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The equilibrium physics of quantum impurities frequently involves a universal crossover from weak to
strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale TK (Kondo
temperature) that breaks scale invariance. For the noninteracting resonant level model, the nonequilibrium time
evolution of the Loschmidt echo after a local quantum quench was recently computed explicitly [R. Vasseur,
K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601 (2013)]. It shows single-parameter scaling with
variable TKt . Here, we scrutinize whether similar universal dynamics can be observed in various interacting
quantum impurity systems. Using density matrix and functional renormalization group approaches, we analyze
the time evolution resulting from abruptly coupling two noninteracting Fermi or interacting Luttinger liquid leads
via a quantum dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled
to a quantum dot. We investigate whether the field-theory predictions for the universal scaling as well as for the
large-time behavior successfully describe the time evolution of the Loschmidt echo and the entanglement entropy
of microscopic models. Our study shows that for the considered local quench protocols the above quantum
impurity models fall into a class of problems for which the nonequilibrium dynamics can largely be understood
based on the knowledge of the corresponding equilibrium physics.
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I. INTRODUCTION

In condensed matter physics nonequilibrium problems have
attracted increasing interest in recent years. Despite many ad-
vances, describing those problems accurately in the presence of
strong correlations remains a formidable challenge even today.
The physics is often involved and the number of available
nonequilibrium many-body methods allowing for a controlled
access beyond plain perturbation theory is limited. Further-
more, each of those has its own advantages and shortcomings.
An alternative way to gain insights into the interplay of
nonequilibrium and correlations is to identify nonequilibrium
problems which can largely be understood in terms of their
equilibrium physics; compared to nonequilibrium, the latter
is frequently rather well understood. Generally, scrutinizing
under which conditions such a reduction in complexity can
be applied, is of importance to draw a more complete picture.
Here we conduct such a study for the nonequilibrium physics
of so-called quantum quenches in quantum impurity problems.

As they provide a basic probe of the nonequilibrium
dynamics of many-body quantum systems, quantum quenches
have been of great interest recently. This development is
motivated by the progress of experiments with ultracold atoms
in a tunable potential [1]. At time t = 0, the system is
suddenly brought far from equilibrium by abruptly changing a
control parameter, and is subsequently left to evolve unitarily.
Global quenches, for which the control parameter is quenched
throughout the entire system, correspond to injecting an
extensive amount of energy, thereby allowing one to address
the intriguing issues of thermalization and nonequilibrium
steady states in closed many-body quantum systems [2]. Local
quantum quenches, for which the sudden change is restricted in
space [3–9], allow one to investigate the energy propagation.
One might expect that for large times only the low-energy

excitations matter and the nonequilibrium dynamics shows
universality, provided the system in equilibrium has this
property. We here provide evidence that for several quantum
impurity problems this is indeed the case. In this work, we
study a particular class of local quantum quenches: at time
t = 0, two independent metallic reservoirs are either directly
tunnel-coupled or coupled through a single-level quantum dot
and left to evolve unitarily following the Schrödinger equation.
In addition, we investigate the quench dynamics after abruptly
tunnel coupling a single lead to a quantum dot. A quantum
quench of this type has recently been realized experimentally
exploiting the optical absorption of a semiconductor quantum
dot [10–12]. In equilibrium, the considered impurity setups
are characterized by a low-energy scale TK , the Kondo
temperature.

