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Coulomb blockade for tunneling through a long island
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We consider Coulomb blockade effects for tunneling through a piece of wire with large resistance R � 1.
This system can not be treated as a zero-dimensional one, as the dynamics of internal inhomogeneous degrees of
freedom is crucial. At moderately high temperatures the linear conductance G of the system is suppressed due to
the one-dimensional Coulomb zero bias anomaly effect. At low T , besides the standard activational factor, there
is an additional T -independent (though also exponentially strong) suppression of G. It arises due to the tunneling
evolution of the charge in the wire to the equivipotential distribution. In the intermediate range of T the G(T )
dependence is a power law, as in the phenomenological environmental theory. The effective “environmental
resistance” entering the power exponent is found explicitly. It depends on the length of the wire and on the
positions of the contacts.
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I. INTRODUCTION

A phenomenon of Coulomb blockade of the electronic
transport through a small grain, connected to two massive
electrodes by high-resistance tunnel contacts, has been well
known for many decades (see, e.g., Refs. [1] and [2]). It was
extensively studied both experimentally and theoretically. In
most theoretical studies the grain was assumed to be an effec-
tively zero-dimensional object without any internal dynamics.
Under this assumption the effective linear conductance of the
system in the so-called “orthodox Coulomb blockade regime”
is

G
(0)
ort ∼ gAgB

2(gA + gB)

[
exp

{
−E

(+)
C

T

}
+ exp

{
− E

(−)
C

T

}]
, (1)

where gA � 1 and gB � 1 are dimensionless conductances of
the left and the right contacts correspondingly:

E
(±)
C = EC(1 ± 2q), (2)

where the (+) sign corresponds to the state with an extra
electron on the dot and (−) to an extra hole. The equilibrium
charge of the dot q = q(U ) (|q| < 1/2) can be tuned by
changing a gate voltage U . For T � EC the conductance is
dominated by a process that corresponds to minimal activation
energy, so that

G
(0)
ort ∼ gAgB

2(gA + gB)
exp

{
−Eact

T

}
,

Eact = min{E(+)
C ,E

(−)
C } = ECδq, (3)

δq ≡ 1 − 2|q|.
In the orthodox Coulomb blockade regime a particle (an
electron or a hole) first borrows an energy Eact from the
thermostat and tunnels to the dot from one of the electrodes
(say, the electrode A). It stays at the dot in a real state for a
long “waiting time,” proportional to 1/g. Then it falls down
to the electrode B, and the energy Eact is again dissipated—it
goes back to the thermostat.

The formulas (1) and (3) are written with an exponential
accuracy: there may be an additional preexponential factor

that can contain a power-law T dependence. This factor is not
universal, it depends on the details of the model.

This process dominates the transport through the dot at
relatively high temperatures, while at low enough temperatures
the orthodox two-stage incoherent process is replaced by the
cotunneling [3]. In this regime the dot remains in a (virtual)
charged state only for a very short time, the tunneling of a
particle to the dot from the electrode A is immediately followed
by the tunneling of a particle from the dot to the electrode B.
If the second tunneling leaves the dot in the very same state,
as before the first tunneling, then the entire process is called
elastic cotunneling. If the dot after the process changes its
state (namely, it excites one extra electron-hole pair) then we
deal with inelastic cotunneling. The corresponding effective
conductances are

G
(0)
cot ∼ gAgB

{
(T/Eact)2, (inelastic cotunneling),

δ/Eact, (elastic cotunneling),
(4)

where δ is the characteristic level spacing in the dot. The
crossover from the elastic to the inelastic cotunneling takes
place at T ∼ Tel ∼ (Eactδ)1/2. The crossover from the inelastic
cotunneling to the orthodox regime takes place at T ∼ Tcot,
where

T
(0)

cot ∼ Eact/ ln[1/(gA + gB)]. (5)

The above consideration is only applicable for an effectively
zero-dimensional dot. In our paper [4] we have shown that the
expression for Gcot is strongly modified in the case of the
extended dot. We have considered a “long island” (see Fig. 1)
that has the form of a wire of total length L and diameter a.
The charging energy for such a system is

EC = (e2/εL) ln(L/a), (6)

where ε is the effective dielectric constant. The classic
dimensionless (in the units of h/e2) resistance of the wire

R = L/ξ � 1, (7)

where length ξ is related with one-dimensional conductivity
of the wire σ̃ = e2ξ/2π�; the same length can be estimated as
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FIG. 1. Electrons tunnel between a wire of length L and diam-
eter a and two leads A and B, placed at distance LAB from each
other.

ξ ∼ Nchl, where l is the elastic mean free path, and Nch � 1
is the number of channels in the wire.

We have shown that the inelastic cotunneling in the long
island is described by the formula

Gcot ∼ gAgB(T/Tc2)αcot ,

Tc2 = EC/R, (8)

αcot = 2RAB = 2RLAB/L,

provided the resistance RAB = LAB/ξ of a piece of the wire
between the contacts is large: RAB � 1.

In the present paper we study the modification of the
standard formula (3) for the incoherent sequential tunneling,
which arise in the case of an extended dot (in particular, in
the case of the long island). The question that we address
is especially relevant in the “resonant” case, when the gate
voltage is tuned so that Eact � EC , and/or for very low
conductances gA,gB , so that the cotunneling regime is realized
at very low temperature.

The paper is organized as follows: In Sec. II we list the
main results, obtained in this paper for the linear case (i.e., for
the case of small bias voltage), and discuss different regimes,
occurring on the phase diagram on the T − q plane. In Sec. III
we describe a general technique for semiclassical treatment of
multimode thermoactivated processes with special attention
for the proper treating of the time zero mode at finite
temperature. We also discuss the space-time structure of the
solutions of the arising instanton equations. The technique is
applicable for arbitrary (not necessarily small) bias voltages. In
Sec. IV we apply the developed method to the case of relatively
large temperatures and/or bias voltages, when the discreetness
of the charge on the wire is not relevant. Here the regime of
the zero bias anomaly is settled, the only effect of the finite
length of the wire being the dependence of the current on the
distance between the contact and the end of the wire. In Sec. V
we consider the case of relatively low temperature, when the
discreetness of the charge (and, therefore, the zero mode)
becomes crucial and the Arrhenius temperature dependence
of the current is established. The resonant case, in which the
activation energy is especially small (e.g., due to the tuning
of the gate voltage) is discussed in Sec. VI. In Sec. VII we
show how the results obtained in the previous sections are
manifested in the linear conductance of the system. Finally,
Sec. VIII presents our conclusions.

