The T matrix is diagonal with entries given by topological
spins 6y1/2),, evaluated in (5.18).

The topological S and 7 matrices can be geometrically
understood as two Dehn twists on a torus with a twofold
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FIG. 34. (Color online) Gluing a conjugate pair of twofold de-
fects on a punctured sphere into a torus with a branch cut (blue
dashed line) along the longitudinal cycle.

branch cut along a nontrivial cycle (see Figs. 34 and 35). This
can be constructed by cutting out a pair of twofold defects
with conjugate species labels on a sphere and then pasting the
holes together. Equivalently, one can also imagine splitting a
conjugate pair of twofold defects on a torus and move one of
them along a cycle before fusing back to vacuum. (A similar
construction was considered for a threefold color branch cut in
Sec. I B 1.) Abelian anyons dragged along a meridian cycle
or cutting across the twofold branch cut undergo the twofold
twisting (a,,a.) — (A,a,,A,a,). Wilson loops on the branch
cut decorated torus are generated by (i) W(c), the trajectory of
an anyon ¢, going once along the longitudinal y direction, and
(i1) ®(a,), the trajectory of an anyon a, going twice along the
meridian x direction.

Starting with the normalized bare ground state on the torus
with an arbitrarily fixed branch cut,

| k-1 N
) = 1:[ (Z P ) loy, =t =+1),  (5.24)

r=0

we choose a complete set of k% ground states,

|ce) = W(c,) [% ;w—afiay(éfu;mac)@(ao)} |2).  (5.25)

@[ VARV LR :
. T>-~‘~.4 z;:::::= .
1 1 1 1
1 1 1 1
| r=1 4
(b) l . ﬁ\ :Axc
! RN
. \L\|_ /_:+
Co 1 1 - - \_I_>_
® 1 Co 1
1 T 1 1
| 1 —— 1 1

O Ta : |
Yy e Wy caine
=T/ a !
R S // I |Axao
Y 1 1
1 N~ 1 1

FIG. 35. (Color online) Dehn twists. (a) Double Dehn twist T
along the horizontal direction that leaves the branch cut invariant. (b)
T action on a vertical Wilson loop W(c,). (c) Dehn twist S along the
vertical direction and its action on a double Wilson loop ®(a,).
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The sum in the bracket makes sure it is an eigenstate of all
meridian double loops ®(a,). The phase in the sum originates
from self-intersection of the double Wilson loop [see Eq. (D5)
in Appendix D] so that (0|®(a.)|0) = w™ %I +34.a) The
state |c,) corresponds to the conjugate pair of twofold defects
with species label 1 and longitudinal string,

¢o = —ioy[1 =lo(x)], (5.26)

attaching them (see Fig. 34).

Since the meridian cycle is semiclassically distinct from the
longitudinal one, the system does not possesses full SL(2; Z)
modular symmetry of the torus. In particular, the branch cut
is altered by Dehn twist along the meridian x direction but
invariant under a double twist because a pair of parallel
twofold branch cuts annihilate [see Fig. 35(a)]. The torus
decorated with a branch cut therefore admits a coarser set
of modular transformations generated by Dehn twists § =1,
in the longitudinal y direction and double twist 7 = ¢2 in the
meridian x direction.

The actions of the two Dehn twists on Wilson loops are
shown in Figs. 35(a) and 35(b). The T transformation leaves
all double Wilson loops ®(a,) unchanged while sending

W(c,) = TW(e)T! = W(e)O(Ae.).  (5.27)

The S transformation leaves all longitudinal Wilson loops
W (¢) invariant while changing

O(a,) — SO(a.)Ss' = W(—A,a,)0@,)W(—a,). (5.28)

The branch cut is left unaltered under both S and 7. The T
matrix is diagonal in the basis (5.25) with entries matching the
topological spins (5.18) for twofold defects,

Tclcz = <C1|T|C2> = <®|®(Axc2)|®>T08c|cz

Tig rkexal
— w(Axcz) ioy[3f +2c2]T05c]cZ,

(5.29)

where the arbitrary eigenvalue Ty = (0|7'|0) is setto 1. The S
matrix is given by the overlap

Seie, = (€1]S¢2)

S¢ T; kex 4 LA _bTi kex 4 LA
= k_2 Z wao”’.v[z +3 A a.]=b;ioy 315+ xbc]<@|@(:,lo)1L
ab

x W(ea —¢1 — Ayb)O(b)W(—=b,)|9), (5.30)

where the arbitrary eigenvalue Sy = (4|S|4) can be set to
1. The longitudinal Wilson loop W can be passed across
the double meridian loop ®, leaving an intersection phase
wh?ios[@—en=Ab:] pefore being absorbed by the condensate
in the bare ground state |{J). Since

(#10(a,) O(b)|4) = 8ap., (5.31)
the S matrix has entries
1 T N
Sees = 5 D wH TRl (532)
a,

which match (5.20) exactly through the identification (5.26)
that relates species label 1 and longitudinal string c.