From a theory perspective, it was argued [13] based
on general considerations and explicit computations for a
noninteracting impurity problem, that the energy scale TK

characterizes a crossover in the post-quench dynamics, with
the long-time behavior being essentially controlled by the
low-energy properties of the Hamiltonian after the quench.
For the considered type of local quench, one can expect that
the same holds also in the presence of two-particle interactions.
We focus on parameter regimes in which the sub-system
coupling (weak link or dot) is a relevant perturbation in
the renormalization group (RG) sense in equilibrium, and
therefore drastically alters the low-energy properties of the
system. The explicit noninteracting result of Ref. [13] and the
expectation for interacting systems can thus be interpreted as
follows: time essentially acts as the inverse of an energy scale,
and the post-quench dynamics effectively follows the RG flow.
At large times, the system “heals” itself so that the quantum
impurity becomes strongly hybridized with the lead(s).
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Because of the energy scale TK that breaks conformal
invariance, many of the analytical results on local quenches
from conformal field theory [4] cannot be used. It is in general
very difficult to provide closed analytical expressions for the
time evolution of observables showing the full crossover, even
for formally exactly solvable (“integrable”) or noninteracting
systems. However, if the above scenario holds, one can expect
that the postquench dynamics is universal in the sense that
every observable only depends on TKt (in the absence of any
other energy scale) and that the long-time regime TKt � 1 can
be described using boundary conformal field theory (BCFT).
In this manuscript, we investigate numerically whether this
is indeed the case for various interacting quantum impurity
setups, using a combination of density matrix renormalization
group (DMRG) [14–16] and functional renormalization group
(FRG) [17–20] methods.

We focus on two key observables: the entanglement entropy
between sub-systems, whose long-time behavior reduces to the
CFT prediction of Refs. [4] (see Ref. [21] for a similar obser-
vation), and the time dependent fidelity or Loschmidt echo,
whose long-time behavior carries signatures of the effective
boundary condition felt by the lead(s). The latter is induced
by the screened impurity. The Loschmidt echo is related to
the equilibrium Anderson orthogonality catastrophe [22] and
is of particular interest since it can be linked to the Fourier
transform of the absorption spectrum measured in a recent
experiment [11]. In all the examples considered, we find
that the field-theory predictions describe reasonably well the
dynamics of the microscopic models under scrutiny.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the different models and observables
studied, along with the analytical and numerical methods used
in our analysis. Section III contains a detailed discussion of
the so-called interacting resonant level model (IRLM), the
arguably simplest interacting impurity model with spinless
noninteracting Fermi liquid leads. In Sec. IV, we generalize
this impurity setup to the richer case of interacting Luttinger
liquid leads, with various impurity configurations (one or two
leads tunnel-coupled to a quantum dot, two leads connected
through a point contact weak link). Finally, Sec. V provides
a summary of the main results as well as a discussion of
perspectives for future work.

II. MODELS AND METHODS

A. Models

We mainly consider setups in which two decoupled
fermionic reservoirs prepared in their respective ground states
are coupled to each other at time t = 0. Thus the combined
system is abruptly brought out of equilibrium at this time.
This protocol constitutes a specific local quantum quench. We
analyze different microscopic lattice models corresponding
to various settings, with the reservoirs being either (single-
channel) noninteracting Fermi liquids or one-dimensional
(1d) interacting Luttinger liquids, and the junction being
either a single link or a quantum dot. These setups are
depicted schematically in Figs. 1(a) and 1(c). Furthermore,
we investigate the case of a single Luttinger liquid reservoir
being coupled abruptly to a single level quantum impurity as
shown in Fig. 1(b).

)b()a(
0 > t0 > t0 > t

(c)
t > 0

FIG. 1. (Color online) The nonequilibrium setups studied in this
work: initially decoupled chains which are prepared in their respective
ground states are coupled at t = 0 via different contacts. We focus on
two different of such geometries: (a) coupling the reservoirs indirectly
by a single-level quantum dot and (c) connecting the two chains
directly by a weak link, respectively. Furthermore, we consider the
setup (b) in which a single lead is coupled to a single level quantum
dot. The subsequent out-of-equilibrium dynamics is analyzed.