II. PRINCIPAL RESULTS

In this section we formulate the results of our study as
applied to the linear conductance of the system; their derivation

will be given in the subsequent sections of this paper. Note that
the general formalism, developed in Sec. III, applies to the case
of high bias voltages as well. However, we have chosen not
to discuss the results of the nonlinear theory in this paper, and
leave it to a separate publication. Such a discussion would
require a detailed consideration of many different cases and
subcases.

The conductance Gort due to sequential incoherent tunnel-
ing (the orthodox Coulomb blockade regime) can be expressed
in terms of the local single-particle density of states

Gort = G
(+)
ort + G

(−)
ort , (9)

G
(±)
ort = gAZ(±)(xA)gBZ(±)(xB)

2[gAZ(±)(xA) + gBZ(±)(xB)]
, (10)

where Z(+)(x) and Z(−)(x) are the T -dependent factors of
suppression of the local densities of states of, correspondingly,
electrons and holes at the Fermi level due to Coulomb effects.
The origin of the formulas (9) and (10) will be clarified in
Sec. VII. Here we only want to stress that they are in a sense
precise: They would produce a correct preexponential factor
for the conductance if the correct preexponential factors for
Z(±)(x) were used. We are not going to derive the latter
prefactors in what follows, however. The fact of splitting
of the current in the independent contributions of electrons
and holes is also precise at low temperatures. Although at
high temperatures such a splitting does not take place, the
formulas remain effectively valid, since the difference between
contributions of electrons and holes disappears in this limit.

There are three characteristic crossover temperatures

Tc3 = ECR, Tc2 = EC

R
, Tc1 = Eact

R
= Tc2δq. (11)

There is always a strong inequality Tc2 � Tc3 between two of
these scales. The third one, Tc1, is relevant only in the resonant
case (δq � 1) when Tc1 � Tc2, while in the nonresonant case
(δq ∼ 1) it does not constitute any distinct energy scale since
Tc1 ∼ Tc2.

A. High temperatures T � Tc2

At highest temperatures T � Tc3 there is no T dependence
of the conductance: Z = 1 and G = gAgB/(gA + gB). In the
range Tc2 � T � Tc3 the renormalization of the local density
of states is manifested in the well-known one-dimensional
Coulomb zero-bias anomaly (see Refs. [5–9]) :

Z(±)(x) ∼ exp

{
−0.76 RB(�L/Lc)

(
Tc2

T

)1/2

− E
(±)
C

2T

}
.

(12)

The only modification of the formula (12) compared to the
standard Coulomb ZBA factor for an infinitely long wire is the
factor B(�L/Lc) [the function B(z) is shown in Fig. 2].

This factor is relevant in the case when any of the contacts
is close to one of the ends of the wire (�L ≡ L/2 − |x|), and
the charge spreading is therefore impeded in the corresponding
direction. In particular, if the contact is placed at the very end of
the wire (�L � Lc), then the tunneling action is increased by
a factor of two [B(0) = 2] compared to the case of effectively
infinite wire (�L � Lc).
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FIG. 2. (Color online) Plot of the function B(z), defined by
Eq. (52). This function describes the dependence of the local density
of states on the position of the contact in the case of relatively high
temperature.

The “spreading length”

Lc(T ) = (L/2π )(2Tc2/T )1/2 (13)

defines the spatial scale to which the cloud of screening charge
proliferates on the tunneling stage of the process. For Lc � L

(i.e., at T � Tc2) the wire is effectively infinite: The tunneling
stage of the charge-spreading process is terminated before the
charge has a chance to reach both boundaries of the system and
establish the equipotential distribution. Under this condition
the length L does not enter the result for Z(x).

B. Low temperatures T � Tc1

At low temperatures T � Tc1 one finds

Z(±)(x) ∼ exp{−E
(±)
C /T − R	(|x|/L,1 ± 2q)}, (14)

where x is the position of the contact, accounted for with
respect to the center of the wire. The second, temperature
independent, term in the exponent of (14) is responsible for the
tunneling spreading of the inhomogeneous charge distribution
in the wire. It is small compared to the first, activational, term
but still large compared to unity, and, therefore, important. The
function 	(z,δq) is of the order of unity in the nonresonant
case, when δq is not especially small. For δq = 1, 	(z,1) is
plotted in Fig. 3. For general δq the function 	 obeys the rule

	(1/2,δq) = 4	(0,δq), (15)

which means that the suppression of the tunneling for the
charge injected through a junction, placed at the end of the
wire, is much stronger than that for the junction in the center.

C. The resonant case and the environmental theory

In the resonant case (for δq → 0) the function 	(z,δq) can
be evaluated analytically:

	(z,δq) ≈ 2λ(z) ln(1/δq), λ(z) = 1
12 + z2, (16)

so that

Z(res)(x) ∼ (δq)2Reff (x) exp{−Eact/T },
(17)

Reff(x) = Rλ(x/L).
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FIG. 3. (Color online) The plot of the function 	(z,1), defined in
Eq. (70). This function describes the dependence of the local density
of states on the position of the contact for relatively low temperature
in the nonresonant case.

The spreading resistance Reff(x) entering (17) gives an explicit
expression for the effective environmental resistance which
was introduced in Refs. [6] and [10] phenomenologically, and
therefore could not be explicitly related to the geometry of
the experiment. In Sec. VI C of this paper we also give an
explicit prescription for finding the spreading resistance for an
arbitrary geometry of the quantum dot, not necessarily quasi-
one-dimensional.

Since there is a strong inequality Tc1 � Tc2 in the reso-
nant case, an intermediate temperature range Tc1 � T � Tc2

arises, where the principal (power-law) T dependence of
Z arises due to shakeup of soft environmental modes (c.f.
Refs. [6] and [10–12]). In this range

Z(res)(x) ∼ (T/Tc2)2Reff (x) exp{−Eact/2T }. (18)

It is important to note that the activational term in the
exponent of Z dominates the temperature dependence only
at lowest temperatures T � Tc1 [i.e., in the formulas (14)
and (17), but not in formula (18)]. For higher T the principal
T dependence comes from the power-law renormalization
of conductances, while the activational factor gives only a
subleading contribution. We, however, keep this activational
factor also in Eq. (18), since it contains the q dependence,
while the leading terms in (18) are q independent. We note
that power-law behavior of the type of Eq. (18) is also known
in the theory of Luttinger liquids, see for example Ref. [13].

