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Tunable line node semimetals
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Weyl semimetals are examples of a new class of topological states of matter, which are gapless in the bulk with
protected surface states. Their low-energy sector is characterized by massless chiral fermions, which are robust
against translationally invariant perturbations. A variant of these systems has two nondegenerate bands touching
along lines rather than points. A proposal to realize such a phase involves alternating layers of topological
insulators and magnetic insulators, where the magnetization lies perpendicular to the symmetry axis of the
heterostructure. The shape, size, and the dispersion in the vicinity of the nodal lines varies with the strength of
the magnetization, offering a new knob to control the properties of the system. In this paper, we map out the
evolution of the nodal lines and the dependence of the conductivity on magnetization and identify signatures of
the low-energy sector in quantum oscillation measurements.
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I. INTRODUCTION

The discovery of topological states of matter has brought
a revolution in solid state physics. They provide impetus to
develop new methodologies to find and characterize them,
both theoretically and experimentally, and have opened new
directions for technological innovation. Topological insulators
in two and three dimensions that are gapped in the bulk and
have surface states have already been realized. An important
insight gained from these developments is the prominent role
played by spin-orbit interaction in stabilizing such nontrivial
phases [1–11]. A consequence of this line of investigation leads
to the remarkable conjecture that some pyrochlore iridates,
which possess all the necessary ingredients, such as large
atomic number, localized moments, and moderate correlation,
are in a semimetallic phase where two nondegenrate bands
touch at an even number of points in the Brillouin zone [12].
Moreover, these nodes in the energy landscape are at the
chemical potential and the low-energy sector is described in
terms of chiral massless electrons in three dimensions, which
were first discovered by Hermann Weyl [13].

While pyrochlore iridates have yet to be unambiguously
shown to host such a phase, a number of proposals have
appeared in the literature that have the potential to do so.
Balents and Burkov [14] showed that a heterostructure made
up of alternating layers of magnetically doped topological
and normal insulators had Weyl fermions in its low-energy
sector. An alternate route is to find materials that have a Dirac
dispersion in three dimensions and lift the spin degeneracy
by breaking either time reversal or inversion. Angle-resolved
photoemission spectroscopy measurements on Na3Bi and
Cd3As2 have provided the first evidence for the existence
of massless Dirac fermions [15–19]. The latter also breaks
inversion and has the potential to be a Weyl semimetal, but the
data lack the resolution to verify the claim.

Here, we focus on a variant of the heterostructure where a
line is obtained instead of point nodes [20]. This requires the
magnetization of either the magnetically doped topological
insulator or that of the ferromagnetic insulator to be perpen-
dicular rather than parallel to the symmetry axis of the device.
The shape anisotropy of the device naturally favors such a
geometry. Alternatively, one can use an antiferromagnetic

insulator with a suitable choice of terminating surfaces to
provide the uniform exchange field needed. This construction
has the advantage of the ability to tune the magnetization by
varying temperature. This provides a knob to manipulate the
response of the device and access the interesting semimetallic
phase. The main motivation of the study is that for line
nodes, the size, shape, and density of states, all depend on the
magnetization. This is in contrast with the nodal semimetal
where only the distance between the nodes depends on the
magnetization. The evolution of the low-energy sector, as well
as its consequence on thermodynamic and transport properties,
as a function of magnetization is explored in this paper.

II. MODEL

As described by A. A. Burkov, M. D. Hook, and Leon
Balents [20], a simple way to construct a Weyl semimetal is
to arrange alternating layers of topological insulator (TI) and
normal insulator (NI). This setup leads to a Weyl semimetal
dispersion containing the minimum of two nodes, provided
time reversal symmetry is broken. To achieve this, the addition
of magnetic impurities in each TI layer was proposed with
magnetization along the z direction—orthogonal to each layer,
along the direction of growth. The two materials are set up such
that each pair of layers (TI + NI) add up to a thickness d.