1. IRLM

First, we investigate a microscopic realization of the IRLM
(see, e.g., Refs. [23–27] as well as references therein), which
describes a single localized charge level (quantum dot) of
energy ε coupled to a left (index α = L) and a right (index
α = R) noninteracting 1d reservoir; see Fig. 1(a). In our
nonequilibrium setup the tunneling couplings γ ′

α between the
quantum dot level and the reservoirs are abruptly turned on at
time t = 0. We consider a situation in which the two-particle
interactions Uα between dot and lead fermions are active for
all times. The microscopic Hamiltonian reads

H = Hdot +
∑

α=L,R

[Hcoup,α(t) + Hres,α], (1)

Hdot = εn̂0, (2)

Hcoup,α(t) = �(t)γ ′
α(c†1,αc0 + c

†
0c1,α)

+Uα

(
n̂0 − 1

2

)(
n̂1,α − 1

2

)
, (3)

Hres,α = −γα

L−1∑
j=1

(c†j+1,αcj,α + c
†
j,αcj+1,α). (4)

We use standard second quantization notation by introducing
the fermionic annihilation (creation) operator cj (c†j ) of a

spinless particle at site j . Furthermore, n̂0 = c
†
0c0 and n̂1,α =

c
†
1,αc1,α denote the occupancy operators of the dot and the first

site of reservoir α, respectively. We have chosen a tight-binding
description of the reservoirs of length L with hopping γα > 0
and open boundary conditions. The total number of sites in
such a setup is 2L + 1.

2. Interacting reservoirs

We also consider models with interacting reservoirs (rather
than noninteracting Fermi liquids as in the IRLM). This
is achieved by including nearest-neighbor interactions of
strength Jα�α in the 1d leads. The Hamiltonian is given by

H =
∑

α=L,R

Hchain,α + Hcoup(t) (5)
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with the chain part (nearest-neighbor hopping Jα/2 > 0)

Hchain,α =
L−1∑
j=1

Jα

[
1

2
c
†
j+1,αcj,α + 1

2
c
†
j,αcj+1,α

+�α

(
n̂j,α − 1

2

)(
n̂j+1,α − 1

2

)]
. (6)

By subtracting 1/2 from the occupancy operator n̂j,α , the
Hamiltonian is particle-hole symmetric. Employing a Jordan-
Wigner transformation (see, e.g., Ref. [28]), it can alternatively
be written in terms of spin degrees of freedom (XXZ
Heisenberg model).

Two different realizations of the contact between the
reservoirs are considered. The first one of these is referred
to as point contact and described by

Hcoup(t) = �(t)J ′[ 1
2c

†
1,Lc1,R + 1

2c
†
1,Rc1,L

+�′(n̂1,L − 1
2

)(
n̂1,R − 1

2

)]
. (7)

In this, a hopping J ′ as well as a nearest-neighbor interaction
J ′�′ across the link connecting the left and right chains is
turned on. It is schematically shown in Fig. 1(c). The second
one is called dot contact and the corresponding part of the
Hamiltonian reads

Hcoup(t) = εn̂0 + �(t)
∑

α=L,R

J ′
α

[
1

2
c
†
1,αc0 + 1

2
c
†
0c1,α

+�′
α

(
n̂1,α − 1

2

)(
n̂0 − 1

2

)]
. (8)

In this contact, the two reservoirs are tunnel coupled by a
single dot site of energy ε located at j = 0; see Fig. 1(a). We
note that these point and dot contact impurity problems are
described by lattice systems with total number of sites 2L and
2L + 1, respectively.

Additionally, we study the case of a single interacting
reservoir [Hchain,L of Eq. (6)] tunnel coupled by a term of
the form of Eq. (8), but only considering the α = L part, to a
single level quantum dot at t = 0; see Fig. 1(b). This system
is described by a lattice of in total L + 1 sites and referred to
as the single-lead case in the following.

3. Initial preparation

The initial density matrix is prepared in each case as a
product:

ρ = |�0〉〈�0| =

⎧⎪⎨
⎪⎩

ρL ⊗ ρR point contact

ρL ⊗ ρdot ⊗ ρR IRLM or dot contact

ρL ⊗ ρdot single-lead case
(9)

with ρα = |�0,α〉〈�0,α| given by the ground states |�0,α〉 of the
reservoirs at half-filling. In the examples involving a quantum
dot, ρdot is given by the vacuum (a spin down in the spin
representation).