D. The summary of regimes

In the range Tc1 � T � Tc2 the T dependence of both
orthodox sequential tunneling rate (Gort) and of the cotunnel-
ing rate (Gcot) is a power law; the only difference is in the
corresponding exponents:

Gcot ∝ g2(T/Tc2)αcot ,
(19)

αcot = 2RAB = 2L

ξ

(
1 − �LA

L
− �LB

L

)
,

Gort ∝ g(T/Tc2)αort ,

αort = 2Reff = 2L

ξ

(
1

3
− �L

L
+

(
�L

L

)2)
, (20)

�L = max{�LA,�LB}.
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FIG. 4. The phase diagram for different regimes on a plane T − q.
Left (right) panel: the case αcot > αort (αcot < αort). The conductance
G(T ) is described by Eq. (12) in the Coulonb ZBA regime, by Eq. (18)
in the “shakeup of the environment” regime, by Eq. (14) or (17) in
the Arrhenius regime, and by Eq. (8) in the regime of cotunneling.

The relation between αcot and αort depends on the setup
geometry. If the contacts are relatively far from each other
(say, near the opposite ends of the wire), then αcot > αort; if
the contacts are very close to each other, then αcot < αort. The
scenario of the crossover to the cotunneling regime depends
on this relation. If αcot > αort, then for all values of Eact there is
an intermediate temperature range Tcot < T < Tc1 where the
Arrhenius law (75) is valid and

Tcot ∼ Eact

ln(1/g) + (αcot − αort) ln(1/δq)
� Tc1. (21)

If αcot < αort, then the crossover temperature Tcot is still
described by Eq. (21) for not too small δq > g1/(αort−αcot),
so that the denominator in Eq. (21) remains positive. For
Tc1 < Tc0, however, the Arrhenius domain vanishes and there
is an immediate crossover between the two power laws that
takes place at Tcot ≈ Tc0, where

Tc0 ∼ Tc2g
1/(αort−αcot). (22)

The phase diagram for different regimes on a plane T − q

is shown in Fig. 4. Note that Eact, Tc1, Tcot depend on q and
are, therefore, tuneable by the gate voltage U , while Tc2, Tc0,
and Tc3 are q independent and not tuneable.

III. TUNNELLING DENSITY OF STATES:
GENERAL FORMALISM

Let us now turn to the regular derivation of the results,
presented above. In the “orthodox” regime the transport of
electrons through the island from contact A to contact B comes
about as a sequence of two incoherent one-particle processes:
On the first stage an extra particle (an electron at contact A, or
a hole at contact B) comes to the dot; on the second stage it
leaves the dot at the opposite contact.

In contrast to the two-particle cotunneling process, the total
charge of the system is changed at each of the two stages of
the one-particle tunneling. To work out an adequate language
for the description of this process, we have to modify the
finite-system approach, introduced in Ref. [4], in order to take
into account the charge conservation (irrelevant for the two-
particle cotunneling, discussed in Ref. [4]: for such “neutral”

processes the charge conservation was automatically ensured).
The approach is based on the Levitov and Shytov semiclassical
description [8] of the charge-spreading process in terms of
the hydrodynamic equations of the under-barrier motion of
the charge ρ and current j distributions in the wire. In the
imaginary time τ these equations take the form

∂ρ

∂t
+ ∂j

∂x
= J (x,τ ), (23)

j = −D
∂ρ

∂x
− σ̃

∂

∂x

∫ L/2

−L/2
dx ′ρ(x ′,t)

1

ε|x − x ′| , (24)

where σ̃ = e2ξ/2π� is effective one-dimensional conductiv-
ity, and D is a diffusion constant. The source

J (x,t) = ±[δ(t − tin) − δ(t − tout)]δ(x − x0), (25)

and the instanton solution is chosen in a form of a symmetric
bounce: The electron (sign +) or a hole (sign −) is injected
into the system at a point x = x0 at the moment t = tin =
t0 − iτ0 and is evacuated from the same point at the moment
t = tout = t0 + iτ0. In the quasi 1D case, and at not very low
temperatures, the diffusional flow [the first term on the right
hand side of Eq. (24)] can be neglected. The proper solution of
Eqs. (23) and (24) should obey the initial condition, fixing the
total charge Q(t) = ∫

dxρ(x,t) of the wire at the initial stage
of the process (before the injection):

Q(t < tin) = qin(N ) ≡ q + N, (26)

where N = 0,±1,±2, . . . is the number of extra electrons in
the initial state.

Another important condition is the fact that the injected
electron/hole brings to the system additional energy ±ε, so
that the total energy of the system undergoes a jump at the
injection point:

Etot(τ = −τ0 + 0) − Etot(τ = −τ0 − 0) = ±ε. (27)

We note that this condition is the only place where the initial
energy ε of the external electron comes into play.

The under-barrier action S(±)(τ0,x0,ε,qin), corresponding
to the solution of Eqs. (23) and (24) with the initial conditions
(26) and (27), is a function of unknown duration of the
instanton core (the “injection time”) τ0. The actual value
τ ∗

0 = τ ∗
0 (T ,ε,qin) can be found from the condition

∂S(±)(τ0,x0,ε,qin)/∂τ0|τ0=τ ∗
0

= 0. (28)

In fact, S(±)(τ ∗
0 ,ε,qin) is the action which enters the final

expression for the tunneling probability:

Z(±)(x0,ε,qin) ∝ exp{−S(±)(τ ∗
0 ,x0,ε,qin)}. (29)

In what follows we will omit the arguments ε and qin and
simply write Z(±)(x), but in due time we will recall its
dependence on ε and on N (through qin).

A. Contribution of the zero mode and charge conservation

The most important difference of the charged one-particle
processes in a finite system, discussed in the present paper,
from the neutral two-particle ones, studied in Ref. [4], is the
necessity to accurately take into account the contribution of
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the “zero mode” of the action S. This is a very tricky point,
where our results differ from those of Ref. [10], so we discuss
it here in detail.

It is very important that the solution of the linear equations
of motion (23) and (24) is not unique: To any particular solution
one can always add the free solution (corresponding to the
absence of any external source) multiplied by an arbitrary
coefficient. The uniqueness is only restored with the help of the
initial condition (26) that fixes the coefficient. The free solution
is τ independent and proportional to the zero mode ρ0(x),
which carries no currents [j0(x) ≡ 0]. The corresponding
distribution of the potential ϕ0 = const and charge ρ0(x) obeys
the condition of the equipotentiality

[Ûρ0](x) = const. (30)

The rules for regularization of the singular operator

[Ûρ](x) = reg
∫ L/2

−L/2

ρ(x ′)dx ′

ε|x − x ′| (31)

were discussed in Ref. [4]: The short-distance logarithmic
divergency is cut off at the width of the wire a. Strictly
speaking, the solution of Eq. (30) is inhomogeneous: ρ0(x) ∝
1 + ln(1−(2x/L)2)

2 ln(L/a) . However, the x-dependent term plays a role
only very close to the ends of the wire, at the distances of the
order of the wire’s diameter. Therefore this effect is weak, and
we will neglect it in the leading logarithmic approximation,
assuming ρ0 = const.

