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We develop a continuous-time quantum Monte Carlo (CTQMC) method for quantum impurities coupled to
interacting quantum wires described by a Tomonaga-Luttinger liquid. The method is negative-sign free for any
values of the Tomonaga-Luttinger parameter, which is rigorously proved, and, thus, efficient low-temperature
calculations are possible. Duality between electrons and bosons in one-dimensional systems allows us to construct
a simple formula for the CTQMC algorithm in these systems. We show that the CTQMC for Tomonaga-Luttinger
liquids can be implemented with only minor modifications of previous CTQMC codes developed for impurities
coupled to noninteracting fermions. We apply this method to the Kane-Fisher model of a potential scatterer
in a spin-less quantum wire and to a single spin coupled with the edge state of a two-dimensional topological
insulator assuming an anisotropic XXZ coupling. Various dynamical response functions such as the electron
Green’s function and spin-spin correlation functions are calculated numerically and their scaling properties are
discussed.
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I. INTRODUCTION

Electronic correlations play fundamental roles in determin-
ing low-energy phenomena in one-dimensional electron sys-
tems [1,2]. Bosonization is a powerful technique to treat such
correlations exactly. In the presence of impurities, however,
it is well known that impurities in one-dimensional systems
drastically influence transport properties of the systems. Such
an example has been found in a classical model by Kane and
Fisher in their pioneering work about a backward scattering
potential problem in a spinless quantum wire [3]. There, for
the case of repulsive interaction [Tomonaga-Luttinger (TL)
parameter g < 1], the conductance G vanishes at zero tem-
perature (T = 0) and the potential barrier becomes infinitely
strong and cut the wire into two parts, while for attractive cases
with g > 1, the potential becomes zero in the low-energy limit
and there remains a finite value of the conductance at T = 0.

For acquiring knowledge about thermodynamic, transport,
and dynamical properties of such systems, bosonization
combined with perturbative renormalization group meth-
ods [3–5], Bethe ansatz [6], and functional renormalization
group [7] have been intensively used so far. To obtain
numerically exact results for bosonized impurity problems,
path integral Monte Carlo approaches have been employed
[8–10]. A bosonic numerical renormalization group
method [11] is also a powerful technique to investigate their
low-energy properties. While they are very useful approaches,
there is still need for even more powerful numerical approaches
that allow to compute wide range of temperature properties
and dynamical correlation functions even for more complex
models in an exact way.

To this end, in this paper, we will develop a continuous-
time quantum Monte Carlo (CTQMC) method [12–15] in
the Tomonaga-Luttinger liquid (TLL) in one-dimensional
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systems coupled to an impurity. The CTQMC previously
has been developed to describe quantum impurities coupled
to noninteracting environments. It has mainly been used for
fermionic systems and extensively used in the framework of
the dynamical mean-field theory [16] as an exact numerical
solver for the effective-impurity problem in it. Recent de-
velopment [17,18] of the algorithm also enables us to treat
bosonic systems and mixture of bosons and fermions. The
advantage of the CTQMC is that this allows us to calculate
various quantities at low temperatures in efficient ways and for
some simple models there is no negative-sign problem [13,14].

Our algorithm of CTQMC for TLL has advantages in the
following points. (i) Bosonization allows us to treat correlation
arising from strong interactions in the environment exactly. (ii)
There is no negative-sign problem for any parameters, which
is, indeed, proved analytically. This enables us to carry out
low-temperature analysis with high precision. (iii) There are
close relations to the fermionic version of CTQMC, although
the whole algorithm is written in the bosonization language.
This enables ones to implement the CTQMC for the TLL
easily from their fermionic CTQMC code. (iv) The method
can be applicable to not only potential scattering problems but
also to Kondo-type problems [19–21] without a negative-sign
problem. (v) The electron Green’s functions, the boson-
boson correlations, conductance, the spin-spin correlation
functions, and various local correlators are calculable. (vi)
Compared with lattice QMCs, our formalism is free from
finite-size effects at low temperatures and phase spaces for
the random walk is expected to be much smaller, and, thus, the
computational cost is much lower.

This paper is organized as follows. In Sec. II, we will explain
the models used in this paper. Section III will be devoted to
illustrate our algorithm of the CTQMC for TLL. The method
will be applied to the Kane-Fisher model [3] in Sec. IV A and
the XXZ Kondo problem [19–21] in Sec. IV B. We will discuss
possible extension in Sec. V and summarize the present results
in Sec. VI.
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II. MODELS

In this section, we will introduce our model. First, we
will show a one-dimensional Tomonaga-Luttinger liquid
Hamiltonian and explain our notation of the bosonization
we will use throughout this paper. The second part is an
introduction of impurity-electron interactions. We will use a
general expression that can be used in two models we will
discuss in Sec. IV.

A. One-dimensional bulk Hamiltonian

We consider spin-less fermions in one-dimensional (1D)
systems whose noninteracting Hamiltonian is given by [2]

H1D = ivF

2π

∫ l
2

− l
2

dx :{ψ†
L(x)∂xψL(x) − ψ

†
R(x)∂xψR(x)}:,

(1)

where ψ
†
L,R(x) is the fermion creation operator at the position x

and L(R) refer to left(right)-moving component. :A: indicates
the normal ordering of the operator A, l is the system size, and
vF is the Fermi velocity. The fermion field ψL,R(x) satisfies
the anticommutation relation

{ψρ(x),ψ†
ρ ′ (x ′)} = 2πδρρ ′δ(x − x ′). (2)

Following the standard bosonization procedure [2,4], we
define bosons φL,R(x) as

ψL,R(x) = a−1/2FL,ReiφL,R (x), (3)

where a is the short-distance cutoff. The Bose fields satisfy

[φρ(x),∂x ′φρ ′ (x ′)] = 2πiδρρ ′

[
δ(x − x ′) − 1

2l

]
, (4)

where the O(l−1) term is explicitly written. Two Klein
factors FL and FR have been introduced in Eq. (3) to
reproduce the anticommutation relation of ψR,L [Eq. (2)].
Their anticommutation relation is

{Fρ,F
†
ρ ′ } = 2δρρ ′ with F †

ρFρ = FρF
†
ρ = 1 (5)

and

{F †
ρ ,F

†
ρ ′ } = {Fρ,Fρ ′ } = 0, for ρ �= ρ ′. (6)

Note that FρFρ �= 1, and the two bosons are independent fields
commuting with each other and with the Klein factors, which is
a physically correct description as is evident from the definition
of L and R [4].

Electron-electron interactions are easily taken into account
in the bosonized theory and then the bosonized Hamiltonian
reads

H1D = v

4

∫ l
2

− l
2

dx

2π
:

{
1

g
[∂xφ−(x)]2 + g[∂xφ+(x)]2

}
: , (7)

with φ±(x) = φL(x) ± φR(x) and g is the TL parameter that
characterizes the bosonic theory: g = 1 corresponds to the
noninteracting case and 0 < g < 1 (g > 1) describes repulsive
(attractive) interactions, respectively. The velocity vF is now
renormalized as v ≡ vF /g. Throughout this paper, we will be
interested in the repulsive case.