A torus decorated with a threefold color branch cut was
discussed in Sec. II B 1, and a similar modular subgroup
applies, except that the 7 transformation is given by a triple
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Dehn twist. It is straightforward to check that, even when k is
divisible by 3 and there is a ninefold GSD, both S and T act
trivially on Wilson loops and therefore on the ground state.
In particular, this explains the trivial exchange and braiding
statistics of threefold defects.

Next we demonstrate the group structure for defect modular
transformations. In the pure anyonic case without a branch
cut, the modular 7', S, and ST transformations represent Dehn
twists, 90° and 120° rotations of the torus, respectively. None
of these hold for a nontrivial branch cut of a finite order N =
ord(A) > 0. The mapping class group of a decorated torus
that fixes the branch cut as a homological cycle e; = (1,0) in
H(T*Zy) = Z%\, is known as a congruence subgroup,

To(N) = {A € SL(2;Z) : Ae; = e, mod N}, (5.33)

which is a non-normal subgroup of SL(2; Z) with finite index.
For example, the modular subgroups for twofold and threefold
defects are finitely presented (using the Reidemeister-Schreier
algorithm) by

Fo2) = (S =1, T =1;|(ST)* = —1), (5.34)

To@3) = (S = 1., T =1|(ST)* = 1). (5.35)

Congruence subgroups have already studied in physical
context of modular duality in quantum Hall plateau transition
[123-125] and Abelian gauge theory [126].

In addition to the congruent relations, we also find that §
and T have finite orders that depend on k. For the twofold
defects considered in this article, ¥ = 1 and T* = 1 for odd
k or T?* =1 for even k. We demonstrate the different group
structures for small k. We assume the twofold defects have
color x = B. The S and T matrices are decomposed into
tensor products,

S]]lz = Sl)l;lzy ® Slllf?lf’ Ti]lz = T‘l?lz}’ ® ’Tl?lf’ (536)

wherel = (I7,I®) are in Z7 for k odd or (Z + 1/2)* for k even.
From (5.21), (5.22), and (5.23), the entries of S*/® depend on
8l =1} — I, and are given by

1 (k) s,
\/—Ew( ) for k odd,
Y 2
Su =1 /2w for 8l =k/2and keven, ©-37)
0, otherwise,

and SR = (§Y)f. TY/R are diagonal with topological spin
entries (5.16),

na+n

- _
Tllle = BMsz 1(h 1)’ Tlﬁz = 8l|lzw 2 (5.38)

Ising-type doublet at k = 2

For k = 2, the lattice model consists of spins and has the
same topological content of two copies of the Kitaev toric code.
Twofold defects have similar fusion and statistics properties to
uncoupled tensor pairs of Majorana fermions (or Ising anyons).
The tensor components of S =S' @ S® and T =TY ® TR
are given by

ST = (§® = ei/4g,, (5.39)

TY — ein/Sei(n/4)0:’ TR — e*in/Sei(n/4)az. (540)
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FIG. 36. (Color online) Braiding operation B generated as a
sequence of F and R moves. A; are defects of the same S; type.
Ground states are labeled by the intermediate channels x;,y,z and
possible vertex degeneracies u;,v;.

The allowed topological spins from 47 rotation are 1, £ i. The

four twofold defects can therefore be statistically identified

with the pairs of conventional Ising anyons
[1/2li=+1/2,41/2) = [04] @ [04],
(1/2li<1/2,-1/2) = [0-1® [0-1],
[1/2]12(+1/2,71/2) - [U+] ® [U—]’
(1/2li2<1/2,41/2) = [0-1® [04],

(5.41)

where the 27-topological spins of the Ising anyons o are
0,, = eT™/8 The full 4D S and T matrices represent the
dihedral group,

Dy = (S,T|S> =T*=(ST)* = 1). (5.42)

This forms a representation of the congruence subgroup I'y(2).

D. Non-Abelian unitary braiding operations

We evaluate the fundamental unitary exchange operations,
called B symbols, in a system where all defects are of the
same S3 type. Each B move represents a counterclockwise
permutation of a pair of adjacent defects and is a transfor-
mation between ground states labeled on the same fusion
tree, i.e., eigenstates of the same maximal set of commuting
observables. It can be generated by a sequence of F and R
moves as shown in Fig. 36 so that

X M

K _ 2: >\2>\1]Z7V17V2
72 | Z n B [Bac2$1 Y, 2,1

H2 Yo zZ,V1,V2
(5.43)
where the B matrix is defined by
AA1oVEYV2 Aohy TWsV1,V3
[szlel]y,uz,ul - Z (I:sz ’ l]z Vv )
wyi1y2y3
x [Ry2]D[Fhe]™ . (5.44)

V12, i1

The exchange operations B*+* form the building blocks of
the braid group of an ordered series of defects Ay, ..., A;.
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A3 A2 A A3 A A

e

AA A3 At A A Al A A

FIG. 37. (Color online) Yang-Baxter identity.