The full 2D Hamiltonian in terms of the momentum �k⊥ =
kxx̂ + kyŷ describing this multilayered structure (using the
notation and formalism in Ref. [20]) is

H =
∑
�k⊥,ij

c
†
�k⊥i

c�k⊥j

[
vF τ z(ẑ × �σ ) · �k⊥δij + mσzδij

+�Sτ
xδij + 1

2
�D(τ+δj,i+1 + τ−δj,i−1)

]
. (1)

The first term describes the top and bottom states of a
single TI layer (with � = 1). The second term describes the
spin splitting, resulting from magnetization in the z direction.
The remaining terms describe tunneling within an individual
TI layer (the �S term), and between neighboring TI layers (the
�D terms). Without loss of generality one can set �S,�D > 0.
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The eigenvalues for this Hamiltonian lead to the dispersion

ε2
± = v2

F |κ⊥|2 + (m ± |�(kz)|)2, (2)

where �(kz) = �S + �Deikzd and κ⊥ = ky + ikx . There are
a pair of nondegenerate nodes located at kx = ky = 0,kz =
π
d

± k0, where

k0 = 1

d
arccos

{
1 −

[
m2 − (�S − �D)2

2�S�D

]}
. (3)

The nodes exist provided

(�S − �D)2 < m2 < (�S + �D)2. (4)

Such Weyl semimetals are expected to display a number of
anomalous properties and house novel correlated phases. A
variant of this setup is one where the axial symmetry is broken
in addition to time reversal. The low-energy sector is this case
has line nodes and a system that is less studied.

Choosing the magnetization to be along the x axis modifies
the second term in Eq. (1). In practice, this can be achieved
by replacing the normal insulator with either ferromagnetic
insulator, or antiferromagnetic insulator with appropriately
chosen terminating surface. The Hamiltonian becomes

H =
∑
�k⊥,ij

c
†
�k⊥i

c�k⊥j

[
vF τ z(ẑ × �σ ) · �k⊥δij + mσxδij

+�Sτ
xδij + 1

2
�D(τ+δj,i+1 + τ−δj,i−1)

]
. (5)

The resulting dispersion is

ε2
± = v2

F k2
x + (

m ±
√

v2
F k2

y + |�(kz)|2
)2

, (6)

which has an analog condition to Eq. (4) for nodal behavior:

(�S − �D)2 < m2 − v2
F k2

y < (�S + �D)2. (7)

The new feature of such a geometry is that, instead of point
nodes, this architecture supports line nodes. For our particular
choice of magnetization, the zeros lie in the kz − ky plane.
The band for which this occurs is ε−. The resulting surfaces
±ε−(kz,ky) touch along a curve, called a “line node,” given by

v2
F k2

y + 2�S�D cos(kzd) = m2 − �2
S − �2

D. (8)

The curve is always bounded in the ky direction,

m2 − (�S + �D)2 < v2
F k2

y < m2 − (�S − �D)2.

Since this relation potentially places a minimum on ky , the
curve is not necessarily closed. The upshot is that the variation
of magnetization leads to an evolution of the nodal line from
being closed within a Brillouin zone to being open. Thus the
low-energy sector of such an architecture is highly tunable. We
explore the properties, such as density of states, conductivity,
and magneto-oscillations, in the rest of the paper.

A. Closed line node

Let us first examine the parameter space |�S − �D| < m <

�S + �D . A characteristic nodal line is shown in Fig. 1. To
further examine the nature of the dispersion, we plot the energy
as a function of kz − ky for kx = 0 in Fig. 2.

FIG. 1. (Color online) An example of the nodal curve for the
closed region of parameters. The parameters chosen are m =
0.9, �S = 0.6, and �D = 0.4 (with d = vF = 1).

An interesting feature is that the dispersion is linear
in momentum for deviations normal to the nodal curve.
Parametrizing the curve as (k0

z ,k
0
y), which satisfy Eq. (8), the

dispersion as a function of deviation normal to the curve is

ε2
− ≈ v2

F δk2
x +

(
vF k0

y

m cos(θ0)

)2

v2
F δk2

⊥, (9)

where tan(θ0) = �D�Sd sin(k0
z d)/v2

f k0
y .