For later purposes, we introduce another representation
following Delft and Schoeller as [4]

�±(x) = 1

2
√

2

{(
1√
g

+ √
g

)
[φL(x) ∓ φR(−x)]

±
(

1√
g

− √
g

)
[φL(−x) ∓ φR(x)]

}
. (8)

Then the Hamiltonian (7) is rewritten as

H1D = v

2

∫ l
2

− l
2

dx

2π
:{[∂x�−(x)]2 + [∂x�+(x)]2}:. (9)

At x = 0, a simple relation holds [4],

�± ≡ �±(0) = g∓1/2

√
2

[φL(0) ∓ φR(0)]. (10)

B. Impurity potentials

Now, we introduce interactions between a quantum impu-
rity located at x = 0 and the interacting electrons of the TLL.
We consider a coupling by single-particle scattering (general-
ization to more complicated interactions is straightforward but,
of course, model dependent). The interactions, V = V σ

F + VB ,
are decomposed into two parts, a forward-scattering channel,
V σ

F , and a backward-scattering channel described by VB ,

V σ
F = λF :[ψ†

L(0)ψL(0) − σψ
†
R(0)ψR(0)]:X̂σ

F , (11)

VB = λBψ
†
L(0)ψR(0)X̂B + H.c. (12)

The scattering of electrons can change the state of the impurity
(e.g., flip a spin). This is described by the impurity operators
X̂σ=±

F and X̂B . They will be discussed in later sections. In the
most general case, their form can be derived by first bosonizing
the model and then identifying the two terms discussed above
by comparing them to the bosonized version of Eqs. (11)
and (12) discussed below. Note that λF,B has the dimension of
[energy]×[length] and X̂’s are dimensionless operators.

In terms of the bosons, Eqs. (11) and (12) read

V σ
F = λF

√
2

gσ
∂x�σ (0)X̂σ

F , (13)

VB = ag−1λBF
†
LFR(a−gei

√
2g�+ )X̂B

+ ag−1λ∗
BF

†
RFL(a−ge−i

√
2g�+ )X̂†

B (14)

≡ λ̃BF
†
LFRV̂+√

2g(�+)X̂+
B + λ̃∗

BF
†
RFLV̂−√

2g(�+)X̂−
B ,

(15)

where X̂+
B = X̂B , X̂−

B = X̂
†
B , and λ̃B = ag−1λB . The vertex

operator is defined as

V±√
2g(�+) = a−g exp(±i

√
2g�+). (16)

This normalization of the vertex operator leads to following the
bare (i.e., in the absence of the impurity) two-point correlator
as a function of imaginary time τ ,

〈V√
2g(�+,τ )V−√

2g(�+,τ ′)〉 = |τ − τ ′|−2g, (17)
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at T → 0 for a → 0 and l → ∞ [see also the definition of
multipoint correlators in Eq. (28) below].

III. CONTINUOUS-TIME QUANTUM MONTE
CARLO METHOD

In this section, we will explain how continuous-time
quantum Monte Carlo method can be applied to the impurity
problem in the TLLs. We will demonstrate that the configu-
ration weight for a given snapshot is easily calculated by the
technique developed in fermionic CTQMCs. We will therefore
omit detailed explanations about update operations, since these
are essentially the same as in the fermionic CTQMCs [15].

A. Partition function

We want to evaluate the partition function Z,

Z = Tr exp[−β(H0 + V )], (18)

within a Monte Carlo approach. Here, the “noninteracting”
part H0 is the sum of the one-dimensional TLL and the local
impurity Hamiltonian, H0 = H1D + Himp. In this paper, we
will analyze models with Himp = 0 (e.g., a magnetic impurity
in the absence of magnetic fields). Via perturbative expansion
of V , we can express Z as

Z

Z0
=

〈
Tτ exp

[
−

∫ β

0
V (τ )dτ

]〉
0

, (19)

where Z0 = Tre−βH0 and 〈A〉0 = [TrAe−βH0 ]/Z0 and Tτ

indicates the time-ordered product. In this paper, we will
discuss situations where the forward-scattering part (λF ) can
be eliminated by an appropriate unitary transformation or
where λF = 0 due to symmetry requirements. Thus, we retain
only VB and in order to distinguish the two terms in VB , we
define

v+
B ≡ λ̃BF

†
LFRV̂+√

2g(�+)X̂+
B , (20)

v−
B ≡ λ̃∗

BF
†
RFLV̂−√

2g(�+)X̂−
B . (21)

A general N th-order term δZN in the partition function is
expressed as

δZN = (−1)N

N !

∫ β

0
dτ1 · · ·

∫ β

0
dτN

×〈TτVB(τ1)VB(τ2) · · ·VB(τN )〉0. (22)

Due to the fermion number conservation encoded by the Klein
factors, the number of v+

B in Eq. (22) has to be the same as
that for v−

B , and therefore only even N = 2k terms with k ∈ Z
contribute. Now, consider a fixed series of times {τ ; τ1 > τ2 >

· · · > τN }. Then δZN {τ } becomes

δZN {τ } = |λ̃B |2k
〈
v

σ1
B (τ1)vσ2

B (τ2) · · · vσ2k

B (τ2k)
〉
0, (23)

with σ1, σ2, . . . ,σ2k = + or −. The partition sum is obtained
by averaging over all σi , all times, and all k using a Monte
Carlo procedure.

Since the product of Klein factors gives factor unity, we can
write Eq. (23) as a product of a TLL correlator and a correlator

involving only impurity operators

δZ2k{τ } = |λ̃B |2kδZ
�+
2k {τ }δZX

2k{τ }. (24)

In the following subsections, we will analyze the two sectors
in details.

B. Impurity average

Here we discuss the local part δZX
2k . δZX

2k is the time-ordered
product of X̂±

B ’s,

δZX
2k{τ } = 〈

X̂
σ1
B (τ1) · · · X̂σ2k

B (τ2k)
〉
imp. (25)

Here 〈·〉imp is the average with respect to the impurity
Hamiltonian. As noted above, both X̂+

B and X̂−
B appear k times

and, for later convenience, we define new τ indices τ±
i with

1 � i � k, such that the operators X̂+
B (X̂−

B ) are evaluated at
the times τ+

i (τ−
i ) with time ordering in each index, τ±

i > τ±
i+1.

C. Boson average

For the bosonic part, δZ
�+
2k is the time-ordered 2k-point

correlation function of V̂±√
2g(�+),

δZ
�+
2k {τ } = 〈

V̂σ1
√

2g

(
�+,τ

σ1
1

) · · · V̂σ2k

√
2g

(
�+,τ

σ2k

2k

)〉
�+

. (26)

Here the boson average 〈·〉�+ is evaluated using the Gaussian
TLL Hamiltonian (9). It is well known that the correlation
function of vertex operators,

V̂λi
(�+,τi) = a−λ2

i /2eiλi�+(τi ), (27)

are calculated as [4]

〈Tτ V̂λ1 (�+,τ1) · · · V̂λN
(�+,τN )〉�+

=
(

2π

l

) 1
2 (

∑N
j λj )2 N∏

i<j

[s(τij )]λiλj , (28)

with

s(τij ) ≡ vβ

π
sin

[
π

vβ
(v|τij | + ε(|τij |))

]
. (29)

Here τij = τi − τj , and, in order to prevent the divergence, the
cutoff function ε(τ ) is necessary and it satisfies

ε(τ ) = −ε(β − τ ), ε(0) = a, and ε(β) = −a. (30)

In actual calculations, we will use the following function ε(τ )
throughout this paper:

ε(τ ) = a sgn(β/2 − τ ). (31)

For very high temperatures (not considered in this paper), it is
sometimes useful to use a smooth function in order to remove
the discontinuity appearing in physical quantities such as

ε(τ ) = a tanh

[
c

β/2 − τ

τ (β − τ )

]
, (32)

with c being a positive constant. In the l → ∞ limit, Eq. (28)
vanishes unless

∑
j λj = 0. Thus, a “neutrality condition,”∑

j λj = 0, has to be fulfilled. In our case, this is automatically
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enforced by the fermion number conservation and we obtain

δZ
�+
2k {τ } =

2k∏
i<j

[s(τij )]λiλj > 0, (33)

with λi,j = ±√
2g. An important observation is that Eq. (33)

is positive definite, and, thus, our Monte Carlo method is
negative-sign free if δZX

2k > 0.
Equation (33) can be further simplified via the “gener-

alized” Wick’s theorem [4], which is valid if and only if
a = 0. We utilize this theorem, although actual numerical
calculations are done with finite a. The theorem might be
most easily obtained by comparing the partition function for
noninteracting spinless fermion in one dimension and that in
the bosonization representation. The result is

δZ
�+
2k {τ } = |detŜk{τ }|2g. (34)

The k × k matrix Ŝk is given by

[Ŝk{τ }]ij = −sgn(τij )[s(τij )]−1, 1 � i,j � k, (35)

and the index i(j ) corresponds to τ−
i (τ+

j ). This form is
particularly useful, since we can use the fast-update al-
gorithm developed in the conventional fermionic CTQMC
methods [12].