They obey the Yang-Baxter equation (see Fig. 37) that
characterizes braids,

Aadi pA3AL RA3A A3dy pAsAl pA2A
3213313322332331321’

(5.45)

where the summation over intermediate channels and vertex
degeneracies are suppressed. Defects A;, A ; are distinguishable
when they have distinct species labels. A braiding operation
is robustly represented only when the initial and final species
labels configuration are identical.

Classical braid groups are further restricted by a compact-
ification relation if the system is on a closed sphere [127] or,
equivalently, the overall fusion channel of the defect system
is the vacuum. For instance, one expects the largest braid that
moves an object once around all others to be trivial as it should
be contractible on the other side of the sphere (see Fig. 38),

MEbz’l...

where b1/ is the exchange braid between the (i + 1)th and
ith defect to the right. Moreover, the full braid involving
rotating the whole system by 720° should be contractible
by the “Dirac lasso trick” as it corresponds to the trivial
element in 7;[SOQ3)] = Z,. Therefore, the braid group is
further restricted by (Fadell-Neuwirth)

4
F= (3 NN = { ] —1

(5.48)

bN,N—le,N—l '“b2,1 (546)

(5.47)

We show that the compactification relation (5.47) is, in general,
only projectively satisfied for defects so that M is nontrivial
and generates a central cyclic subgroup that extends the braid
group on a sphere.

fixed viewpoint

FIG. 38. (Color online) Contraction of the large braid M in
(5.47) on a sphere. Color definition is cyclicly permutated after
passing the braiding path across the fixed viewpoint.
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1. Threefold defects

The three primitive exchange operations (5.43) for threefold
defects can be evaluated by substituting the F symbols

F{%ﬂ[l/ﬂ, F£1/3J[1/3J[1/3J’ F[lll//s]lll/3ll1/3l (see Table III) and

the R symbol RE%}“B] [see (5.8)] into Eq. (5.44) (again we
assume k is not divisible by 3). They are given by

B
[3[1/31[1/31] _

BT M3 o io,a,—AT
a7, = e e (5.49)

o

B BT 4 ioiau—AT
[N = wie st a M (s50)

[ B[lﬁl[l/Sl]b _ 1 @b)Tioy s (Asanthy)
[1/3111/3]1 14 k2 ’
where w = ¢*™/*, and ground states are labeled by vertex
degeneracies o, 8 and intermediate Abelian channels a,b.

In aclosed system of N = 3n threefold defects, they fuse to
the overall trivial vacuum and can be compactified on a sphere.
The k*¥=2 GSD is labeled by

(5.51)

[1/3] [1/3] [1/3] (1/3] [1/3] [1/3]
|ai:’aj> - IR *{1/3&“/3&_"_1>' (5-52)

The defects are indistinguishable because they are not
equipped species labels when k is not divisible by 3. The
braiding operations (5.49), (5.50), and (5.51) generate a
group Gy that is non-Abelian when n > 2. They projectively
represent the braid group By(S?) of N elements on a sphere
by a nontrivial Z3 central extension,

1 > Z3— Gy — By(SH — 1, (5.53)

where the center Z3 = (M|M?> = 1) measures the violation
of (5.47).

The large braid M in Eq. (5.46) can be understood as a
global cyclic color permutation on S?. The trajectory of the
first defect leaves behind a color branch cut. As the braid,
and consequently the branch cut, is contracted on the other
side of the sphere, it passes through the fixed viewpoint and
cyclicly changes the color definition (see Fig. 38). The large
braid operation is therefore represented by the matrix

(i I Mibis ) =[] s2% 80",
ij
which has order 3 and commutes with all braiding operations
as (5.49), (5.50), and (5.51) are symmetric under color
permutation.
We demonstrate this in the Abelian case when N = 3. The
k* GSD is labeled by the vertex degeneracy a. The group of
braiding operations G3 = Zg is generated with a single element
_ AT
B = )f = 5, from (5.49) and (5.50) with a = 0.
The large braid is given by
M = b2 252 = 50 (5.55)
which has order 3. Moreover, as F'/? = (b*'63%)% = 1, the
(5.48) is satisfied.
The central extension (5.53) is a consequence of the semi-
classical nature of color symmetry. Although the Hamiltonian

(2.4) does not depend on color definition explicitly and there
is no order parameter that explicitly breaks the color sym-

(5.54)
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metry, the defect system still remembers the weak symmetry
breaking [46] by anyon labeling and this is revealed by
M # 1.