B. Renormalization group arguments and scaling

It is well established that the equilibrium low-energy
physics of both our noninteracting as well as our interacting
1d reservoirs can be described by a gapless continuum field

theory—the Tomonaga-Luttinger model—as long as −Jα <

�α < Jα (at half-filling) [28]. For �α �= 0, our spinless
fermion model falls into the Luttinger liquid universality class.
All terms not captured by the field theory are RG irrelevant
and flow to zero. However, the bare amplitude of the leading
irrelevant bulk couplings (e.g., the umklapp scattering for
�α > 0) grows if one approaches the transitions to the gapped
phases |�α| → Jα . This leads to a decreasing energy scale
below which Luttinger liquid physics can be observed. This
energy scale vanishes at the phase transition [29]. Thus, if
the range of accessible energies is bounded from below, e.g.,
by finite size effects, it might be impossible to observe the
physics of the field theory [29,30]. We here avoid this problem
by restricting the interaction strength to |�α| � 0.7.

It was shown that at low energies, the equilibrium or
steady-state impurity physics established when the above local
couplings between the reservoirs are active for all times is
captured by field theory [25,26,31]. We here focus on quench
setups where the coupling between the reservoirs, be it via a
structureless point contact or via a quantum dot, is a relevant
perturbation in the RG sense leading to a flow to strong
coupling. This means that the effective coupling between
the reservoirs should be thought of as scale dependent; it
is growing as the energy scale is lowered across the typical
energy TK . The dependence of TK on the parameters of the
Hamiltonian depends on the model considered and is given
below. This flow can even be found if the bare couplings
are infinitesimally small. The RG flow from weak to strong
coupling is sometimes called “healing flow” for obvious
reasons. In the presence of a single additional energy scale
besides TK , e.g., the temperature T , it implies single parameter
scaling of observables with variable T/TK and the physics can
be regarded as universal.

This equilibrium physics becomes particularly transparent
if we further restrict the parameters of our models. To avoid any
complications due to the interplay of several energy scales in
our dot models, we assume ε = 0; the dot fulfills the resonance
condition. For the IRLM it was shown that for left-right
asymmetric setups the relation between the flowing level-
reservoir hoppings and observables becomes involved [32]. As
a consequence, the latter no longer shows the simple scaling
behavior found for restored left-right symmetry. In Luttinger
liquids, the sharp crossover between two half chains with
different bulk interactions effectively induces single-particle
scattering at the contact and destroys the resonance condi-
tion [31]. Although such asymmetry effects are of genuine
interest and of relevance in most experimental realizations, in
our first attempt to understand the nonequilibrium dynamics
we suppress them by considering left-right symmetric setups
with Uα = U and γ (′)

α = γ (′) for the IRLM as well as J (′)
α = J (′)

and �(′)
α = �(′) for the models with Luttinger liquid leads. We

furthermore fix our unit of energy by setting γ = 1 = J .
The question whether the same type of universality is

realized in the nonequilibrium post-quench dynamics is largely
open; it lies at the heart of our present work. More specif-
ically we investigate numerically whether the entanglement
entropy and the Loschmidt echo introduced below are scaling
functions with TKt being the relevant variable indicating a
“dynamical healing.” We thus ask whether “time follows the
RG flow” with the large-time limit TKt � 1 corresponding
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(``Kondo’’)

TKt 1TKt 1

FIG. 2. (Color online) Dynamical healing RG flow studied in this
work. The dynamics only depends on TKt , such that the time evolution
follows the RG flow from weak to strong coupling. In particular,
the large-time limit TKt � 1 corresponds to the low-energy, strong
coupling regime.