IV. APPLICATIONS

In this section, we will apply our CTQMC method to
two models. One is the Kane-Fisher model describing a
backward-scattering impurity potential in a (spinless) quantum
wire [3]. The other is the XXZ Kondo problem [19–21] in
helical liquids, i.e., on the edge of two-dimensional topological
insulators.

A. Kane-Fisher model

The Kane-Fisher model is defined by considering forward
scattering X̂σ

F with σ = − and X̂−
F = 1 in Eq. (11) and by

setting X̂B = X̂
†
B = 1 in Eq. (12) as a potential scatterer

has no internal degrees of freedom. Since VF contains only
�− and VB only �+, we can separately analyze the two.
The VF part is trivial because it can be absorbed into �−
terms in H1D by a unitary transformation [4]. Thus, in the
following, we analyze VB part in details. Note that because
X̂B = 1 and thus δZX

2k = 1, we can use the positivity of (33) to
conclude immediately that there is no negative-sign problem.
Throughout this subsection, we set v = vF /g and fix vF /ξ = 1
for the unit of energy, where ξ = 1 is the relevant microscopic
unit of length, which is, for example, set by the typical width
of the potential.

The model itself has been extensively analyzed by various
authors [3–9], and now its low-energy properties are well
understood. We will study this problem as a benchmark of our
algorithm. We will discuss a physical quantity that has not been
investigated so far: the electron Green’s function in imaginary
time. This is the most natural quantity for imaginary-time
algorithms like CTQMC. Though it is not a directly measurable
quantity in experiments, the numerically exact results can
be used to obtain the density of states by using analytical
continuation techniques [22] (not covered in this paper).

1. Electron Green’s function

Let us consider the local Green’s function for ψL(τ >

0,x = 0),

GL(τ ) = −〈ψL(τ )ψ†
L(0)〉 (36)

= −a
g

2 + 1
2g

−1〈
V̂− 1√

2g
(�−,τ )V̂ 1√

2g
(�−,0)

〉
�−

×〈FL(τ )F †
L(0)〉F

〈
V̂−

√
g

2
(�+,τ )V̂√

g

2
(�+,0)

〉
�+

≡ −a
g

2 + 1
2g

−1
G−

L (τ )G+
L (τ ), (37)

with

G−
L (τ ) = 〈

V̂− 1√
2g

(�−,τ )V̂ 1√
2g

(�−,0)
〉
�−

, (38)

G+
L (τ ) = 〈FL(τ )F †

L(0)〉F
〈
V̂−

√
g

2
(�+,τ )V̂√

g

2
(�+,0)

〉
�+

.

(39)

Here, 〈· · · 〉F is the average over Klein factors. The correlation
function for the �− part G−

L (τ ) is trivial, leading to

G−
L (τ ) = [s(τ )]−

1
2g . (40)

Here s(τ ) is given by Eq. (29). Note that for our model nonlocal
Green’s function can be expressed in terms of local correlators
as the bosons of the TLL are noninteracting. In the following,
we explain how one can calculate the �+ and the Klein factor
parts G+

L (τ ) in our CTQMC.
In the Monte Carlo simulations, time-ordered averages of

an operator Â is estimated as

〈Tτ Â〉 = 1

NMC

NMC∑
m=1

〈Tτ ÂδẐNm
{τ }〉0

δZNm
{τ } , (41)

where NMC is the number of Monte Carlo samplings and we
have defined an operator form of δZNm

{τ }, see Eq. (23). For
Nm = 2k, this is given by

δẐ2k{τ } = |λ̃B |2kv
σ1
B (τ1)vσ2

B (τ2) · · · vσ2k

B (τ2k). (42)

For the Green’s function G+
L (τij ), we need to calculate

Eq. (41) with Â = FL(τi)V̂−η(�+,τi)F
†
L(τj )V̂η(�+,τj ) with

η = √
g/2. As derived in Appendix A, we need to sample the

following quantity for τij > 0,

G(2k)
i>j = (−1)Pij [s(τij )]

g

2

∣∣∣∣detŜk+1{τ ⊕ τi,τj }
detŜk{τ }

∣∣∣∣
g

. (43)

Here Pij is the number of vertices between τi and τj in the
MC snapshot and a similar expression is obtained for τij < 0.
The notation {τ ⊕ τi,τj } represents that τi and τj are added to
{τ }. Note that to derive Eq. (43), we have used the generalized
Wick’s theorem mentioned before. Then we obtain

G+
L (τij ) = 〈

G(2k)
i>j

〉
, for τij > 0, (44)

and a similar expression is applied to G+
L (τij < 0) =

−G+
L (β + τij ).

An alternative approach is, however, more efficient in
regimes where high orders of perturbation theory are needed.
Following Refs. [12,13], we can also derive an alternative

115103-4



QUANTUM IMPURITY IN A TOMONAGA-LUTTINGER . . . PHYSICAL REVIEW B 90, 115103 (2014)

expression for calculating the Green’s function G+
L (τ ). The

quantity that corresponds to Eq. (43) is now given by

G̃(2k)
i>j = (−1)Pij

|λ̃B |2 [s(τij )]
g

2

∣∣∣∣detŜk−1{τ � τ−
i ,τ+

j }
detŜk{τ }

∣∣∣∣
g

. (45)

Note that in Eq. (45), τ−
i and τ+

j are chosen in a given snapshot
{τ }, while in Eq. (43), τi and τj are external ones. This implies
that by computing one snapshot with k pairs of time variables
one obtains contribution to the Green’s function for about k2

different τij , which helps to reduce the statistical error. The
notation {τ � τi,τj } represents that τi and τj are removed
from {τ }.

Since the ratio of two determinants in Eq. (45) is simply
(Ŝ−1

k {τ })ji , which is calculated in every MC process, this
also reduces computational costs [12,13]. We can also derive
a similar expression for τi < τj , G̃(2k)

i<j . Summing over all
possible combinations (i,j ) for a given snapshot at 2kth order
and dividing by β, we obtain

G+
L (τ ) = 1

β

〈
k∑
ij

[
G̃(2k)

i>j δ(τij − τ ) − G̃(2k)
i<j δ(β + τij − τ )

]〉
.

(46)

The two alternative formulas (44) and (46) can be used for
checking the program code.

2. Bench mark for g = 1

In this subsection, we show the results for g = 1, i.e., a
system of noninteracting electrons. We compare the electron
Green’s function obtained in the CTQMC and the exact results
as follows:

G
+,ex
L (τ ) = [s(τ )]−

1
2

1 + π2λ2
B/v2

, (47)

which can be easily obtained from the equations of motion for
the Green’s functions.

Figure 1 shows G+
L (τ ) as a function of τ for β = 200 and

several parameters λ and a. In each plot, the exact result
(dashed lines) and the result of the two methods described
above are shown. The points with error bars (indicating the
statistical error arising from the Monte Carlo sampling) are
obtained from Eq. (43), while the solid lines have been
calculated from Eq. (45) (the statistical error can be read off
from the size of the noise in the curves). As one can see, the
numerical data and the exact results are consistent with each
other. More precisely, the Green’s functions are only identical
in the limit a → 0 [we used this limit both in the derivation
of the CTQMC approach and in Eq. (47)]. Figure 1 shows
that tiny systematic deviations of the exact and the numerical
result visible for a = 1 become smaller than the noise for
a = 0.25. In the following, we will always use a = 1 as the
universal properties for T � v/a and τ � a/v discussed in
the following are independent of the cutoff.