2. Twofold defects

The two primitive exchange operations (5.43) for twofold
defects can be evaluated by substituting the F symbols

FRUINY _ g gng pU/2I0/210721 1606 Bq. (4.55) and Table I1T]
b [1/2] q

and the R symbol RLI/Z]“/Z] [see (5.15)] into Eq. (5.44). They
are given by

(17211, [1/211,

B b — w(ho—ao)T{ll+%i0y[fX—AX(bo—ao)]} (5.56)
a > !
/2,0, 11/2Lb 1 1470, AT gt
[Buanyay Ja = w7, (3.57)

where q =1; +ioyA,(a, —b,), the Abelian channels a,b
label the ground state, and (5.57) is evaluated by a Gaussian
sum similarly encountered in the topological spin (5.16).

In a closed system with N = 2n twofold defect, the k2

GSD is labeled by
(/21 [1/2]n
> (5.58)

1

U/QJX.IV [1/2]\ In—1

where the Abelian channels are restricted by

b + b1 —2lo(x) = io,[(a]_; —a}) + A (a;j_; — a))]
(5.59)

[or equivalently Eq. (3.56)], so that they are completely
determined by a7, and the species labels are restricted by the
compactification relation

N
D li= N0 (5.60)
i=l1

[or equivalently (3.59)]. Since defects are distinguishable by
their species labels 1;, a braid operation is closed only when
it leaves the labels configuration (ly, ....l;) unchanged. We
assume braiding is adiabatic enough t > 1/J, so that species
mutation can be ignored, where J, is the energy scale in the
lattice defect Hamiltonian (3.15) relevant to anyon tunneling
between defects.

We demonstrate the simplest case N = 4, so that braiding
operations are non-Abelian on the k> degenerate ground states
labeled by restricted Abelian channel a. Let ¢; = —ioy[l; —
Ip(x)] be the anyon string that is attached to the ith defect,
for i = 1,2,3,4. The large braid M defined in (5.46) can be
evaluated to have the matrix element

Tig. Ay (e3+c4)—b,
(a|M|b) — 9[1/2])('11 0[1/2])(.13 wbolO’}(CIJﬁCA)(SaGX 31C4 , (561)

where the spins 6y1,2),, can be found in (5.16).

Contrary to the threefold defect case where its order is given
by that of the defect, the large braid operation for twofold
defects does not square to the identity. Instead, carrying out
the operation twice detects the product of the 4w spins of
individual defects,

M =612, 011721,0,00/21,0,00 /21,0, € Zio (5.62)
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This suggests that the defect system encoding more semiclas-
sical information than just the twofold transposition symmetry.
This is related to the quasi-3D nature of the double loop ©,_,
whose phase depends on the ordering of the self-intersection
(see Appendix D).

VI. DISCUSSION AND SPECULATION

We conclude with some remarks on further implications
and unaddressed issues.

In this article, we have demonstrated some consequences of
the ungauged symmetry of topological defects in a toy model.
It would be interesting to see how defects behave in more
realistic settings, such as (fractional) Majorana fermions at
SC-FM heterostructures, especially with respect to their semi-
classical nature inherited from the winding of a nondynamical
order parameter. A theoretical situation has been considered
in which the order parameter disorders and the system enters
a Coulomb phase, where defect excitations become quantum
deconfined [87] but leave a gapless fermionic hopfion [128]
degree of freedom. In addition, there is recent work on general
quasitopological phases [80] and their metaplectic anyonic
excitations [129] in the presence of gapless modes. Similar
arguments could be made in the twist defect context by
gauging the underlying S; symmetry and proliferating the
twistless square and octagon defects so that the non-Abelian
twist defects become deconfined after a phase transition. This
type of construction has been field theoretically applied to
quantum Hall states [120,130,131] and other twist defect
systems [53]. Using the bulk-boundary correspondence, this
new topological phase by gauging should be related to a S3
orbifold of the edge conformal field theory. Similar treatments
were applied to fractional quantum Hall states [130] as well
as symmetry-protected phases [132]. Gauging S3 symmetry
in our model would turn twist defects into non-Abelian
fluxes labeled by conjugacy classes and Abelian anyons into
non-Abelian superselection sectors, thereby making fusion
commutative. Presumably, full modular SL(2;Z) invariance
would be restored, but the exact mechanism is unknown. With
anonsimple group like S, there could be an intermediate stage
in the gauging, where a non-Abelian symmetric topological
phase exists.