The energy scale at which the deviation from linearity
becomes substantial is also a function of where one is on
the nodal curve. Thus an effective linear dispersion is valid
only in the energy window that is the minimum of this
function. To display this variation, we plot the dispersion along
various cuts across the nodal line in Fig. 3. We occasionally
use k′

z ≡ kz − π
d

as a convenient variable. The ratio of the
velocities along the cuts for ky = 0 and k′

z = 0 is

v⊥(ky = 0)

v⊥(k′
z = 0)

= md

2vF

√(
�S + �D

m

)2

− 1 . (10)

This is always less than one implying that the corrections
to linearity are more pronounced along the growth axis of
the heterostructure. Furthermore, the monotonic increase of

FIG. 2. (Color online) The dispersion surfaces ±ε−(kz,ky),
showing the nodal curve where the top and bottom surfaces touch
along ε− = 0. The parameter values are the same as for Fig. 1.
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FIG. 3. (Color online) The variation of energy as a function of
momentum perpendicular to the nodal line at four representative
points is shown. Parameters remain as in Fig. 1.

velocity from kz to ky axis implies that the density of states
also varies along the node.

For a given device, �S and �D are hard to tune but
the magnetization can be modified. As a consequence, the
nodal structure evolves and as the magnetization is increased
the curve extends out along kz until it reaches the edge
of the Brillouin zone. This is shown in Fig. 4. In general,
analytic solutions are not possible. Under the following
approximations, the density of states and conductivity can be
obtained in closed form: (1) the width of the nodal curve is
“small,” cos(kzd) ≈ −1 + (kzd−π)2

2 , and (2) the parameter m is
“large,” m � |�S − �D| ≡ � ⇒ �/m ≈ 0 . Together, these
greatly simplify the positive and negative dispersions that lead
to the node ±ε−(�k) ≡ ±ε(�k) in Eq. (6). From here, the density
of states is found by taking the derivative g(ε) = d

dε
N (ε),

FIG. 4. (Color online) The shape of the closed line node in Fig. 1
is plotted as the field parameter m is changed, while keeping �S

and �D fixed. The arrow shows the direction of increasing m. The
closed curves have m < �S + �D , while the open curve violates this
condition.

FIG. 5. (Color online) The volume enclosed by a surface of
energy ε in momentum space N (ε) is plotted while varying the field
parameter m. A perfect torus is obtained for a particular value of m.
For smaller m, the torus gets squeezed, while for larger values the
torus gets stretched (along the kz axis).

where an integral must be done:

N (ε) =
∫

d3k

(2π )3

[ε − ε(�k)]. (11)

With the above approximations, this integral becomes the
volume of a torus in momentum space with major radius m

and minor radius ε, which can be calculated analytically to
give a linear density of states (DoS): g(ε) ∝ ε. The constant of
proportionality (the slope of the DoS) comes out to be linear
with respect to m. The resultant dc conductivity (using the
Kubo formula, after the self-consistent Born approximation)
is also linear in m [20].

The analytic expressions provide an interesting insight into
the behavior of this device. The low-temperature properties are
all functions of the magnetization m. Thus tuning this parame-
ter allows for the modification of transport and thermodynamic
response. To get an accurate description, numerical methods
need to be employed as the approximations stated above are
valid only for a finite intermediate window of m. As shown
in Fig. 5, the equal energy surfaces have significant deviations
from a uniform torus. Thus the dc conductivity will match the
analytical expression for a finite range of magnetization.

To characterize the device better, we employ numerical
solutions for the full dispersion. Unless otherwise specified,
the parameters used are �S = 0.6 eV and �D = 0.4 eV. The
results are qualitatively identical for different choices of
parameters. We first compare the slope of the density of states
near ε = 0 to that obtained analytically. This is shown in Fig. 6.
A monotonically increasing slope is obtained as long as the
nodal line remains closed. Once the nodal line hits the Brillouin
zone boundary, the slope is roughly constant. We discuss the
open node case in the next section.
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FIG. 6. (Color online) The slope of the linear (low-energy) den-
sity of states is plotted as a function of m. The points are obtained
from numerical evaluation of the integral in Eq. (11). The black line
is the analytical result from Ref. [20], while the dashed line shows
the asymptotic value.