Figure 1 shows that highly accurate results are also obtained
for low T . Comparing the two computational methods (using
the same computational time), we first note that both give
reliable results. Which method is preferable depends in general
both on the perturbation order and the type of binning in
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FIG. 1. (Color online) G+
L (τ ) vs τ/β for several coupling con-

stants λB = 0.1(top)–0.5(bottom) and inverse temperatures β. The
exact result (dashed line) is compared to two numerical methods
[points with error bars: Eq. (43); solid lines: Eq. (45)]. A comparison
of panel (a) (cutoff a = 1) to panel (b) (cutoff a = 0.25) shows that
small deviations from the exact result vanish for small a. Panel (c)
shows that highly accurate results can be obtained even for very
low T .

time used to extract data. For the parameter regime used in
our calculations, we found the second approach to be more
efficient. For very high orders of perturbation theory and small
number of bins, however, the first approach can beat the second
one in efficiency. In Sec. V A, we will discuss that in regimes,
where the nonlinearities are irrelevant (attractive interactions),
the second method is inefficient.

3. Universal scaling function for electron Green’s function

The main prediction of Kane and Fisher [3] is that for
repulsive interactions, g < 1, even a weak impurity effectively
cuts the chain: Electrons scatter so efficiently from the slowly
decaying Friedel oscillations that for T → 0 and at the Fermi
energy one obtains perfect reflection. The fact that the impurity
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cuts the quantum wire can also be measured by tunneling
spectroscopy, i.e., by considering the local Green’s function
close to the impurity. Based on the assumption that the wire is
perfectly cut by the impurity, one expects for T = 0,

G+
L (τ → ∞) ∼ τ−1/(2g), (48)

as has been derived by Furusaki [5]. This prediction can be
checked analytically for g = 1/2, where an exact analytic
result can be derived [4]. Equation (48) should be compared
to G+

L (τ → ∞) ∼ τ−g/2 obtained for λB = 0, in the absence
of the impurity.

Note that for the computation of the physical electron
Green’s function one has to consider a further contribution,
GLR(τ ) = −〈TτψL(τ )ψ†

R(0)〉, in addition to GL(τ ). It is
possible to calculate GLR(τ ) using our approach, but we do
not discuss it here for simplicity.

From general scaling arguments and the analysis of Kane
and Fisher [3], one expects for a weak potential scatterer (small
λB) a crossover from G+

L (τ → ∞) ∼ τ−g/2 to G+
L (τ → ∞) ∼

τ−1/(2g) described by a universal (but g-dependent) scaling
function Fg ,

G+
L (τ ) ≈ [s(τ )]−g/2 Fg( T ∗τ ,T /T ∗), (49)

where [s(τ )]−g/2 is the Green’s function for λB = 0, see
Eq. (29). All dependence on the strength λB of the impurity
potential is thereby encoded in the characteristic energy scale
T ∗ with

T ∗ = v

a

(
λB

v

)1/(1−g)

(50)

for small λB . The universal scaling form (49) is expected to be
valid whenever T ∗ is much smaller than the cutoff energy v/a.
For T = 0 and weak λB , the short-time dynamics is determined
by the noninteracting result,Fg(x → 0,0) = 1, whileFg(x →
∞,0) ∝ x(g−1/g)/2, see Eq. (48).

In the following, we show our CTQMC results, which
confirm the expected behavior and allow us to calculate the full
scaling function describing the crossover from weak to strong
coupling. To our knowledge, this is the first demonstration of
the numerically exact Green’s function in this model.

Figure 2 shows G+
L (τ )/[s(τ )]−g/2 versus T ∗τ for several

parameter sets (β,λB) and (a) g = 0.3, (b) g = 0.5, and (c)
g = 0.75 for various temperatures T . Our numerical results
reproduce the analytically expected behaviors: First, for wide
ranges of λB the curves scale on top of each other (we
have not used an appropriately rescaled temperature, therefore
the upturns occur at different points). Second, we obtain
the analytically expected asymptotic behavior with Fg(x →
0,0) = 1, while Fg(x → ∞,0) ∝ x(g−1/g)/2, see Eq. (48).
Third, our result provides the full crossover function from
weak to strong coupling.

To prove that scaling works also at finite T , we show in
Fig. 3 G+

L (τ )/[s(τ )]−g/2 as a function of τ/β for a wide range
of coupling constants λB using a fixed ratio of T/T ∗ ≈ 0.014.
The perfect collapse of the data shows that temperature only
enters in the combination T/T ∗ as predicted by Eq. (49).

Finally, we show the T = 0 scaling functions Fg(x,0) for
g = 0.75, g = 0.5, and g = 0.3 in Fig. 4. The T = 0 curves
can simply be obtained from the small τ data (we use τ/β <
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FIG. 2. (Color online) G+
L (τ )/[s(τ )]−g/2 versus T ∗τ for various

parameter sets (β,λB ), a = 1 and (a) g = 0.3, (b) g = 0.5, and (c)
g = 0.75. Straight lines show the τ (g−1/g)/2 dependence expected from
the fixed point where the impurity cuts the chain (the factor τ g/2

originates from the asymptotic form of [s(τ )]−g/2).
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FIG. 3. (Color online) G+
L (τ )/[s(τ )]−g/2 vs τ/β for a = 1 and

various parameters (β,λB ) keeping the ratio T/T ∗ � 0.014 fixed.
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FIG. 4. (Color online) Fg(x,0) vs x for g = 0.75, g = 0.5, and
g = 0.3 with a = 1. Data for τ/β < 1/6 of each of the lines in Fig. 2
are used in order to extract the T = 0 limit.

1/6) shown in Fig. 2, which are independent of β within the
scatter of the curve. For g close to 1, T ∗ becomes exponentially
small and it becomes more difficult to extract the low T and
long τ results.

B. XXZ Kondo model in helical liquids

Along edges of two-dimensional topological insulators,
a special one-dimensional electron system is realized [19].
Namely right- and left-moving electrons have opposite spin
polarizations, up and down, respectively. The topological
protection of these edge channels is reflected by unusual
scattering properties: due to time-reversal symmetry a static
potential cannot scatter a right-moving spin-up electron into a
left-moving spin-down electron.

The situation differs in the presence of a magnetic impurity.
Using a spin-flip process, a right mover can be converted in a
left mover (and vice versa) due to the exchange interaction with
the quantum impurity. Therefore, it is an interesting problem to
study magnetic quantum impurities at the edge of a topological
insulator to investigate whether and how topological protection
is affected by their presence.

In this subsection, we examine the spin-1/2 XXZ Kondo
model [19–21]. We restrict our analysis to the case where
the total spin in the z direction is conserved. Although
this symmetry is broken in real materials, e.g., by Rashba
interactions [23,24], it is important to clarify also the basic
properties of this simplified problem. Note that the transport
properties in the presence and absence of this symmetry
qualitatively differ as the current in a helical edge state
(proportional to N↑ − N↓) can only degrade by processes
where spin conservation is violated.

We will use different units from those in the previous
subsection, and use the energy unit v/ξ = 1 for all g and
ξ = 1 as a unit of length, in order to use the same high-energy
cutoff as in previous studies [19–21]. The main results in this
subsection are the phase diagram in g-λB plane, which has been
discussed perturbatively [19,21] and the numerically exact
time and temperature dependence of the spin-spin correlation
functions for general interaction parameters.

1. Model

For XXZ Kondo model, X̂σ
F and X̂B in Eqs. (11) and (12)

are given as

X̂+
F = Ŝz, X̂−

F = 1, and X̂B = Ŝ−. (51)

We have used a slightly different quantization axis of the
impurity spin from in Refs. [20,21]: Ŝz ↔ −Ŝz and Ŝ± ↔ Ŝ∓.
Since V −

F term is a pure potential scattering in the charge sector
and equivalently �− sector, this does not affect the CTQMC
and the following discussions, we will concentrate on the �+
sector, V +

F + VB , hereafter.
First, we write the Hamiltonian in the bosonization basis

H = H1D + λF

√
2/g∂x�+(0)Ŝz + λ̃BF

†
LFRV̂+√

2g(�+)Ŝ−

+ λ̃∗
BF

†
RFLV̂−√

2g(�+)Ŝ+, (52)

where λF = Jza/2π describes the coupling of the z compo-
nent of the spin, while λB = J⊥a/2π parametrizes the strength
of spin-flip terms [20].