to the low-energy fixed point (see Fig. 2 for a sketch). This
is what one expects based on a field-theoretical approach
to the type of local quenches considered here [4,13]. In
this approach, the 1d nonequilibrium problem is formally
“folded” into a two-dimensional (2d) boundary statistical
mechanics problem in equilibrium using a Wick rotation.
However, this mapping is based on assumptions on the analytic
properties of the appearing partition functions. By providing
indications of one-parameter scaling with TKt we thus not only
establish evidence that the dynamics of the nonequilibrium
problems considered here is (1) universal and that (2) field
theory can be applied but also that (3) the assumptions
underlying the field-theory approach itself are justified. We
furthermore compare the long-time dynamics of our observ-
ables to the corresponding field-theoretical predictions. The
alleged simple replacement of equilibrium energy scales such
as temperature by inverse time in standard RG arguments
is obviously very specific to the considered type of local
quenches. Within field theory on a technical level it is linked to
the possibility of “folding” and the subsequent use of BCFT.

We already emphasize at this point that universal dynamics
can only be expected for times B−1 	 t 	 L/vF with B being
the reservoirs band width and vF their Fermi velocity. This
holds in close analogy to the equilibrium situation in which
scaling is cut off at large energies by nonuniversal band effects
and at low ones by finite size effects.

C. Observables

There are many different observables that could be consid-
ered to monitor the dynamics of the system after the quantum
quench. A very instructive quantity is the entanglement of
the subsystems as a function of time that we measure by the
entanglement entropy S(t). It characterizes the exchange of
information between the two reservoirs. More precisely, the
entanglement entropy is calculated between the left reservoir
(L) and the rest of the system (L̄ which in our dot setups
contains the dot site) and is defined as

S(t) = −Tr{ρL(t)ln[ρL(t)]}, (10)

with the reduced density matrix of the left subsystem ρL(t) =
TrL̄[ρ(t)] with respect to the full system ρ(t) = |�(t)〉〈�(t)|
and |�(t)〉 = e−iH t |�0〉. Initially, we have S(0) = 0 as the
left reservoir is decoupled from the rest of the system. The
evolution of the entanglement entropy across a marginal
defect in noninteracting fermionic systems was computed in
Refs. [33–35]. The generalization to interacting problems in

the case of a weakly modified link was carried out recently
in Ref. [21] (see Ref. [36] for the corresponding analysis
in equilibrium). In the following, we investigate whether the
results of Ref. [21] hold for a microscopic model. In addition,
we study S(t) for dot setups.

Another quantity that we study is the so-called Loschmidt
echo

G(t) = 〈�0|eiH0t e−iH t |�0〉, (11)

which is the Fourier transform of the work distribu-
tion [37] P (W ) = ∑

n δ(W − [E(n) − E0])|〈�(n)|�0〉|2, with
the eigenvalues E(n) and eigenstates |�(n)〉 of the Hamiltonian
after the quench, and |�0〉 the ground state of the Hamiltonian
before the quench (decoupled reservoirs) with corresponding
ground-state energy E0. The square modulus of the Loschmidt
echo is the probability to find the system at time t in its initial
state. It can be thought of as a quantum return probability
which, if decaying, characterizes the irreversibility of the
time evolution. The Loschmidt echo has attracted a lot of
attention recently, in the context of “dynamical” Anderson
orthogonality catastrophes, see, e.g., Refs. [8,10,11,38–40],
but also in studies of “dynamical phase transitions” [41–46].
We note that the work distribution can be argued to be directly
proportional to the absorption spectrum in quantum dot setups
where the absorption of a photon effectively triggers a quantum
quench [10–12]. A general field theoretical formalism to
compute G(t) for (“integrable”) impurity problems after a
local quench was developed in Ref. [13] but only applied to
the noninteracting resonant level model (RLM).