It is convenient to split the source J in Eq. (25) into two
parts: J = J (0) + J̃

J (0) = ±(1/L)[δ(t − tin) − δ(t − tout)],

J̃ = ±J̃ [δ(t − tin) − δ(t − tout)], (32)

J̃ = δ(x − x0) − 1/L.

We will see that J (0) affects only the zero mode, which is
responsible for the dynamics of the systems total charge, while
the source J̃ excites all the modes but the zero one.

Consequently, the action S(±) is also split,

S = S
(±)
0 + S̃(±), (33)

into the contributions of zero (S(±)
0 ) and nonzero (S̃(±)) modes.

The total charge of the wire Q is conserved, except for the
injection moments τ = ∓τ0, where an extra electron (hole)
comes to the wire, or leaves the wire, so that

Q(±)(τ ) = qin ± θ (τ0 − |τ |) (34)

is the unique solution, satisfying the initial condition (26).
There are no currents in the zero-mode solution, therefore its
contribution to the action is due solely to the potential term,
accounted for with respect to the equilibrium value, and from
the additional energy ε, which comes with the injected electron
[see Eq. (27)]:

S
(±)
0 =

∫
dτEC

{[
Q

(±)
tot (τ )

]2 − q2
in

} − 2τ0ε

= 2τ0Ẽ
(±)
C (ε), (35)

Ẽ
(±)
C (qin,ε) = EC ∓ (ε − 2qinEC). (36)

Some comments are due at this point, since the result (35)
essentially differs from the corresponding action

SKG
0 = 2τ0EC(1 − 2T τ0), (37)

derived in Ref. [10] for the case qin = 0 and ε = 0 (so that
Ẽ

(±)
C = EC). The charge can be formally obtained by means

of integration of the equation of motion (23). The result is

Q(±)(τ ) = ±2
∑

ω

sin(ωτ0) cos(ωτ )/ω, (38)

where the Matsubara frequency summation runs over even
frequencies ω = 2πT n, with n = 0,1,2, . . .. The ambiguity
of this solution comes from the ill-defined term with ω = 0.
The result (37) arises, if one simply omits the ω = 0 term in
the sum (38). Then

Q(±)
scr (τ ) = ±[θ (τ0 − |τ |) − 2T τ0], (39)

and, substituting Q(±)
scr (τ ) for Q(±)(τ ) in Eq. (35), one obtains

the result (37) for the action. However, the charge Q(±)
scr (τ )

given by Eq. (39) does not coincide with the true total charge
of the system Q(±)(τ ). Their difference is given by the “zero-
mode” contribution Q

(±)
free ≡ Q(±)(τ ) − Q(±)

scr (τ ). Qualitative
difference between screening and zero-mode contributions
is clearly demonstrated by the spatial dependencies of the
corresponding space distributions of charge: ρ(±)

scr (τ,x) and
ρ

(±)
free(τ,x). Indeed, one can show that ρ(±)

scr (τ,x) is concentrated
close to the location of the tunneling electron and constitutes
the screening cloud, whereas ρ

(±)
free(τ,x) ∝ ρ0(x) is nearly x

independent [up to the corrections, mentioned after Eq. (31)].
We emphasize that both contributions should be taken into
account in order to obtain correct exponential dependence of
the tunneling rate with activation energy EC .

At T > Tc1 the contribution S
(±)
0 to the action plays only a

secondary role, and in the leading approximation one obtains

τ ∗
0 = 1/4T , Q(±)

scr (τ ) = ±(1/2)sign(1/4T − |τ |). (40)

If one naively neglects the contribution of the free solution,
then the formula (40) seems to remain valid also for T <

Tc1. It is the erroneous substitution of the screening charge
|Q(±)

scr | = 1/2 in place of the true total charge (34), that results
in the mysterious low-temperature activation energy EC/4,
following from the action (37).

B. Contribution of nonzero modes

The action S̃(±) is analogous to the corresponding action
for the case of the two-particle neutral source (see Ref. [4])

S̃(±)(τ0,x0) = e2

2

∑
ω

{
−j · j

σ̃ω
+ ρÛρ

}

= e2

2

∑
ω

1

ω
J̃ Ĝ+Û J̃

= e2

2

∑
ω

4 sin2(ωτ0)

ω
[(ω − σ̃ Û �̂)−1Û ](x0,x0),
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ρ(x,ω) = ĜJ̃ , j (x,ω) = σ̃ ∇̂Ûρ = σ̃ ∇̂Û ĜJ̃ ,

Ĝ = [ω − σ̃ �̂Û ]−1, Ĝ+ = [ω − σ̃ Û �̂]−1,

�̂ ≡ d2

dx2
. (41)

To evaluate S̃(±) it is convenient to use an orthonormal basis
of eigenfunctions ϕm(x) and eigenvalues �m of the Hermitian
operator Ĝ+ · Û entering the expression (41):

S̃(±) = e2

2

∑
ω,m
=0

(4�m/ω) sin2(ωτ0)|ϕm(x0)|2,

ϕm(x0) =
√

2Um/L cos(πmw), ϕ0(x0) =
√

Um/L, (42)

�m =
{
ω + π2m2Umσ̃

L2

}−1

, Um = 2

ε
ln

[
2L

a(m + 1)

]

(see Ref. [4] for details). Here

w = 1/2 − |x0|/L ≡ �L/L, (43)

�L being the distance from the contact to the closest end
of the wire. The eigenfunctions ϕm(x) are nothing else but
the “potential modes;” the corresponding “charge modes” are
ρm(x) = [Û−1ϕm](x). To simplify the expression (42) we note
that Um only logarithmically depends on m, so that one can take
it from under the summation sign, putting Um → U ≡ Um,
where m is the characteristic value of m, corresponding to
terms, that give the principal contribution to the sum over m

in Eq. (42). The value of m will be found a posteriori. As a
result,

S̃(τ0,x0) = e2

L
U

∑
ω

4 sin2 ωτ0

ω

∞∑
m=1

cos2 (πmw)

ω + π2m2σ̃U/L2
. (44)

Finally, for the total action we get

S(±)(τ0,x0)

= 2τ0Ẽ
(±)
C (ε) + e2

L
U

∑
ω

4 sin2 ωτ0

ω

∞∑
m=1

cos2(πmw)

ω + π2m2σ̃U/L2
.