As mentioned in Sec. IIC, although the model we used
carries the same anyon types as two copies of the Z; toric
code, it cannot be decomposed into their tensor product without
violating the S5 symmetry. The four-component U (1) effective
field theory, however, contains a two-component S3-invariant
part, which corresponds to a two-generator Sz-closed unsplit
subgroup in the discrete gauge group Z; and is modular
(braiding nondegenerate) only when k is odd. When k is
2, a generalized string-net construction has been proposed
by Bombin [51], which would circumvent this and carry
colored fraction Majorana fermions in the form of twist defects
labeled also by the symmetry group Ss. It would be interesting
to investigate the similarities and differences in fusion and
braiding between these two constructions. On the other hand,
if charge-flux Z, duality is the only concern, one could simply
consider a single copy of the Z; Kitaev toric code, where all
braiding and statistics phenomena would apply [133], although
fusion would be commutative.
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A tremendous effort has already been expended on
quasi-1D topological systems such as the Affleck-Lieb-
Kennedy-Tasaki (AKLT) chain [134,135], anyonic quantum
spin chains [136-138], classification of symmetry-protected
phases [67,68,70], and gapped edges of fractional topological
insulators [139,140]. Numerical analysis of a defect chain
could prove useful for understanding defect correlation and the
2D defect lattice. Twist defect GSD could be lifted or gapped
by adding nonlocal Wilson operators in the Hamiltonian that
mimic coupling and anyon tunneling between neighboring
defects. It would be interesting to investigate the transitions
between different gapped phases, as well as nonlocal anyonic
transport by a pumping process driven by the defect phase
parameter discussed in Sec. III and Appendix C .

Coupling of defect arrays could give rise to effective
braiding without actually moving the lattice defects, which are
immovable on the microscopic level without crystal distortion.
This has been proposed in measurement-only topological
quantum computation [141] and applied in (fractional) Ma-
jorana fermions in SC-FM heterostructures [36,37,142] and
twist defects [58]. Note that the crucial ingredients in the
measurement-only approach are the data of F' symbols, which
we present in Sec. C.

Topological entanglement entropy has proved to be a useful
computational tool [102]. There has been recent work on
entanglement in twist defect systems [143]. It would be
very interesting to see if the modified modular invariance in
Sec. V C is revealed by ground-state entanglement [144].

Projectiveness in braiding occurs when the absolute phase
has a nonuniversal dynamical or geometric component, and
is thus nonmeasurable. It has been seen in topological
defect systems in 3D [86], fractional Majorana excitations
[36,37], and twist defects [49,58]. Certain quantities are even
unprojectively defined, such as the topological spin which
is related to the local species label of the twist defect. An
important consequence of the modified spin statistics is the
violation of the “pair of pants” or ribbon relation that equates
a full braid of two objects with a fixed fusion channel, with
their respective topological spins

xylV YA 0
Z[RZ}];L [R; ]v = ﬁaﬁ

v

6.1)

This equation is inapplicable to semiclassical defects as
topological spin is no longer identified with a 360° twist but
rather multiple twists depending on the order of the defect.
An example of this violation was seen for full braiding of a
pair of twofold defects in Eq. (5.19). The ribbon relation (6.1)
may be violated even when all objects involved are spinless as
illustrated by a pair of threefold defects in Eq. (5.13). From
the nilpotent property of S and T matrices for twofold defects,
one might expect an analogous rigidity [46,145] against
perturbation in a generalized defect braided fusion category.
Finally, the braiding structure of semiclassical topological
defects is incomplete. A complete mathematical description
for S; twist defects should include braiding between pairs
of noncommuting objects such as [1/3] and [1/2],, [1/2],,
and [1/2], for x # x’, as well as [a] and [1/3] or [a] and
[1/2]. They do not admit braiding in the conventional sense
as the object labels will change by conjugacy after a cycle
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as shown in Sec. IIIC. In fact, our collection of R symbols
cannot be treated as a self-consistent basis transformation as
the intermediate step of the hexagon relation RFR = FRF
would involve an exchange of a pair of noncommuting objects.
There is, however, no apparent obstruction to defining multiple
braiding cycles such that the final incoming and outgoing
labels of the objects are matched.
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APPENDIX A: BRANCH COVER DESCRIPTION OF
TWIST DEFECTS

In the continuum description, a topological defect is a
pointlike object attached to a branch cut. In this appendix,
we describe an alternative geometric picture for the nonlocal
Wilson loops in terms of covering spaces. This gives a counting
argument for the defect GSD; however, it fails to provide the
correct Wilson algebra structure governed by the intersection
matrices (3.22) and (3.39). The covering construction is based
on the genon description proposed in Refs. [54,58] and is
similar to the classical branch cover description of a Riemann
surface.