For the CTQMC, it is useful to transform H via a unitary
transformation Û [21],

Û ≡ exp

[
i

√
2gλF

gv
�+(0)Ŝz

]
. (53)

This erases the λF term in Eq. (52), since

ÛH1DÛ † = H1D −
√

2gλF

gv
vŜz∂x�+(0). (54)

Thus, the Hamiltonian is transformed to

ÛHÛ † = H1D + λ′
BF

†
LFRV̂+λ′ (�+)Ŝ−

+λ′∗
BF

†
RFLV̂−λ′(�+)Ŝ+, (55)

with λ′ = g′√2/g and λ′
B = λBag′2/g−1, where g′ is defined

as

g′ = g − λF /v. (56)

As will be discussed in Appendix B, it is sufficient to consider
cases for λF � gv, i.e., λ′ � 0.

The CTQMC algorithm for this model is similar to that
for the Kane-Fisher model. Indeed, an exact relation between
the partition functions of the two models is known [25].
Only even N = 2k order terms remain finite due to the
fact that the impurity spin is 1/2, i.e., Ŝ+Ŝ+ = Ŝ−Ŝ− = 0
and/or the total fermion number conservation. This also
restricts configuration space for the impurity spin in Z. We
just need to generate configurations in which S+ and S−
appear alternatively: Ŝ±(τ1)Ŝ∓(τ2)Ŝ±(τ3) · · · . Thus, we can
use algorithm similar to the “segment” representation used in
the Anderson model, which accelerates the acceptance rate in
the MC samplings [13].

2. Spin-spin correlation function

In this subsection, we explain how to calculate the dynam-
ical spin-spin correlation functions.

First, let us discuss the transverse local spin suscepti-
bility, χ⊥(τij ) ≡ [χ+−(τij ) + χ−+(τij )]/2, where χ±∓(τij ) is
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defined as

χ+−(τij ) ≡ 〈Tτ Ŝ
+(τi)Ŝ

−(τj )〉. (57)

Noting that Û Ŝ±Û † = e±i
√

2gλF /(gv)�+(0)Ŝ±, we can calculate

χ+−(τ ) = 1

β

〈
k∑
ij

Mij [δ(τ − τij ) + δ(β + τij − τ )]

〉
(58)

by sampling the following quantity:

Mij = a
2g( λF

gv
)2

|λ′
B |2 [s(τij )]−

2λF
v

∣∣∣∣detŜk−1{τ � τ−
i ,τ+

j }
detŜk{τ }

∣∣∣∣
2g′

= a
2g( λF

gv
)2

|λ′
B |2 [s(τij )]−

2λF
v |(Ŝ−1{τ })ji |2g′

, (59)

where τi and τj are chosen in a given snapshot {τ } at the 2kth
order as in Eq. (45) and the corresponding vertex operators
at τi and τj should have λi = −λ′ < 0 and λj = λ′ > 0,
respectively. For χ−+(τij ), the same expression holds with
regarding now λi > 0 and λj < 0. We also use symmetry
properties χ±∓(−|τ |) = χ±∓(β − |τ |) to obtain results for
0 � τ � β. Mij is, indeed, derived in an almost identical
way as in Appendix A 2.

Second, as UŜzU † = Ŝz, the longitudinal spin susceptibil-
ity is directly evaluated as

χz(τij ) = 1

NMC

NMC∑
i=1

〈Ŝ±(τ1) · · · Ŝz(τi) · · · Ŝz(τj ) · · · Ŝ∓(τ2k)〉imp

〈Ŝ±(τ1) · · · Ŝ∓(τ2k)〉imp
. (60)

This is possible because the operator Ŝz does not alter any
quantum numbers along the imaginary time axis in CTQMC.
In contrast, the transverse susceptibility can be calculated only
through the more complicated Eq. (59) [if one would replace
Ŝz(τi,j ) by Ŝ±(τi,j ) in Eq. (60), one would get just zero, since
the inserted Ŝ±(τi,j ) are always next to Ŝ±(τα) with τα ∈ {τ }].

3. SU(2) check for g = 1 and λF = λB

Interactions at the edge of the quantum wire destroy even
for λF = λB the SU(2) spin symmetry. In the noninteracting
electron limit (g = 1), however, the algorithm has to recover
SU(2) symmetry for λF = λB . As the algorithm treats spin-flip
and nonflip terms very differently, it is a nontrivial check of
the numerical data to see whether 2χz(τ ) = χ⊥(τ ).

Figure 5 shows χz,⊥(τ ) versus τ/β for λF = λB = 0.2 and
a = 1. As one can see, the relation 2χz(τ ) = χ⊥(τ ) holds
well. The intrinsic SU(2) symmetry breaking in the Abelian
bosonization in our scheme leads to a small ∼10% deviations
from unity for χ⊥(τ )/[2χz(τ )] for a = 1. These errors do
not alter the asymptotic behaviors for τ � 1 and we have
checked that the expected results χz,⊥(τ ) ∼ τ−2 for g = 1 are
reproduced (see also Figs. 8 and 9).

4. Phase diagram

Before starting detailed analysis, we show in Fig. 6 the
global phase diagram in the plane spanned by λF and g for fixed

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1
τ/β

λ  =λ =0.2, a=1

 200

 B        F

  1600
χ 
χ z

/2 
β=

FIG. 5. (Color online) Comparison between χ⊥(τ )/2 and χz(τ )
as a function of τ for λF = λB = 0.2, a = 1, and β = 200 and 1600.

λB = 0.1. As pointed out in the previous studies [21], there are
two phases: the screened phase (SC) where the Kondo effect
leads to a screening of the impurity and the local moment (LM)
phase where spin flips are completely suppressed for T → 0.
The phase boundary for λB = 0.1 is well described by the
recent renormalization group results for λB � λF represented
by the dashed line [21]. As discussed by Maciejko [21] and
also as discussed in Appendix B, the system is symmetric at
the solvable “decoupled points” at λF = gv and the system
for λF > gv can be mapped to that for 2gv − λB < gv and
vice versa. Thus, we have only examined the lower part of the
boundary in Fig. 6.

The two phases are easily distinguished by the temperature
dependence of χz(τ ). For example, Fig. 7 shows the typical
behavior of the two phases for g = 0.3. For the LM phase

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

LM

SC
deco

upled
 points

λ  =0.1 B

 limit (M
aciejko)

g

λ  F  Bλ  >>λ 
 F

a=1

FIG. 6. (Color online) Phase diagram as a function of the TL
parameter g and the size of the coupling of the z component of the
exchange coupling λF for a fixed spin-flip rate λB = 0.1 and a = 1.
Open (filled) circles indicate the screened (local-moment) phase. For
the SC phase, points inside the phase are not indicated and the SC
phase is symmetric with respect to the variation of λF around the
decoupled-point line (see Appendix B). The dashed line represents
the phase boundary determined by the renormalization group analysis
for λF � λB [21].
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FIG. 7. (Color online) Longitudinal dynamical local spin sus-
ceptibility χz(τ ) vs τ/β for λF < 0 and λB = 0.1, a = 1, and
β = 800–6400.

(λF = −0.5), χz(τ ) is large and almost τ independent. Also
the T variations are not noticeable on the the scale of the plot:
the impurity spin is almost free and the spin flips are strongly
suppressed. In contrast, in the SC phase, λF = −0.2, χz(τ )
shows a strong temperature and τ dependence, which reflects
screening processes due to the conduction electrons. In the next
subsection, we will discuss the low-temperature behaviors of
the spin-spin correlation functions in the SC phase.