For pointlike impurities within the self-consistent Born
approximation using Kubo formalism, the conductivity is
proportional to the slope of the density of states. The linear
DoS is found numerically over the entire range of m using
Eq. (11), resulting in the conductivity shown in Fig. 7. For
large values of m, the constant slope given by Eq. (15) leads to
a conductivity that’s also independent of m. This asymptotic
value depends on the direction as there is an anisotropy in
velocity parallel versus perpendicular to the growth axis of the
device. To display the generic behavior, we plot the ratio of
the conductivity to the asymptotic value as a function of m.

The asymptotic values are obtained from the linear density
of states with a constant slope (for details see the next section)
and given by

σαα = 2e2

h

v2
F,α

πdv2
F

, (12)

FIG. 7. (Color online) For large values of m, where the nodal
line is open, the conductivity is roughly constant. Here, we plot the
conductivity divided by the asymptotic value as a function of m. These
normalized curves are isotropic but the asymptotic values themselves
are different for parallel and perpendicular directions with respect to
the growth axis of the multilayer.

FIG. 8. (Color online) We plot N (ε) for two different values of
m. The top figure is for the case where we have a closed nodal line
where the quadratic dependence is evident reflecting a linear density
of states. For large m, for open line nodes, the quadratic dependence
crosses over to a linear behavior very quickly as one departs from the
node. This means that a linear DoS is trustworthy only for very low
energies when m � �S + �D (see Fig. 9).

where vF,x = vF,y = vF and vF,z = d
√

�S�D .
To better understand the nature of the density of states, we

also examine N (ε) itself [see Eq. (11)] for various values of
m. Its quadratic dependence of ε yields a linear density of
states. As noted in the discussion of the dispersion and shown
in Fig. 3, the deviation from linear dispersion occurs for small
distances away from the node. The change in the dispersion
is also evident in the evolution of N (ε) plotted in Fig. 8. For
small m, a quadratic behavior is seen, but becomes linear as m

is increased. The change in the density of states is reflected in
the conductivity.

B. Open line node

We now turn to the regime of large m. This section examines
the case m > �S + �D . For these values of m, the node
touches the sides of the first BZ along the kz axis. This implies
that the analytic result, slope ∝ m, of the previous section
does not apply but the numerical techniques can be used.
The density of states at low energies remains linear, but its
slope is constant as seen in Fig. 6. To evaluate the constant,
we use Eqs. (9) and (8) assuming large m. Adding 2�S�D

to both sides of Eq. (8) and with m � |�S − �D|, we drop
(�S − �D)2 from the right-hand side of Eq. (8) to get(

vF k0
y

)2 + 2�S�D

(
1 + cos

(
k0
z d

)) ≈ m2, (13)

where the notation k0
α refers to the points on the nodal line.

The second term in Eq. (13) is bounded by the value of the
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FIG. 9. (Color online) Constant energy surfaces for the same
parameters as in Fig. 6, but with m = 1.15 eV > �S + �D , and
a larger m = 1.28 eV � �S + �D . As m increases the topology
changes to disconnected surfaces.

cosine, and is small when m2 � 4�S�D . Therefore vF k0
y ≈

±m. In other words, the open nodes evolve into straight
lines stretching across the Brillouin zone at a fixed value
of ky . Similarly, tan θ0 = �D�Sd sin(k0

z d)/v2
f k0

y is bounded
by the sine function and for m � �S�Dd/vF , θ0 � 1.
Asymptotically, Eq. (9) simplifies to

ε2
− ≈ v2

F δk2
x + v2

F δk2
y, (14)

which, remarkably, is identical to the graphene dispersion.
Setting q = vF

√
δk2

x + δk2
y , the DoS is

g(ε) = 2
∫ 2π/d

0

dkz

2π

∫ 2π

0

dφ

2π

∫
qdq

2πv2
F

δ(ε − q)