Anyon labeling is a multivalued function that jumps
discontinuously across branch cuts. A S3-covering space can
be constructed with six sheets, represented by the labels
Ye/os Rejos Baejo, sewn together at the branch cuts. On the cov-
ering space anyon labeling becomes single valued everywhere
except at the defect sites, which are analogues of ramification
points.

We illustrate the covering construction with a couple of
examples when k is not divisible by 3. First, on a closed sphere
with three threefold defects [1/3], there are two branch cuts
connecting them, shown as wavy lines in Fig. 39. The gluing
convention is forced by distinguishing the cyclic permutation
A3 branch cut (single wavy line or single arrow) from the
A% one (double wavy line or double arrow). The result is
a disconnected pair of tori labeled by the remaining anyons
e,0. The GSD is counted by the set of maximally commuting
Wilson loops, i.e., k2. Althou gh the GSD matches that of the Z;,

Yeso covers

2.,01 .._>

FIG. 39. (Color online) Three threefold defects on a sphere. The
covering space has six sheets labeled by color and sublattice type.
They are glued by identifying similar edges. The result is a pair of
disjoint tori distinguished by e,0.
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covers
—>

FIG. 40. (Color online) Six twofold defects, two of each color,
on a sphere. The covering space has genus 4. However, there are
four loops that are noncontractible in the cover but trivial in the base
space: the sum of the small dashed loops, the longer solid line, and
60° rotations of these two.

Kitaev toric code, the intersection matrix (3.22) determining
the defect Wilson algebraic structure is different.

A useful formula for counting the genus of the covering
space X over the sphere S, is the Riemann-Hurwitz theorem,
= E(5)d =) (e, — 1),

P

E(Y) (A1)

where E is the Euler characteristic which, in turn, determines
the genus g for a connected component by £ =2 — 2g and
d is the number of sheets. e, is the ramification index of the
branch point p and is defined so that a neighborhood of p lifts
to d — (e, — 1) copies in the cover. Ordinary points lift to d
copies, one in each sheet, so ¢, = 1. A point defect “pinches”
some of the sheets together and hence has e, > 1. For a set
of threefold defects, one can ignore the doubling from the
unmixed e and o so that d = 3 and e, = 3 at each defect point
p. Applying (A1) for N = 3n threefold defects, one get a o,0
doublet of tori, each have Euler characteristics £ = 6 — 2N
and genus g = N — 2. The GSD is therefore k?¢ = k>N =2,
which matches Eq. (3.33).

Next we consider a set of noncommuting twofold defects,
a pair each of [1/2]y,[1/2]g and [1/2]g. Neither colors nor
sublattice labels are fixed, and the system is lifted to a
connected six-sheeted cover. Each of the six covering spheres
has three connecting tubes (Fig. 40), corresponding to the three
brach cuts. Equation (A1) gives a genus g = 4 cover surface
which would seem to imply that there are eight independent
Wilson loops. However, the key difference from the previous
example is that some noncontractible loops in the cover are
actually trivial in the system due to the color redundancy
Ye/o X Rejo X Bojo = 1 and noncommutativity of the defects.
By an appropriate quotient (see Fig. 40), the GSD is k2.

APPENDIX B: WILSON STRUCTURE
OF THREEFOLD DEFECTS WHEN 3 DIVIDES k

This is an Appendix to Sec. III B 1.

Being a fixed Z3 phase, Eq (3. 34) constrains the eigenval-
ues of Wilson operators .Al P ,Al i11- The allowed eigenval-
ues are represented by the hlghhghted sublattice in Fig. 24(b)
with longer primitive lattice vectors € ,€, and a possibly shifted

originsp when X, ., in(3.34) is not 1. The conjugate operators
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FIG. 41. (Color online) Triangular lattice representmg the inte-

ger mod k powers of o-Wilson operators (A}, (A7) by
lattice points n; = ny;_€] + n€,. When & is d1v131ble by 3, the long
lattice vector K labels the good quantum number X7, ., in (3.34)
and divides the lattice into three bands (colored by black, green, and
purple circles). o-Wilson operators on different bands related by the
K vector are identical up to a Z3 phase determined by the eigenvalue
of ¥?

ii+1*

A°, on the other hand, live on a reduced triangular lattice
with three bands wrapped onto itself (see Fig. 41 and caption
therein). This is analogous to the reduced Brillouin zone for a
lattice system with an enlarged unit cell with multiple bands
wrapped onto themselves, since A° translates eigenvalues
of A*. Ground states can be enumerated by momentum f,
represented by black circles in the reduced triangular lattice in
Fig. 41, with Wilson operator matrix elements

(| (A" i) = ef T (Iis)s o o (B1)