(45)

We note that the contribution of nonzero modes depends
neither on ε nor on q: These variables only enter S

(±)
0 through

Ẽ
(±)
C (ε).
Obviously,

∂S̃/∂τ0|τ0=1/4T = 0, (46)

so that in all those cases, when the total action is dominated
by the nonzero modes (i.e., when S̃ � S0)

τ ∗
0 = 1/4T . (47)

In the case of S̃ � S0 the optimal duration τ ∗
0 can not be found

from Eq. (46), and, therefore, τ ∗
0 
= 1/4T . In particular, it is

so for very low T and/or high bias voltage V.

C. Space-time structure of the instanton solution

It should be noted that the duration of the instanton core τ ∗
0

does not coincide with the conventional value τtun = 1/2T of
the under-barrier time for general thermoactivated tunneling.

+i/2T

-i/2T

+i

-i
(1) (2)

(3) (4)
0

0

*

*

t0

t0

t0

t0

t0

FIG. 5. The Keldysh time contour in the complex t plane for the
one-particle tunneling. Parts of the contour, where an extra electron
is in the wire, are shown by thick lines. About physical meaning of
different segments of the contour, see the text.

Though it seems to be a paradox, this is only due to a
misinterpretation of τ ∗

0 as a tunneling time. Indeed the full
tunneling time is still τtun = 1/2T also in our case, as it is
illustrated in Fig. 5. Let us consider a sequence of processes
on the lower part of the Keldysh contour (see Fig. 5),
describing the amplitude of the transition (while the upper
part corresponds to its complex conjugate). It consists of four
segments.

(i) On the initial segment (1) the cloud of screening
charge, that will later accommodate an extra electron, is partly
created due to purely classic thermodynamic fluctuation (with
a proper Gibbs probability). The corresponding countercharge
is moved to spatial infinity and distributed over the system
homogeneously. An extra electron, which will later jump from
the contact to the wire, is still in the lead. The entire system
is above the barrier (in a classically accessible region) on
the stage (1), the fact of which is reflected by the horizontal
direction of the (real) time flow. Note that the probability of
that part of the fluctuation, which is provided classically, is
temperature dependent.

(ii) The moment t = t0 − i/2T is just a classical turning
point: Up to this point [on the stage (1)] the system evolved
in the classically accessible domain, while on the stage (2) it
enters the classically forbidden one, and the tunneling begins.
Since the charge is transferred to the system only at the moment
tin = t0 − iτ ∗

0 , the current and charge distribution is changed
both before and after this moment of injection. On the stage (2),
between t = t0 − i/2T and tin, an extra electron is still absent;
“native” electrons of the wire do the job on their own, just “out
of hospitality.” However, further contraction of the screening
cloud costs additional energy, so that the system of electrons
in the wire goes under the barrier: The time here flows in the
imaginary direction.

(iii) Then, finally, at the moment tin = t0 − iτ ∗
0 an extra

electron hops from the contact into the center of the partly
prepared screening cloud in the wire. However, since this cloud
is only “half-ready,” the entire system still finds itself under
the barrier. On the stage (3) the system makes its way from
under the barrier: The composite cloud, now consisting of the
native electrons plus the guest one, proliferates and becomes
smoother, so that the potential energy of the system decreases.

(iv) At the moment t = t0 the system gets from under
the barrier, the time flow again turns to the real direction.
On the stage (4) the composite cloud continues to proliferate,
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Q   = ½Q   =-½

Q    =0

Q   =1

0< 0-

0->

< 0- 0->0

<<1/T

=1/4T

scr

scr

scr scr

*

**
*

*
*

FIG. 6. Imaginary time evolution of the spatial shape of the
instanton. Upper panel: nonlinear case (τ ∗

0 � 1/T ); the charge
separation proceeds in the tunneling mode, the screening charge
Qscr = 0 before the injection of an electron at τ = −τ0, and Qscr = 1
after the injection. Lower panel: linear regime (τ ∗

0 = 1/4T ); the
countercharge has escaped to spatial infinity already on the classical
stage of the process, so that the tunneling inhomogeneous density has
nonzero charge Qscr = −1/2 at τ < −τ0.

and the released potential energy (its total amount being
determined by the initial classic fluctuation) is gradually
dissipated.

The evolution of the spatial shape of the density of the
screening charge is shown in Fig. 6. Note that the above
multistage scenario is quite common. In this exact way the
hopping of small polarons [14] and the self-trapping processes
[15] are organized: The hop of an electron is always preceded
by the formation of a preliminary fluctuation (partly classical
and partly quantum). The idea that an electron just hops
unexpectedly into a completely unprepared system, and only
then the accommodation process starts, is incorrect. Though
such a misconception normally leads to qualitatively reason-
able conclusions, the corresponding under-barrier action is
always considerably overestimated, which indicates that the
underlying scenario is not the optimal one.

IV. ONE-DIMENSIONAL ZERO BIAS ANOMALY IN A
FINITE SYSTEM

In this section we discuss the case of relatively high
temperature T � Tc1, when the discreetness of charge is not
crucial and the contribution of zero-mode S0 � S̃ and can be
treated perturbatively.

A. Low energies: temperature dominated regime

If the bias voltage is relatively low, then in the zero approx-
imation the formula (47) is valid. In the first approximation
one can write

S(±) = Ẽ
(±)
C /2T + 4e2U

πL

∞∑
k=0

1

2k + 1

×
∞∑

m=1

cos2(πmw)

2πT (2k + 1) + π2m2σ̃U/L2
. (48)

If, moreover, T � Tc2 � Tc1, then the summation over m

in Eq. (48) can be replaced by integration. Introducing new
variable u = πmLc

L
√

2k+1
we get

S(±) = Ẽ
(±)
C /2T + (2/π )

√
2Tc3/T

∞∑
k=0

(2k + 1)−3/2

×
∫ ∞

−∞

du

2π

1 + cos[2u
√

2k + 1(�L/Lc)]

1 + u2
, (49)

where the spreading length

Lc(T ) = (ξ/2π ) (2Tc3/T )1/2 ≈ (L/2π )(2Tc2/T )1/2 (50)

defines the spatial scale on which the cloud of screening charge
proliferates on the tunneling stage of the process. Finally, we
arrive at the result

Z(±)(x0) ∼ exp

{
−0.76 B

(
�L

Lc

)(
Tc3

T

)1/2

− Ẽ
(±)
C (ε)

2T

}
,

(51)

where the universal function shown in Fig. 2 is given by

B(z) = [ζ (3/2)(1 − 2−3/2)]−1
∞∑

k=0

(2k + 1)−3/2

×{1 + exp[−2z
√

2k + 1]}

≈
{

1, for z � 1,
2, for z � 1. (52)

The result (51) is valid in the temperature range

Tc2 � T � Tc3, (53)

and for low energies

ε � (T Tc3)1/2. (54)

Under these conditions the exponent in Eq. (51) is dominated
by the first term; the second one is a relatively small correction
(though it still can be large, compared to unity). We keep
this correction mostly because it contains the dependence on
parameters ε and q, while the leading term does not depend
on them.