= ε

πdv2
F

. (15)

The resulting conductivity reflects this behavior and is nearly
independent of m for m > 1 eV = �S + �D . The conduc-
tivity varies appreciably only when |�S − �D| < m < �S +
�D . An interesting aspect of this device is its sensitivity to
changes in magnetization. The change in conductivity from
zero to the maximum value given in Eq. (12) occurs over
the change in exchange splitting of 2�S or 2�D , whichever
is smaller. This sensitivity is a generic feature of such nodal
semimetals. A minimum time reversal breaking field is needed
to close the gap and further increase leads to the nodal line
spanning the Brillouin zone. Over this energy window, the
conductivity changes from zero to the asymptotic value.

The evolution of the Fermi surface as seen in Fig. 5 is
measurable in magnetic oscillation experiments. Before we
turn to the discussion of the expected behavior, it is worthwhile
to note the shape of the equal energy surface for even larger m.
In Fig. 9, we see that the volume enclosed gets disconnected
on increasing m. Thus the Fermi surface of the doped system
goes from a closed torus to two disconnected tubes, with
an intermediate state where the outer surface of the torus is
not closed within a Brillouin zone. Implications of these on
quantum oscillations are discussed in the next section.

C. Quantum oscillations

The evolution of the low-energy sector as a function of the
magnetization can be probed for systems with finite carrier
density. For closed nodal lines, the Fermi surface has the
topology of a torus, whose axis is parallel to the direction of
magnetization. In the presence of an external magnetic field,
the density of states is oscillatory. For large densities (i.e.,
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FIG. 10. (Color online) Frequency for quantum oscillations for
magnetic fields applied along the x direction is plotted as a function of
energy. The top curve shows the result corresponding to the maximal
area, while the bottom corresponds to the minimal area. Dashed
curves are obtained in the approximation of treating the surfaces as a
circular torus. The parameters are the same as above with m = 0.5 eV,
taking vF = e4 m/s and d = 100 n/m.

Landau level index corresponding to Fermi energy is large),
the oscillation is periodic in 1/B with a frequency proportional
to the extremal area Ae of the Fermi surface perpendicular to
the applied field:

f 1
B

= �c

2πe
Ae(εF ). (16)

We consider two cases motivated by the geometry of
equal energy surfaces. For magnetic field along the direction
of the magnetization m (x axis in our example), there
are two frequencies at small magnetization while for large
magnetization one of two contributing orbits changes from a
closed to an open one. In Fig. 10, the two frequencies are
plotted as a function of Fermi energy. The Fermi surface has
the topology of a torus. For a field along the axis, there are two
extremal areas corresponding to the inner and outer circles.
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FIG. 11. (Color online) Fequency for magnetic fields applied
along the z direction as a function of the energy. The solid curve
shows the result corresponding to the only extremal orbit in this case.
Note the orders of magnitude difference compared to Fig. 10 arising
from the shape of the torus.
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FIG. 12. (Color online) As m is varied, the density at which the
jump in frequency occurs is modified. Here we plot the variation and
note that it occurs for small densities when m is not too much larger
than the difference |�S − �D|.

As the Fermi energy increases, the inner circle shrinks while
the outer one grows. The smaller frequency vanishes when
εF = m − |�S − �D|.

Alternatively, a field could be applied in the z direction
instead (i.e., along the growth direction). There is only one
extremal orbit in this case. More precisely, there are two
identical areas that contribute the same extremal area. As
one increases the doping or carrier concentration, these areas
grow approaching one another. At a critical value of the Fermi
energy the two merge, and the resulting orbit continues to
be extremal. Thus the frequency doubles at the critical value
εF = m − |�S − �D| (see Fig. 11).