('] (AT i) = (2° )kKZ(SMKmH, (B2)

where fi is in the reduced triangular lattice represented by
black circles in Fig. 41, and K = k( S1,81, —
SN—2,SN—2), because s; = 0,1,2, are vectors annihilated by the
intersection matrix I in (3.22) and are the long lattice vectors
K in Fig. 41 that represent the Abelian Z3; phase

$2,82 . -

N-2

(=K =[] (57141)" € Zs, (B3)

i=1

and s is the shifted origin of Fig. 24(b) fixed by the eigenvalues
of X* so that

N—

P2
_ l*
1_[ 11+1 - ,

(z)iK = "0 ¢ 7, (B4)

One can also choose a basis according to the allowed
eigenvalues & for e-Wilson operators on the highlighted
sublattice in Fig. 24, and the matrix elements for the Wilson
operators are

(@] (A" @) = e/ TV %55 5, (B5)

(@] (A K1@) = (3°) 7% 55 7413 (B6)

The eigenstates |&) in (B5) and (B6) can be equated with
ground states |f) in (B1) and (B2) by the identification & =
Im + sp.
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APPENDIX C: LIST OF F SYMBOLS

Here we present the complete list (up to S3 symmetry) of
F symbols that consistently generate basis transformations of
defect ground states. They are computed with the gauge degree
of freedom fixed under the basis choice of splitting spaces in
Fig. 32. For simplicity, we assume that the discrete gauge

group

Zk:{w”:w:ei%,neZ} (C1)

never has three torsions, i.e., k is not divisible by 3.

Objects at the four external and two intermediate channels
include

(1) Abelian anyons labeled by a,b,c,d that can be decom-
posed into a = (a,,a,) so that a, = (y;,r1) and a, = (y2,72)
are 2D integer mod k vectors living on the anyon lattice
(Fig. 11);

(2) threefold defects [1/3] and their antiparticles [m];

(3) twofold defects [1/2],; with color x =Y,R,B =
0,1,2 (mod 3) and species label 1 = (Iy,lr), where Iy p are
integers (half-integers) mod k if Y/R = x (Y/R # x).

Splitting degeneracies at vertices [1/3] x [1/3] = kz[v__?)]
are labeled by a, B (or at [1/3] x [1/3] = k*[1/3] by @, B).
These are eigenvalues o = Iom (or @ = Jym for antidefects)
of the Wilson operator A? = ¢ for the k2 splitting states
Im) = A™|GS)o of Fig. 32(d), where o = (¢1,02) is a 2D
integer mod k vector living on the triangular lattice in Fig. 24
and I is the intersection matrix defined in Eq. (3.22) for [1/3]
defects (or Iy = —1I, for [1/3]).

‘We here summarize notations that appear in the F' symbols.
These include the cyclic color permutation for the threefold

defect [1/3],
Ay = (? j) (C2)

The matrix 1 — Az (1 being the 2 x 2 identity matrix) is
invertible only when k is not divisible by 3. All F' matrices in
Table III that involve threefold defects [1/3], [m] need to be
modified in the case when 3 divides k and are not computed in
this article. Transpositions for the respective twofold defects
[1/2]y,[1/2]g,[1/2]p are given by

1 -1 -1 0 0 1
AY = (0 _1)5 AR = (_1 1)’ AB = <1 O)a
(C3)
where f7 = (1,0), ff = (0,1), and £ = (-1, — 1) are prim-

itive vectors in the triangular anyon lattice Fig. 11, o, is the
2 x 2 Pauli matrix, and

Io(x) = —iayk 1fX (C4)
is the self-reciprocal species label for a bare twofold defect.

The color and species label x,l for twofold defects are
suppressed whenever they do not affect the F symbol.
An intermediate or overall Abelian channel a = (a,,a.) is
restricted by

Ii + 1 —2lo(x) =ioy(a, + Aya,) (C5)

if it splits into a pair of twofold defects [1/2], 1,,[1/2], 1,
Similarly, by particle-antiparticle duality, an intermediate or
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(31 [L/3] [1/3] [1/3]

b[1/3][1/3 F[1/3][1/3]d

el Vi

11/3] (1/3] [1/3] [1/3] 1/3] [1/3) [1/3] [1/3)

1/31[1/31[1/31\4

1/3) (1/3] [1/3] [1/3]

d

a

/F[l/_3][1/3][m]

[1/3]

[1/3) [1/3] [1/3] [1/3]

c c

EE—

[1/3]e[1/3]
F a
FIG. 42. A pentagon identity.

overall [1/2], v channel has its species label determined by
I'=1+io,(a, + Aya,) (Co)

if it splits into an Abelian anyon a and a twofold defect
[1/2], 1. The corresponding & functions, because of these
implicit restrictions, are suppressed in the table.