It is important to note that the exponent in Eq. (51) (the ac-
commodation action) is increased by a factor of 2 if the contact
is moved to the end of the wire: The density of states at the ends
of the wire is suppressed much stronger than in the middle.

B. High energies: voltage dominated regime

For large ε, as we will see, τ ∗
0 � 1/T and the summation

over ω can be replaced by integration. For small τ0

S̃(τ0) = 2e2U

∫ ∞

0

sin2(ωτ0)dω

πω

∫
dq

2π

1 + cos (2q�L)

ω + q2σ̃U

= e2

(
U

σ̃

)1/2 ∫ ∞

0

sin2(ωτ0)dω

πω3/2

×
{

1 + exp

(
−2�L

√
ω

σ̃U

)}

= 2(Tc3τ0)1/2B̃

(
�L

Lc(τ0)

)
, (55)
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FIG. 7. Plot of the universal function β(z), defined by Eq. (59).

where the spreading length Lc(τ0) = ξ
√

Tc3τ0/π , and the
universal function

B̃(z) = 2√
π

∫ ∞

0

sin2 t2dt

t2
(1 + exp {−2zt})

≈
{

1, for z � 1,

2, for z � 1,
(56)

only slightly differs from B(z), defined by Eq. (52). Substitut-
ing Eq. (55) into Eq. (28) we obtain

τ ∗
0 ≈ Tc3

(2ε)2
μ

(
�L

Lc

)2

, Lc(τ ∗
0 ) = Lcμ

(
�L

Lc

)
, (57)

Lc = ξ

2
√

π

Tc3

ε
, S ≈ β

(
�L

Lc

)
Tc3

2ε
, (58)

where functions μ(z) and β(z) are defined as follows: We
define a function B(μ,z) ≡ μ2(2B̃(z/μ)/μ − 1), find the
position of its maximum as a function of μ, and denote the
corresponding value of μ as μ(z); finally the value ofB[μ(z),z]
is denoted as β(z):

β(z) = max
μ

{μ2(2B̃(z/μ)/μ − 1)}

≈
{

1, for z � 1,

4, for z � 1,
. (59)

The function β(z) is shown in Fig. 7. As a result

Z(±)(x0) ∼ exp

{
−β

(
�L

Lc

)
Tc3

2ε

}
, (60)

which is valid under conditions

T � Tc3, (T Tc3)1/2, EC � ε � Tc3. (61)

In this range the density of states Z does not depend on
temperature. Again, the suppression of Z is much stronger
at the ends of the wire: Here the accommodation action is four
times larger than in the middle.

V. ARRHENIUS REGIME: LOW TEMPERATURES,
LOW ENERGIES

At lowest temperatures T � Tc1 the contribution of the
zero mode to the action plays a crucial role. In this case the

relation (47) is not valid anymore, we will see that τ ∗
0 ≈ 1/2T .

More precisely,

τ ∗
0 = 1

2T
θ (Ẽ(±)

C (ε)) − η · sign(Ẽ(±)
C (ε)), (62)

with η � 1/T , so that

S(±) = E
(±)
act (ε)/T + �S(±), (63)

where

E
(±)
act (ε) = Ẽ

(±)
C (ε)θ (Ẽ(±)

C (ε)) = EC(1 ± 2qin) ∓ ε, (64)

�S(±)(η) = e2

L
U

∑
ω

4 sin2 ωη

ω

∞∑
m=1

cos2(πmw)

ω + π2m2σ̃U/L2

− 2η|Ẽ(±)
C (ε)|. (65)

Because of the inequality η � 1/T one can replace summa-
tion over ω in Eq. (64) by integration:

�S(±)(η) = −2η|Ẽ(±)
C (ε)| + e2

L
U

∫ ∞

0

4 sin2 ωη

πω
dω

×
∞∑

m=1

cos2 (πmw)

ω + π2m2σ̃U/L2
, (66)

so that the T independence of �S becomes obvious in this
limit. Introducing the dimensionless energy y = ω/πTc2, we
get

�S(±) = −2|Ẽ(±)
C (ε)|η + 2R

π2

∫ ∞

0
4 sin2[y(πTc2η)]

dy

y

×
∞∑

m=1

cos2 (πmw)

y + m2

= R U(πTc2η,|x0|/L,|Ẽ(±)
C (ε)|/EC)), (67)

where the universal function

U(γ,z,θ ) = −(2θγ /π ) + 8
∫ ∞

0
sin2

(
γ u2

π2

)
du

u2

×
{

cosh (2zu) + cosh u

2 sinh u
− 1

u

}
. (68)

The condition ∂U/∂γ = 0 follows from Eq. (28), and we
arrive at

�S(±) = R 	(z,1 ± 2q), (69)

	(z,θ ) = max
γ

U [γ,z,θ ] . (70)

Using the definition (68) of U it is easy to derive the property

	(1/2,δq) = 4	(0,δq). (71)

In the nonresonant case (when |Ẽ(±)
C (ε)| is not very small)

we need to know 	(z,θ ) for θ ∼ 1, which can only be found
numerically. The function 	(z,1) is plotted in Fig. 3.
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As a result, at T � |Ẽ(±)
C (ε)| we obtain

Z(±)(x0) ∼ exp

{
−E

(±)
act (ε)

T
− R	

(
|x0|
L

,
|Ẽ(±)

C (ε)|
EC

)}
. (72)

Below the threshold, for Ẽ
(±)
C (ε) > 0 the tunnel density of

states for electrons with energy ε (holes with energy −ε) obeys
the Arrhenius law with the activation energy E

(±)
act (ε) > 0. The

exponent in Eq. (72) is dominated by the first (activational)
term. The second (temperature-independent) term, being rela-
tively small, is, however, large, compared to unity. Moreover,
it depends on both x0 and ε. Because of the property (15)
the corresponding T -independent suppression of Z is much
stronger, if the contact is placed close to the end of the wire.