5. Dynamical local spin susceptibility

Figures 8 and 9 show the τ dependence of the spin-
spin correlation functions χ⊥(τ ) and χz(τ ), respectively, for
λB,F = 0.2, β = 3200, and g = 0.3, 0.5, 0.7, and 1. We find
that the long-time asymptotic decay in the SC phase is given
by

χ⊥(τ ) ∼ τ−2g, (61)

while

χz(τ ) ∼ τ−2 for g �= λF /v. (62)
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 -4

 10
 -2

τ/β

λ  =λ =0.2, a=1 B        F

β=3200

χ 

1

    0.7
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g=0.3

dotted lines: ∼ τ -2g

FIG. 8. (Color online) Transverse dynamical local spin suscep-
tibility χ⊥(τ ) vs τ for λF = λB = 0.2, a = 1, and β = 3200. The
dotted lines indicate ∼1/τ 2g .

∼τ−2
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 10−5
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FIG. 9. (Color online) Longitudinal dynamical local spin suscep-
tibility χz(τ ) vs τ for λF = λB = 0.2, a = 1, and β = 3200. The
dashed line shows the exact result for gv = λF = 0.2: Eq. (C8), and
the line represents 1/τ 2.

These τ dependencies are also found for λF < 0 as long as
one remains in the SC phase as shown in Fig. 10, where
χ⊥(τ ) are shown for simplicity. The characteristic energy
scale becomes smaller and smaller as approaching the phase
boundary (increasing g). For g = 0.5, β = 6400 is still not
sufficiently low to realize complete τ−2g dependence, while for
smaller g’s τ−2g dependence is realized already at β = 3200.

Near the decoupled point at λF = gv, the leading power-
law decay τ−2 in χz(τ ) is suppressed and an exponential
decay appears, while for χ⊥(τ ), there is no such contribution
near the decoupled point. These results are consistent with the
perturbative analysis in Appendix C. In the following, we will
concentrate on the cases for λF �= gv. Note that the exponent
of χ⊥(τ ) is precisely given by that at the decoupled point,
which is related to the scaling trajectory [21].

These asymptotic forms readily indicate that the local spin
susceptibility χz,⊥(T ) exhibits

χz,⊥(T ) =
∫ β

0
dτχz,⊥(τ ) ∼ T 2�z,⊥−1 + const., (63)

where the constant part comes from the short-time cutoff.
From our CTQMC results, the scaling dimensions �z,⊥ at

 1

 0.01  0.1  1
 10

 -2

τ/β

2χ 

λ  =−λ =0.2, a=1 B            F

dotted lines: ∼ τ -2g

(β, g)=(3200,0.1)

(3200,0.2)(6400,0.5)

FIG. 10. (Color online) Transverse dynamical local spin suscep-
tibility χ⊥(τ ) vs τ for −λF = λB = 0.2, a = 1, and β = 3200 and
6400. The dotted lines represent ∼ 1/τ 2g .
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FIG. 11. (Color online) (a) χz(T ) and χ⊥(T )/2 vs T for λF =
λB = 0.2, a = 1, and g = 1, 0.7, 0.5, and 0.3. (b) χ⊥(T )/2 vs T in the
log scale for g = 0.5. The line indicates the fit by −0.76 log(T/0.66).
(c) χ⊥(T )/2 vs T for g = 0.7 and g = 0.3 in the double-log scale.
For g = 0.7, 4.3 − χ⊥(T )/2 is plotted and the line shows the fit by
7T 0.4. For g = 0.3, the line indicates the fit by −0.396 + 0.66T −0.4.

the screened fixed point are given by

�z = 1 and �⊥ = g. (64)

This is the expected result: Applying a small magnetic field
to the screened magnetic impurity is equivalent to applying
a local magnetic field to the quantum wire without the
magnetic impurity. This problem can directly be mapped to
the Kane and Fisher problem investigated in the previous
subsection. A magnetic field in the z direction induces only
forward-scattering interaction, which is not renormalized,
�z = 1, by the TLL interactions. In contrast, an infinitesimal
transverse magnetic field is a relevant perturbation whose
scaling dimension g can be read off from Eq. (17).

For �⊥ = g = 1/2, there are logarithmic corrections and

χ⊥(T ) ∼ − ln T + const. for g = 1
2 . (65)

Thus, the transverse spin susceptibility for g � 1/2 diverges,
while other cases and χz(T ) stay constant at low temperatures.

These temperature dependencies are indeed obtained from
a direct numerical integration of χz,⊥(τ ). Figure 11 shows
χz,⊥(T ) for λB,F = 0.2, a = 1, g = 1, 0.7, 0.5, and 0.3. For
g = 1, χ⊥(T ) = 2χz(T ) holds due to the SU(2) symmetry. For
other values of g’s, χ⊥(T ) �= 2χz(T ). Figures 11(b) and 11(c)
show that the susceptibilities follow the predicted power law
of Eq. (63) with high precision for g = 0.7 and 0.3 and
exhibit the expected logarithmic dependence for g = 0.5, see
Eq. (65). Note that for g = 0.7 we plot [χ⊥(0) − χ⊥(T )]/2

with χ⊥(0)/2 ≈ 4.3 in order to analyze the subleading power-
law dependence.

V. DISCUSSIONS

In this section, we will discuss the reliability of some
expressions for correlation functions in the “weak-coupling”
fixed points and also discuss a possible extension of our method
to more complex problems.

A. Correlation functions in the weak-coupling fixed points

For attractive interactions, g > 1, in the Kane-Fisher model
and for the local moment phase for the XXZ Kondo model, the
nonlinear interactions are irrelevant and the system is therefore
described by a weak-coupling fixed point. In this regime, not
only do the physical properties of the model completely differ
(the impurity does not cut the chain and the local moment is not
screened) but also the statistical properties of our Monte Carlo
sampling change qualitatively. As a consequence, we find that
the results based on the method defined by Eqs. (45) and (59)
do not give reliable results, while, in contrast, the alternative
approach, Eqs. (43) and (60), gives much better results. The
reason Eqs. (45) and (59) are not efficient there would be
the smallness of overlap between the important configurations
for the partition function and those for the Green’s functions.
This would be overcome by using a worm algorithm [15].
This is also the reason we use χz(τ ) (not affected by this
problem) to identify the two phases in the XXZ Kondo model
in Sec. IV B 4.

B. Further applications

Here we discuss briefly further applications of our method
for calculating other physical quantities for other models.

For impurity problems, the most important physical quan-
tity is perhaps the conductance. It can naturally be computed
within our scheme using that the current operator at x = 0 is
expressed by the time derivative of �+ as

j (x = 0,τ ) = i
e
√

g

2π
∂τ�+(τ,x = 0), (66)

where e is the elementary charge. The correlation function of
j (0,τ ) can be effectively calculated in our CTQMC method,
and, via analytic continuation to real frequency [22], one
can obtain the conductance. This can be done both for the
Kane-Fisher and the XXZ Kondo problems. This approach is,
however, beyond the scope of our work and will be published
elsewhere [26]. Note that an analytic continuation to real
frequencies is also needed to calculate, e.g., the tunneling
density of states from our results for Green’s functions.

Our method can also be directly applied to other scattering
problems, involving, for example, the backward scattering of
pairs of fermions from nonmagnetic impurities at the edge of a
two-dimensional topological insulator [21,27]. This problem is
described by the same Hamiltonian as the Kane-Fisher model
but, for example, the tunneling density of states has to be
computed from a different correlator.

In this paper, we have used two-component (L and R)
fermionic models as a microscopic model for the bulk TLL. It
is straightforward to apply this approach also to spin models
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or models of bosons in all cases where these models can be
described by TLLs. Here one can use standard bosonization
identities to map those problems to the ones considered in
our paper. It is, however, important to keep track of Klein
factors in such mappings. Since our approach fully relies on
the noninteracting bosons in the bulk system, it should be
emphasized that our method cannot manage interactions of
the TLL bosons in the bulk (describing, e.g., Luther-Emery
liquids [28] or band-curvature effects).