D. Methods

1. Boundary conformal field theory

In general, it is difficult to provide closed analytical
expressions for the time evolution of observables after a local
quench. Within field theory this can be linked to the emergence
of an energy scale TK that breaks conformal invariance, and
to the presence of interactions. However, in the large-time
limit TKt � 1, one can obtain asymptotic results using the
above described mapping to a 2d inhomogeneous statistical
mechanics problem as well as BCFT. For the entanglement
entropy, one finds [4,47]

S(t) −→
TK t�1

S0 + 1
3 ln(TKt), (12)

where we have inserted the central charge c = 1 of the
Luttinger liquid (or Dirac fermions) reservoirs (see, e.g.,
Ref. [28]). Here, S0 is a nonuniversal constant. This relation
should hold in all setups with two reservoirs—in the single-
lead case, the entanglement entropy is bounded from above by
ln 2 (see below).

Computing the large-time asymptotics of the Loschmidt
echo is slightly more involved. For a point contact junction
between two Luttinger liquids, we can use the CFT results of
Refs. [8,48] and obtain

|G(t)|2 ∼
TK t�1

(TKt)−1/4, (13)

independent of � as long as −1 < � < 0 so that the local
tunnel coupling is relevant. Note that we have once again
inserted the central charge c = 1 of the gapless reservoirs.
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The IRLM and dot setups are more subtle because of
the dynamical nature of the impurity. In these cases, it
is convenient to use the general framework introduced in
Ref. [13] and consider the imaginary time Loschmidt echo
as a correlation function (or modified partition function) in a
semi-infinite critical 2d statistical mechanics problem, with the
impurity corresponding to a boundary condition; see Ref. [49]
for a similar calculation in the context of the Fermi edge
singularity. In that language, a quantum quench at t = 0 can
be considered as a sudden change of boundary condition at
imaginary time τ = 0, effectively creating infinitely many
massless excitations in the bulk. Following Ref. [13], one can
then interpret the Loschmidt echo G(t = −iτ ) for TKτ � 1
as the two-point function of a boundary condition changing
operator, [50] whose scaling dimension is fixed by conformal
invariance. Assuming analyticity to rotate back to real time,
we expect [13]

|G(t)|2 ∼
TK t�1

(TKt)−4�BCC , (14)

with the scaling dimension �BCC which is model dependent
and given below. We note that the vanishing of the Loschmidt
echo at large time is the real-time analog of the well-known
Anderson orthogonality catastrophe [22]. As a consequence
the work distribution is characterized by an edge singularity
at low energy [12,37,51], which can be observed in optical
absorption experiments (see e.g. Refs. [10,11] in the context
of the Kondo effect).

2. Density matrix renormalization group

DMRG has proven to be an invaluable tool to numerically
study the equilibrium and nonequilibrium many-body physics
of interacting one-dimensional systems [16]. In DMRG, the
numerical cost depends in an exponential fashion on the
entanglement in the system. For typical real-time evolu-
tions, entanglement grows linearly with time and thus the
numerical resources available are exhausted exponentially
fast until no further progress in time can be made. The
time scales reachable within DMRG thus critically depend
on the entanglement of the system under scrutiny. In this
work, we apply DMRG in a very natural representation via
matrix product states [15,16,52]. We use the implementation
outlined in Ref. [16] to tackle the problems introduced in
the previous section. We checked that preparing the ground
states in the decoupled reservoirs either via a simple imaginary
time evolution starting from an initial random product state
(see Sec. 7 of Ref. [16]) or a more sophisticated iterative
procedure (see Sec. 6 of Ref. [16]) yield coinciding results.
The iterative ground-state search is performed with a single-
site algorithm. To protect this algorithm from getting stuck
in nonglobal minima when optimizing the energy, we use
the ideas introduced in Ref. [53]. For the imaginary time
evolution, we apply a second-order Trotter decomposition with
�τ = 0.0025, and we gradually increase the bond dimension
χ during the convergence process. Once the ground states have
been prepared, we employ a real time evolution algorithm (see
again Sec. 7 of Ref. [16]) with the full Hamiltonian including
the tunneling terms. We use a fourth-order Suzuki-Trotter
decomposition with �t = 0.2 chosen small enough to give
converged results on the scale of every plot presented in the

following. Additionally, we can exploit the trivial rewriting of
the Loschmidt echo [54,55]:

G(t) = 〈�0|eiH0t e−iH t |�0〉
= eiE0t 〈�0|e−iH t/2e−iH t/2|�0〉
= eiE0t 〈�0(−t/2)|�0(t/2)〉. (15)

This allows us to reach times twice as large as in the
original form exploiting the same numerical resources. The
bond dimension is dynamically increased during the real time
evolution so that the discarded weight ε always remains below
10−7–10−8.

3. Functional renormalization group

For the IRLM we also analyze the quench dynamics using
the FRG. FRG is a versatile method to tackle quantum
many-body problems [17]. Recently, it was extended to time
evolution in nonequilibrium [18] including quench dynam-
ics [19,20]. In the present case, it allows to study our lattice
realization of the IRLM at larger system sizes as well as to
reach larger times compared to DMRG.

In FRG, one sets up an infinite hierarchy of flow equations
for the many-particle vertex functions. We here employ the
lowest order truncation scheme for this hierarchy. This means
that the two-particle vertex is set constant (remaining the bare
two-particle interaction throughout the entire flow), while in
contrast the self-energy acquires a RG flow. This truncation
poses the only relevant approximation to the many-body
problem at hand. It is known that this procedure is well suited
to describe the impurity physics of the IRLM. It leads to the
correct resumation of logarithmic terms in form of power laws,
with exponents agreeing to the exact ones to leading order in
U [18,26].

We supplement the scheme of Ref. [20] by a Suzuki-Trotter
decomposition as used in DMRG to describe the propagation
in time. This significantly boosts the performance. We always
choose a symmetric fourth-order decomposition, with �t =
0.1 taken small enough such that it corresponds to a negligible
approximation.

Since the FRG scheme outlined in Ref. [20] aims at the
single-particle Green functions we need to explain how the
Loschmidt echo can be deduced. In our truncation order
interactions are incorporated effectively in a noninteracting,
but time-dependent, renormalized Hamiltonian (in form of
the self-energy). Since the time steps �t = 0.1 used are
small enough, such that the Hamiltonian can be approximated
as a constant Ht during each of such time steps we can
straightforwardly perform the time evolution of the initial wave
function |�(0)〉 (ground state of the decoupled reservoirs) with
the renormalized Hamiltonian. More explicitly, we can write
the ground state of the noninteracting reservoirs as a product
state [56]

|�(0)〉 =
Nf∏

m=1

⎛
⎝ L∑

j=1

Pjm(0)c†j

⎞
⎠ |0〉, (16)

where Nf denotes the total number of fermions and |0〉 is the
vacuum. The wave function can be propagated in time with
a stepwise (in time) constant Hamiltonian Ht = ∑

i,j εt,ij c
†
i cj
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by

|�(t + �t)〉 = e−iHt�t |�(t)〉

=
Nf∏

m=1

⎛
⎝ L∑

j=1

Pjm(t + �t)c†j

⎞
⎠ |0〉,

P (t + �t) = e−iH t�tP (t),

where P and Ht are the matrices with entries Pjm and εt,jm,
respectively. The Loschmidt echo in turn can then be calculated
as

G(t) = 〈�(0)|e−iH0t e−iH t |�(0)〉
= e−iE0t 〈�(−t/2)|�(t/2)〉

= e−iE0t 〈0|
Nf∏

m=1

L∑
j=1

Pjm(−t/2)∗cj

Nf∏
n=1

L∑
i=1

Pin(t/2)c†i |0〉

= e−iE0tdet[P †(−t/2)P (t/2)]. (17)

While in the outlined truncated FRG treatment single-particle
Green functions are approximated correctly (at least) to leading
order in U this is less clear for a quantity like the Loschmidt
echo. We have therefore carefully checked our FRG results
against numerically exact DMRG data for shorter times and
smaller systems (see Fig. 4). The agreement at small U is very
convincing such that we can trust the FRG results for G(t)
at larger L and t as well. In a similar, but more complicated
fashion one could derive an expression for S(t) accessible to
FRG; we do not pursue this here for the sake of brevity.