This frequency doubling is an interesting diagnostic of the
line node. The experimental observation of the phenomenon
depends on three conditions being satisfied: (1) the ability to
tune the density of electronic carriers in the device, (2) the
shape anisotropy of the magnetic insulator being sufficiently
strong so as to allow for oscillations to be observed without
reorientation of magnetization in the external magnetic field,
and (3) the doubling occurs in the low-energy regime of the
device. While the first two are material challenges, the last can
be addressed by looking at the energy at which the doubling
occurs as a function of magnetization. From Fig. 12, it is clear
that a parameter regime exists where the critical energy is
small, i.e., less then an eV.

III. EXPERIMENTAL OUTLOOK

Over the last few years, remarkable progress has been
made in realizing various elements required for the multilayer
device. Given the wealth of novel phenomena expected with
symmetry-broken surface states [6,21–23], detailed theoretical
studies have identified candidate materials to activate the
time reversal breaking [24]. On the experimental side, a
number of ferromagnetic insulators have been grown with
the aim of opening a gap in the spectrum of the surface
states of topological insulators. Exchange coupling induced
symmetry breaking has been observed when Bi2Se3 is grown
on ferromagnetic EuS [25]. The induced magnetic moment at
the interface at low temperatures is 1.3 ± 0.5 × 102 μB/nm2

with a transition at about 20 K. EuO is a viable candidate but
so far only growth on graphene has been demonstrated with a
transition temperature of 69 K [26]. Cr2Ge2Te6 has a transition
temperature of 61 K [27] and is another possible substrate for
epitaxial growth [28]. While YIG is an actively researched
ferromagnetic insulator, its transition temperature of 559 K
results in a constant magnetization at low temperatures, which
prevents its use as a tunable knob.

An alternative scenario is to follow the original suggestion
of Refs. [14] and [20] where a magnetically doped topological
insulator is sandwiched between normal insulator layers. The
ability to magnetically dope topological insulators has been
experimentally demonstrated and resulted in the observation
of the quantum anomalous Hall effect [29]. The temperature
at which the phenomenon is observed is 30 mK, while the
Curie temperature is 15 K. Ordering the moments in plane,
rather than perpendicular to the interface will achieve the
required geometry. Whether the requirements for line nodal
semimetals are as stringent in terms of temperature is yet
to be determined. Nevertheless, the progress suggests that
the prospect of growing devices with Weyl semimetallic
characteristics is indeed promising, opening the possibility
of new tunable devices discussed in this paper.

IV. CONCLUSIONS

In this paper, we have focused on the tunability of the low-
energy sector of a heterostructure, which is in a topological
semimetallic phase with line nodes. The key insight is the
dependence of the dispersion on the strength of the time
reversal breaking. For an insulating magnetic layer, this is
controlled by the magnetization, which in turn depends on
temperature. For example, EuO has a Tc of 69.3 K and cooling
provides a knob to continuously vary the magnetization. As
one increases the magnetization, the gap in the spectrum closes
and the line node appears. This evolves from a closed loop to
two open lines that span the Brillouin zone in the direction
parallel to the growth axis of the multilayer. The associated
changes on the density of states and topology of equal energy
surfaces results in measurable signatures in thermodynamic
and transport properties. We show that the slope of the density
of states rises monotonically as a function of m as long as the
line node is closed and is roughly constant for larger values.
The trend is also reflected in conductivity.

The toroidal topology also has interesting implications for
quantum oscillations in this device. On doping the system
the minor radius of the torus grows and for sufficiently large
densities the equal energy surface changes the topology to a
sphere. This is accompanied by the doubling of the oscillation
frequency for magnetic fields perpendicular to the symmetry
axis of the torus. This is accessible even for small densities.

As noted in Ref. [20], the nodal line is not robust and
that perturbations, such as particle-hole asymmetry, induce an
energy dependence to the line where the bands touch. Thus the
system is converted to a normal semimetal with electron-hole
pockets. Nevertheless, the size of these pockets depends on
the size of the line node, which in turn depends on m. Thus
the qualitative feature of the evolution of density of states and
associated properties as a function of magnetization continue
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to hold. The same is true of the change in geometry of the
nodal line from a closed to an open one.
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