Above the threshold, for Ẽ
(±)
C (ε) < 0 the activational term

is absent, and the suppression of Z is due solely to the second,
T -independent term in the exponent of Eq. (72), which is
symmetric with respect to the threshold. This suppression is
also enhanced, if the system is driven to the resonance (i.e.,
Ẽ

(±)
C (ε) → 0) from either side. The resonant case is considered

in the next section.

VI. RESONANT CASE

A. Low temperatures

In the resonant case we can use the small-θ and large-γ
asymptotics

U ≈ λ(z) ln γ − 2θγ /π, λ(z) = (1/12) + z2. (73)

The maximum of U(γ,z) is then reached at γ = γ ∗ ≈ λ(z)/θ ,
so that one easily arrives at

	(z,θ ) ≈ 2λ(z) ln(1/θ ), (74)

and, finally,

Z(±)(x0) ∼
(

|Ẽ(±)
C (ε)|
EC

)2Reff (x0)

exp

{
−E

(±)
act (ε)

T

}
, (75)

Reff(x0) = Rλ(x0/L). (76)

The result (75) is only valid under condition T � |Ẽ(±)
C (ε)|/R.

Indeed, the above consideration was based on the assumption
η � 1/T , while the actual value of η = η∗ in the resonant
case is given by

η∗ = γ ∗/πTc2 ≈ Reff(x0)/π |Ẽ(±)
C (ε)|. (77)

Using the explicit expression (77) for η∗, it is easy to show that
the condition η∗ � 1/T is equivalent to T � |Ẽ(±)

C (ε)|/R.

B. Intermediate temperatures

What happens in the intermediate temperature range
|Ẽ(±)

C (ε)|/R � T � Tc2? Here we come back to the situation
where the contribution of zero mode is relatively small and,
therefore, the relation (47) is approximately valid. It means that
formula (48) can be used. Moreover, since the temperature in
our present case is relatively low (T � Tc2), the sum over k

in Eq. (48) is logarithmic and can be replaced by integration

over ω:

S̃ ≈ 4e2U

πL

Tc2/T∑
k=0

1

2k + 1

∞∑
m=1

cos2 (πmw)

π2m2σ̃U/L2

= (4R/π2) ln(Tc2/T )
∞∑

m=1

cos2 (πmw) /m2

= 2λ (x0/L) R ln (Tc2/T )

= 2Reff(x0) ln(Tc2/T ). (78)

Combining this result with Eq. (75), we can write

Z(±)(x0) ∼ exp{−E
(±)
act (ε)/T }

× (max{|Ẽ(±)
C (ε)|,RT }/EC)2Reff (x0), (79)

which is valid in the entire range T � Tc2.

C. Environmental theory: how to find the spreading resistance

The expression (79) is very similar to the well-known result
of the “environmental theory” [6], where, instead of Reff(x0),
the ohmic resistance of the environment Renv appears. It means
that, in the resonant case, the zero mode plays the role of
the charge degree of freedom, corresponding to an effective
zero-dimensional island with the charging energy E

(±)
act , while

the rest of the modes form an effective resistive environment.
The spreading resistance Reff(x0) entering Eq. (75) gives an
explicit expression for the phenomenological environmental
resistance, which can therefore be explicitly related to the
geometry of the experiment. Below we give a general recipe
for finding Reff in arbitrary geometry.

Exploring our calculation, we note that, in the leading
logarithmic approximation, we have actually neglected ω-term
in the denominator of Ĝ+. It means that

S̃ = e2

2
(J̃ · Ĝ+|ω=0 · Û · J̃ )

Tc2∑
ω∼T

4 sin2(ωτ0)

ω

= −(2/ξ ) ln (Tc2/T ) (J̃ · �̂−1 · J̃ ). (80)

The matrix element (J̃ · �̂−1 · J̃ ) is easy to evaluate in the
coordinate representation. Having in mind the definition (32)
of J̃ , we find the potential distribution

ϕ(x) ≡ �̂−1J̃ = (x − x0)θ (x − x0) − (L/2 + x)2/2L

and rederive

(J̃ · �̂−1 · J̃ ) =
∫

ϕ(x)J̃ (x)dx = −Lλ(x0/L). (81)

This result suggests the following general recipe for finding the
effective environmental resistance Reff(r0), valid for an island
of an arbitrary shape (not necessarily quasi-one-dimensional):
Suppose that the current I0 is injected into the island at the
point r0 and collected homogeneously from the entire volume
V of the sample (see Fig. 8):

J̃ (r) = I0 (δ(r − r0) − 1/V ) . (82)

For such a setup one should find the distribution of the
potential V (r) from the continuity equation σ�V = J̃ and
then calculate the power W emitted in the external circuit.
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r0

I0

FIG. 8. The distribution of the injected and collected currents,
corresponding to the effective spreading resistance Reff (r0).

Finally, the effective resistance is

Reff(r0) = W/I 2
0 = −(

1/I 2
0

) ∫
J̃ (r)V (r)dr. (83)

If the contact has its own ohmic resistance Rcon, then it is
connected in series with Reff(r0), so that the total effective
resistance in Eq. (75) takes a form R

(tot)
eff = Reff(r0) + Rcon.

D. Illustration: a toy model

A physical interpretation of the strong suppression of Z

factors by the power-law factors depending on temperature
[see Eqs. (75) and (79)] can be proposed in terms of a single-
mode toy model. Suppose that the system can be qualitatively
described by a single configurational coordinate X which
somehow reflects the proliferation of the screening cloud in the
wire. The corresponding “adiabatic potential” Ueff(X), shown
in Fig. 9, diverges at a certain point X0 at which an extra particle
is injected into the system. The divergency is, however, weak
enough that the singularity does not dominate the tunneling
action; that remains finite. The system tunnels under the
barrier with the optimal energy εtun, which is determined
by the standard condition τtun(εtun) = 1/2T (see Ref. [15]).
The Coulomb ZBA regime (T � Tc2) is characterized by
εtun � EC . For T � Tc2 the under-barrier action is dominated
by the large-X tail of the adiabatic potential, which decreases,
as X−2, so that the action logarithmically diverges. This
divergency is cut at the turning point X ∼ Xc(εtun), which is
controlled either by finite temperature (if Eact � εtun � EC)
or by finite Eact (if εtun − Eact � Eact). Note that, although
this simplistic model is useful for qualitative understanding of
the nature of different regimes of tunneling, it is too crude to
reproduce any quantitative results.