It would also be highly interesting to study exotic Kondo
models coupled to TLLs, which can, e.g., be realized using
Majorana modes arising from topological edge states of super-
conducting islands [29–31] or by using two helical edges [32].
With ultracold atoms, one can also realize Majorana edge mode
coupled to a TLL [33]. Knowledge about the dynamics in such
problems is not accessible so far, and thus, it is interesting to
analyze them on the basis of the CTQMC developed in this
paper.

Another technical challenge would be an analysis of
impurity problems where two relevant operators compete with
each other (arising, e.g., for Kondo models coupled to a helical
edge when the spin in z direction is not conserved) and also
investigation of multiple and cluster impurities are highly
nontrivial. While, for the cases discussed in this paper, no
negative-sign problem occurred, this might not be the case
for more complex realization involving several competing
scattering channels.

VI. SUMMARY

In summary, we have demonstrated that the continuous-
time quantum Monte Carlo method can successfully be applied
to situations where a quantum impurity is coupled to an
interacting one-dimensional quantum wire described by a
Tomonaga-Luttinger liquid.

Our method is negative-sign free, which has been proved
analytically, and thus, very low temperature calculations are
possible as demonstrated. The coding can be realized by a
straightforward extension of existing CTQMC codes for purely
fermionic problems (without interactions in the environment)
as the expression for δZ2k [Eq. (34)] are identical to those
of fermionic systems apart from the exponent 2g. This very
simple modification from noninteracting electron system for
the bulk part contains all the necessary information about
interactions in the bulk system.

We have applied our algorithm to two models. One is the
effect of a static scattering potential in a TLL discussed by
Kane and Fisher in their classical work [3]. The second is the
XXZ Kondo model in the edge of two-dimensional topological
insulators [19–21].

For the Kane-Fisher model, we have demonstrated that the
long-time asymptotic behavior of electron Green’s function
is consistent with that predicted by Furusaki [5]. We have
also computed the universal scaling function of the Green’s
function for the first time.

As for the XXZ Kondo model, we have obtained the
susceptibilities characterizing the two relevant fixed points: the
decoupled local moment fixed point and the screened Kondo
fixed point. The temperature dependence and the asymptotic

time dependence are consistent with analytic predictions in the
whole parameter regime.

The method introduced in this paper is flexible and can be
applied to other models and used to study transport properties.
We will report analyses of experimentally measurable quanti-
ties via analytic continuations and other interesting models in
future publications.

ACKNOWLEDGMENT

The authors thank M. Garst and J. Kleinen for fruitful
discussions. This work was supported by a Grant-in-Aid for
Scientific Research (Grant No. 30456199) from the Japan
Society for the Promotion of Science and by the center for
Quantum Matter and Materials (QM2) of the University of
Cologne. K.H. was supported by Yamada Science Foundation
for his long-term stay at the University of Cologne. Some of
the numerical calculations were done at the Supercomputer
Center at ISSP, University of Tokyo.

APPENDIX A: ELECTRON GREEN’S FUNCTION

In this Appendix, we show detailed derivations of Eqs. (43)
and (45). A similar analysis is used when we consider the
transverse local spin susceptibility in the XXZ Kondo model
in Sec. IV B.

1. Equation (43)

First, let us derive Eq. (43). We discuss one configuration
in the sampling summation in Eq. (41) with Nm = 2k.
Setting Â = FL(τi)V̂−η(�+,τi)F

†
L(τj )V̂η(�+,τj ) in Eq. (41),

we obtain

G(2k)
i>j = 〈TτFL(τi)V̂−η(τi)F

†
L(τj )V̂η(τj )δẐ2k{τ }〉0

δZ2k{τ } , (A1)

with τi > τj . Remember that η = √
g/2 and we have abbre-

viated V̂η(�+,τ ) simply as V̂η(τ ).
Since the Klein factors and the vertex operators commute,

the two sectors are decoupled and the former sector gives
(−1)Pij after arranging all the Klein factors in time-ordered
product and evaluating the product, where Pij is the number
of vertices or, equivalently, the number of τα between τi

and τj .
To see this, let us consider a case where Pij is even. It

is important to notice that there is no time dependence in
the Klein factors for l → ∞ [4] and (F †

LFR)(F †
RFL) = 1,

since F
†
L,RFL,R = 1. The Klein factors for τi > τα > τj are

rearranged to the form

(F †
L,RFR,LF

†
L,RFR,L)np = (−1)np (F †

L,R)2np (FR,L)2np , (A2)

with np being an integer. Thus, the time-ordered product for
τi � τ � τj becomes

FL(τi)[(−1)np (F †
L,R)2np (FR,L)2np ]F †

L(τj )

= +FLF
†
L[(−1)np (F †

L,R)2np (FR,L)2np ]. (A3)

This means the factor arising after the time ordering is +1
when Pij is even.
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When Pij is an odd integer, then the Klein factors for τi >

τα > τj are reduced to

(−1)np (F †
L,R)2np (FR,L)2npF

†
L,RFR,L. (A4)

Thus,

FL(τi)
[
(−1)np (F †

L,R)2np (FR,L)2npF
†
L,RFR,L

]
F

†
L(τj )

= −FLF
†
L

[
(−1)np (F †

L,R)2np (FR,L)2npF
†
L,RFR,L

]
. (A5)

These verify that the factor after time ordering the Klein factors
are (−1)Pij ≡ pij .

Now Eq. (A1) becomes

G(2k)
i>j = pij

〈V̂λ1 (τ1) · · · V̂−η(τi) · · · V̂η(τj ) · · · V̂λ2k
(τ2k)〉0

〈V̂λ1 (τ1) · · · V̂λ2k
(τ2k)〉0

.

(A6)

Here the product is time ordered; τ1 > τ2 > · · · > τi > · · · >

τj > · · · > τ2k , and in δZ2k{τ } and δẐ2k{τ }, we have denoted
each vertex operator as V̂λα

(τα) with λα = ±√
2g (α =

1,2, . . . ,2k). Equation (A6) is calculated by using Eq. (28),
leading to

G(2k)
i>j = pij

∏2k⊕ij
α>γ [s(ταγ )]λαλγ∏2k

α′>γ ′[s(τα′γ ′)]λα′λγ ′
. (A7)

Here, in the numerator, if α,γ = i or j in the product, λi =
−λj = −η. It is evident that factors s(ταγ ) within {τ } cancel
out and we obtain

G(2k)
i>j = pij [s(τij )]−η2

2k∏
γ

[s(τiγ )]−ηλγ

2k∏
α

[s(ταj )]ηλα

= pij [s(τij )]
g

2

( ∏2k⊕ij
α>γ [s(ταγ )]wαwγ∏2k

α′>γ ′ [s(τα′γ ′)]wα′wγ ′

)g

, (A8)

with wα,β = sgn(λα,β). Note that the factor g comes from
ηλα,γ = ±g. Finally, using the generalized Wick’s theorem,
we obtain Eq. (43).

2. Equation (45)

Second, we will discuss Eq. (45). This time, the point is
that we regard a snapshot {τ } at 2kth order as one at 2(k − 1)th
order with the remaining two τi and τj assigned to each fermion
operator for the Green’s function.