F symbols that are related by S3 symmetry (for the
transformation rules, see Sec. IIIC) are only shown once in

Table III. For example Fa“/ 1/31b

[1/3]
A3 by A3
The F symbols satisfy the pentagon identity so that
they consistently generate basis transformations that are
independent from intermediate steps. For illustration purposes,
we demonstrate an example for the fusion [1/3] x [m] X
[1/3] x [m]. Figure 42 commutes so that the basis transfor-
mation is path independent. By substituting the appropriate F
symbols in Table III, we have

can be obtained by replacing

F;)[l/3][m]F[l/3][m]d

_ (/3IT/310/317€ (1311731 173001 /311/317d
=> [Fif Iy Fa [Fi/3) I

= T d g (©7)
APPENDIX D: LOCAL DOUBLE WILSON LOOP AROUND
TWOFOLD DEFECTS

We derive the phase for the local Wilson loop ®(a,) around
a twofold twist defect that generalizes the primitive one in
Fig. 21. The Wilson loop is defined by dragging a spinless
Abelian anyon a, twice around a twist defect [1/2],, where
x = Y, R, B the color of the defect. It has the word presentation
[ii]ao, for A the alphabet of the twofold defects (see Sec. III C):

O(a,) = @ = {5\5\}% (D1)

It corresponds to part of the phase of the R symbol Rz[l1 /20721

in Eq. (5.15) and is responsible for the topological spin (5.18)
for a twofold defect.

By breaking down the Abelian anyon [a,] = (¥,)Y(R,)"
into its primitive components Y., R,, it can be broken down
into simpler versions ®y,Bg seen in Fig. 21(a), which take

time
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[1/2]xlu(\')

FIG. 43. (Color online) The Whitehead link between defect
world line (red) and anyon trajectory (black/gray) represented by
the quadratic phase ©(—a,)O(a,) = w™ A« in (D3).

the eigenvalue of wh wlk, respectively, for w = ek gt a
twofold defect with species label 1 = (Iy,lg). There are extra

phases due to self-intersection,

Aybs
O(a,)0(b,) = [T"% O(a, + bo)

P e

— w8 1y Axbo ©(a, + bo). (D2)

where A, is the 2 x 2 matrix representing the transposition
action of the twist defect [1/2], [see Eq. (C3)]. This means the
double Wilson loop ®(a,) does not depend linearly on anyon
label a,. This nonplanar nature of ®(a,) is most apparent in
the quadratic phase upon reordering the self-intersection,

= O(—a,)t = w7 Q(a,)

s
O a,

— 3 10y Axao @ . (D3)

O a,

&S

It measures a linking between the world lines of defect and
anyon in the (2 + 1) space-time (see Fig. 43), called the
Whitehead link. Unlike a conventional link, the Whitehead link
does not carry a net linking number but is still topologically
nontrivial. It can, however, be unlinked by crossing the anyon
trajectory, resulting in the quadratic phase in (D3), but without
passing the defect world line.

The double Wilson loop (D1) can be successively be broken
down by (D2) and re-expressed in terms of the primitive double
Wilson loops,

(D4)
Ofa.) = wi* N I©) ) (@),

where f¥ = (1,0), f® = (0,1), and f8 = (—1, — 1) are the
primitive anyon lattice vectors and a, = ny +rfR. At a
self-reciprocal bare twofold defect [1/2] 1,¢x), Where it is not
attached with a Wilson string (see Fig. 31), the eigenvalues for
the primitive double loops combination (®y)*(®r)" are given
by w0 because 1y = —'%lm} fx is the bare species label
[see Eq. (4.25)].

The double Wilson loop ®(a,) thus takes the following
eigenvalue on the ground state of a bare twofold defect
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[1/2]5 100"

@ >:w;azmymmm(@y)y(@RY‘ 5
/

aZiay[%AXao—F%f‘X] > (DS)

= w

In particular, this gives the topological spin for the defect with
species 1 by substituting a, = —A,io, [l —1o(x)] and is shown
in (5.18). For a general twofold defect with a Wilson string
¢, = —ioy[l —lp(x)] attaching to it, the eigenvalues of the

PHYSICAL REVIEW B 90, 115118 (2014)

double Wilson loop ®(a,) are modified by adding to (D5) the
intersection phase w* 1%

The eigenvalue (D5) also explains that the phase factors
() in (4.39) and (4.40) occurred in the definition of splitting
states for [1/2], x [1/3] =[1/2],41 and [1/3] x [1/2], =
[1/2],—1. The Wilson loop labeled by n in the weighted sum
in the splitting state [see Fig. 32(g)] is a combination of the
overall double loop that encloses the entire defect pair and the
local double loop that only encloses the constituent twofold
defect. It takes the eigenvalue w~*™ for bare defects and is
therefore compensated for in the weighted sum.
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