X

EC

X X
E

c

Ueff

tun

0

>0

X

EC

X X
E

c

Ueff

tun

0

-0
0

FIG. 9. The adiabatic potential for the single-mode toy model.
Left panel: Ẽ

(±)
C > 0, right panel: Ẽ

(±)
C < 0. The effective configura-

tional coordinate X tunnels under the barrier at optimal T -dependent
energy εtun. At point X = X0 an extra particle is injected into the
wire.

VII. THE LINEAR CONDUCTANCE

The results of the preceding Secs. III–VI depend on the
values of initial number of extra electrons in the wire N

and the initial energy of the tunneling particle ε through the
combination Ẽ

(±)
C (qin,ε) [see Eqs. (36) and (26)]. For high

bias voltages the probability distribution P (±)(N,ε) for N and
ε is driven out of equilibrium, and should be found from the
kinetic equations. This issue we will discuss in detail in a
separate publication. In the present paper we concentrate on
the linear case, when the equilibrium is not destroyed, and

P (±)(N,ε) ∝ exp

{
−EN

T

}
fF (±ε), (84)

EN = EC(N2 + 2qN ), fF (ε) = 1

1 + eε/T
. (85)

In the linear case the characteristic value of ε is of the order of
T .

In the low temperature domain (for T � Eact) the probabil-
ity to have N 
= 0 is exponentially small: PN ≈ δN,0. However,
one should be accurate at this point, because the subsequent
tunneling events are not independent; it would be wrong just
to calculate the current, say, through the contact A, using the
equilibrium distribution function PN . The correlations should
be properly taken into account.

Indeed, when an electron (a hole) tunnels into the wire, the
number N changes: N → N + 1 (N → N − 1). This change
leads to an exponentially strong enhancement of a subsequent
tunneling of a hole (an electron). As a result, the process of the
charge transfer through the system consists of correlated pairs
of events. Such a pair may be tunneling of an electron almost
immediately followed by tunneling of a hole, or vice versa. In
other words, at low temperatures T � Eact the current consists
of two independent contributions: The contribution of electors
is due to processes in which an electron first tunnels to the
system and then leaves it, while no other tunneling events
have a chance to take place between these two. Similarly,
the contribution of holes involves tunneling of a hole to the
system with subsequent tunneling away, again, without any
interference with possible other events. The corresponding
currents are

I (+) = 1

2
gAZ(+)(xA,N = 0)V

× gBZ(+)(xB,N = 1)

gAZ(+)(xA,N = 1) + gBZ(+)(xB,N = 1)
, (86)

I (−) = 1

2
gBZ(−)(xB,N = 0)V

× gBZ(−)(xB,N = −1)

gAZ(−)(xA,N = −1) + gBZ(−)(xB,N = −1)
,

(87)

where

Z(±)(x,N ) =
∫ ∞

0
fF (±ε)dεZ(±)(x,N,±ε) (88)

within the exponential accuracy Z(±)(x,N ) ∼ Z(±)(x,N,0).
The factors in the lower lines of Eqs. (86) and (87) are nothing
but the branching ratios: the probabilities for an electron (hole)
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that was injected through the contact A(B) to escape the wire
through the contact B(A). Note that only these sequences of
events end up in a net current through the system. The factors
1/2 in the first lines of Eqs. (86) and (87) take into account the
fact that only electrons (holes) participate in each contribution
I (+) or I (−) and, effectively, only one half of the total density
of states is involved in each case.

In the equilibrium state the detailed balance should be
established, therefore

PNZ(±)(x,N ) = PN±1Z
(∓)(x,N ± 1). (89)

Substituting the relation (89) into (86) and (87), we finally get
the results (9) and (10), where, for brevity, we have written
Z(±)(x) instead of Z(±)(x,ε = 0,N = 0).

It should be stressed that the results (9) and (10) are rigorous
at T � Eact: In principle, it would allow for finding the
correct preexponential factor for the current, provided that
valid preexponential factors were known for Z± functions.
In this paper, however, we have calculated Z± only with
an exponential accuracy, so that the potential abilities of
the general results (9) and (10) were not fully utilized, and
the preexponential factor of the current was not explicitly
obtained.

It is also interesting to note that the results (9) and (10)
remain valid in the high temperature case as well, when there
is no correlation between subsequent tunneling events, and
the formulas (86) and (87) do not seem to work. However,
effectively, they still do work, because at T � Eact the
factor Z(±)(x,N ) ceases to depend on N and on the sort of
particle (electron or hole). Thus, the formulas (9) and (10) are
exact in both limiting cases T � Eact and T � Eact. In the
intermediate case T ∼ Eact we were not able to prove them
rigorously, but we expect them to be qualitatively correct.

VIII. CONCLUSION

We have developed in this paper a detailed theory of
charge transport in the presence of Coulomb blockade for a
quasi-one-dimensional extended conductor poorly connected
to Ohmic contacts. Such a theory is expected to be applicable,
for example, for the description of transport measurements on

multiwall carbon nanotubes, see experimental paper [16] and
review [17].

Our theory provides results both for the lowest temperatures
where Arrhenius dependence of the Coulomb blockaded
conductance is predicted and for the intermediate temperature
range where major T − dependence is of power-law type. We
have shown that an accurate treatment of the zero mode,
with proper accounting for the initial condition, leads to
the low-temperature Arrhenius dependence of the Coulomb
blockaded conductance, with the correct activation energy
Eact = EC(1 − 2|q|), as required by the thermodynamics.
Besides this activational exponent, there is an additional
T -independent exponent, due to the tunneling penetration of
the barrier in the configurational space.

An intermediate temperature range, where the T depen-
dence is a power law, is especially broad in the nearly-resonant
case when effective charging energy is strongly suppressed.
Here, in addition to the previously studied [4] cotunneling
scenario, we provided a detailed calculation of power-law
exponents which describe the effect of “shakeup” of the
low-energy environmental modes, as in the phenomenological
theory of environmental Coulomb anomaly. The role of
effective environment here is played by the inhomogeneous
modes of the charge distribution in the wire. We derive explicit
expressions for the corresponding effective environmental
resistance Reff and predict its strong dependence on the
position of the contacts: Reff = R/3 for the contact at the end
of the wire, and Reff = R/12 for the contact at the center. The
result of competition between the activation and cotunneling
scenarios also strongly depends on the position of the contacts.
If the contacts are moved from the ends of the wire towards its
center, the crossover to the cotunneling mechanism is shifted
to higher temperatures.
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