Suppose that τi > τj and the vertex operator at τi(τj ) has
λi < 0(λj > 0) in a given snapshot {τ }, and consider the
following quantity:

Yij ≡ (−1)Pij

|λ̃B |2 ([s(τij )]λiλj )
1
4

⎛
⎝ 2k∏

γ �=i

[s(τiγ )]λiλγ

⎞
⎠

− 1
2

×
⎛
⎝ 2k∏

α �=j

[s(ταj )]λj λα

⎞
⎠

− 1
2

. (A9)

When Yij is multiplied to δZ2k{τ }, we obtain

Yij δZ2k{τ } = (−1)Pij

|λ̃B |2 [s(τij )]−η2
2k∏

γ �=i,j

[s(τiγ )]−ηλγ

×
2k∏

α �=i,j

[s(ταj )]−ηλα δZ2k−2{τ � τi,τj }

= 〈FL(τi)V̂−η(τi)F
†
L(τj )V̂η(τj )

×δẐ2k−2{τ � τi,τj }〉0. (A10)

Here we have used the fact that η = √
g/2 and λα = ±√

2g

with (α = 1,2, . . . ,2k). Then summing all the configurations
{τ } and the perturbation order leads to∑

k,{τ }
Yij δZ2k{τ }

=
∑
k,{τ }

〈FL(τi)V̂−η(τi)F
†
L(τj )V̂η(τj )δẐ2k−2{τ � τi,τj }〉0

δZ2k−2{τ � τi,τj }
× δZ2k−2{τ � τi,τj }. (A11)

This indicates that the sampling of Yij is indeed equivalent
to that of the electron Green’s function G+

L (τij ). A similar
transformation to those used in Eq. (A8) and the generalized
Wick’s theorem can be applied to Eq. (A9) to obtain Eq. (45),
where Yij = G̃(2k)

i>j .

APPENDIX B: PARAMETER SPACE
OF THE XXZ KONDO MODEL

In this Appendix, we briefly discuss that, for the XXZ
Kondo model, a system with λ

(1)
F > gv is equivalent to a

model with λ
(2)
F = 2gv − λ

(1)
F . For example, a very large

antiferromagnetic λF reduces to a large ferromagnetic λF < 0
in the transformed system. Physically, this happens by binding
electrons to the impurity spin. The symmetric point λF = gv

is indeed a solvable point of the present model because λ′ = 0
in Eq. (55). This equivalence is understood as follows. For
λF > gv, the Hamiltonian is given as

UHU † = H1D + λ′
BF

†
LFRV̂−|λ′|(�+)Ŝ−

+λ′∗
BF

†
RFLV̂|λ′|(�+)Ŝ+. (B1)

We now interchange the up- and the down-spins for the local
moment. Then, since the Klein factors do not matter at all by
an appropriate relabeling, the resultant form is equivalent to
Eq. (55) if |λ′| in Eq. (B1) is equal to λ′ in Eq. (55); λ(1)

F /(gv) −
1 = 1 − λ

(2)
F /(gv), with λ

(1)
F > gv and λ

(2)
F < gv, leading to

λ
(1)
F /(gv) = 2 − λ

(2)
F /(gv). This symmetry was first taken into

account in a recent renormalization group analysis [21].

APPENDIX C: SPIN-SPIN CORRELATIONS AROUND
DECOUPLED POINTS

In this Appendix, we first review the results for decoupled
points at λF = gv in the XXZ Kondo model discussed in
Ref. [21]. Then we will discuss the effects of deviations from
λF = gv.
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a. Decoupled points

In this subsection, we summarize the results of the local
spin susceptibilities at decoupled points [21].

For the decoupled points, λF = gv, the Hamiltonian reads

ÛHdpÛ
† = H1D + λB

a
[F †

LFRŜ− + H.c.]. (C1)

Since the Klein factors do nothing in the following discussions
about the spin susceptibilities, this is equivalent to

ÛHdpÛ
† = H1D + h(Ŝ+ + Ŝ−), (C2)

which is just the single-spin Hamiltonian under the magnetic
field h parallel to the x direction with h = λB/a > 0 and the
bosons and the spin are decoupled. Thus, for any values of λB ,
this can be easily diagonalized.

We now take a new quantization axis parallel to the original
x direction, and then

Ŝ± = S̃z ∓ 1
2 (S̃+ − S̃−), Ŝz = 1

2 (S̃+ + S̃−). (C3)

Let us list correlation functions of S̃ as follows:

χ̃+−(τ ) = 〈Tτ S̃
+(τ )S̃−(0)〉 = e−2(β−τ )h

1 + e−2βh
, (C4)

χ̃−+(τ ) = 〈Tτ S̃
−(τ )S̃+(0)〉 = e−2hτ

1 + e−2βh
, (C5)

χ̃zz(τ ) = 〈Tτ S̃
z(τ )S̃z(0)〉 = 1

4 . (C6)

The local spin susceptibilities for Ŝ’s are in linear combinations
of Eqs. (C4)–(C6). Thus, we obtain for T = 0

χ
dp
+−(τ ) = 〈Tτ Ŝ

+(τ )Ŝ−(0)〉 = 1 + e−2hτ

4

(
a

vτ

)2g

, (C7)

χdp
zz (τ ) = 〈Tτ Ŝ

z(τ )Ŝz(0)〉 = 1
4e−2hτ . (C8)

Here we have used Û Ŝ±Û † = e±√
2g�+ Ŝ± for λF = gv.

b. Perturbations

Let us consider the cases where λF slightly deviates from
gv: δλF = λF − gv. Then there appears a coupling between
the bosons and the local spin as

ÛδHÛ † = δλF

√
2

g
∂x�+(0)Ŝz

= δλF

√
1

2g
∂x�+(0)(S̃+ + S̃−). (C9)

One can calculate the corrections to χ
dp
zz in the perturbation

theory. The second-order perturbation gives

δχdp
zz (τ ) = [Tre−βHdp Ŝz(τ )Ŝz(0)](2)

ZdpZ
0
�+

− Z(2)

ZdpZ
0
�+

χdp
zz (τ ),

(C10)

where the trace is taken over both the local spin and the �+
boson parts and the superscript (2) indicates the second-order
contribution. Z0

�+ is the partition function of free �+ sector

and Zdp = eβh + e−βh. The time dependence that differs from
χ

dp
zz (τ ) comes from the first term. At T = 0, we find that the

power-law dependence appears from

[Tre−βHdp S̃−(τ )S̃+(0)](2)

4ZdpZ
0
�+

� δλ2
F

8gZdp

∫ τ

0
dτ1

∫ τ1

0
dτ2

× [Tre−2βhS̃z

S̃−(τ )S̃+(τ1)S̃−(τ2)S̃+(0)]

v2(τ1 − τ2 + a/v)2
(C11)

≡ δλ2
F

8gv2
I1(2hτ ), (C12)

and

[Tre−βHdp S̃+(τ )S̃+(0)](2)

4ZdpZ
0
�+

= δλ2
F

8gZdp

∫ β→∞

τ

dτ1

∫ τ

0
dτ2

× [Tre−2βhS̃z

S̃−(τ1)S̃+(τ )S̃−(τ2)S̃+(0)]

v2(τ1 − τ2 + a/v)2
(C13)

≡ δλ2
F

8gv2
I2(2hτ ). (C14)

Here, in the right-hand side of Eqs. (C11) and (C13), the trace
is over the local spin configuration. In the right-hand side of
Eq. (C11), we have retained dominant terms for large τ and
ignored a diverging term for T → 0 that cancels out with the
second term in Eq. (C10). Note that only terms with S̃+(0)
are relevant, since a state with S̃z =↓ is the ground state at
the decoupled point. Parameterizing t = 2hτ , c = 2ha/v, and
b = 2hβ → ∞, we obtain

I1(t) = e−t

∫ t

0
dx

∫ x

0
dy

ex−y

(x − y + c)2
� 1

t2
+ · · · , (C15)

I2(t) = et

∫ b

t

dx

∫ t

0
dy

e−x−y

(x − y + c)2
� 1

t2
+ · · · . (C16)

Thus, finally, we obtain

δχdp
zz (τ ) � δλ2

F

16gλ2
B

(
a

vτ

)2

. (C17)

This indicates that the exponential decay at the decoupled point
immediately disappears and the leading term becomes “Fermi
liquid” like ∼τ−2.

As for the corrections δχ
dp
+−(τ ), there appears at least

a factor 〈V̂√
2g(τ )V̂−√

2g(0)〉 ∝ τ−2g . Thus, the leading τ

dependence of χ+−(τ ) for τ → ∞ does not change from
Eq. (C7).
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