III. THE INTERACTING RESONANT LEVEL MODEL

A. Field-theory limit

In the field-theory description of the semi-infinite chainlike
reservoirs, we first linearize the single-particle dispersion near
the Fermi energy and then conveniently “unfold” these half-
infinite wires to obtain infinite ones with only right moving
fermions. This leads to Hres,α = −ivF

∫ ∞
−∞ dxψ†

α(x)∂xψα(x),
with the Fermi velocity vF = 2 and the field operators ψ (†)

α (x).
The coupling between the dot and the reservoirs can then
be expressed as Hcoup,α(t) = γ̃ ′�(t)(c†0ψα(0) + ψ†

α(0)c0) +
Ũ (n̂0 − 1

2 ) : ψ†
α(0)ψα(0) :, where γ̃ ′ and Ũ depend on the

microscopic parameters γ ′ and U in a nonuniversal (and in
general unknown) way. Here : . . . : denotes normal ordering.
We then bosonize the fermionic fields ψα ∼ ei

√
4πφα [28], with

bosonic fields φα(x), and introduce an effective spin operator
through c

†
0 = ηS+ and n̂0 = Sz + 1

2 with η a Majorana
fermion. After several canonical transformations, the IRLM
Hamiltonian can be mapped onto an effective anisotropic
Kondo problem [57], described by a single chiral boson φ(x)
that depends on φα=R/L in a complicated nonlinear fashion
(see, e.g., Ref. [57] for details of the mapping). The resulting
Hamiltonian reads

H =
∫ ∞

−∞
dx[∂xφ(x)]2 + �(t)

γ̃ ′
√

π
[eiβφ(0)S+ + H.c.], (18)

where the boundary perturbation (second term) has dimension
h = β2

8π
= 1

4π2 (Ũ − π )2 + 1
4 (assumed to be smaller than one).

This means that the boundary perturbation flows under an RG
procedure as

dγ̃ ′

d�
= (1 − h)γ̃ ′ + · · · (19)

with � = ln �, and � is the infrared cutoff. Solving this
equation leads to the length dependent coupling γ̃ ′(L) �
γ̃ ′L1−h, where γ̃ ′ is the bare coupling, and L a typical length
scale. The Kondo temperature TK ∼ 1

LK
is defined as the scale

at which γ̃ ′(LK ) � 1. It thus scales as

TK ∝ (γ̃ ′)1/(1−h) ∝ (γ ′)1/(1−h). (20)

The RLM has U = Ũ = 0 such that h = 1
2 and TK ∝ (γ ′)2. For

small U , one finds h = 1
2 − U

2π
+ O(U 2) (see, e.g., Ref. [24]).

A particularly interesting value of the Coulomb interaction
is given by the so-called self-dual point for which Ũ = π in
our regularization scheme, such that h = 1

4 and TK ∝ (γ ′)4/3.
This self-dual point corresponds to U ≈ 2 on the lattice [25].
Without loss of generality we fix the prefactor of TK to be 4.
Why this choice is useful will become clear in the next section.

At low energy, the boundary interaction flows to the
conformally invariant boundary condition φ(0+) = φ(0−) +
δ/

√
π , where δ2 = π2h/2 corresponds to the phase shift

felt by the effective fermion ψ ∼ ei
√

4πφ . We stress that this
fermion ψ has a very complicated expression in terms of the
original fermionic fields ψα=L,R. As discussed in Ref. [13]
the large-time behavior of the entropy is given by Eq. (12),
whereas the Loschmidt echo behaves as Eq. (14) with

�BCC = 1

2

(
δ

π

)2

= h

4
. (21)

Using Eq. (14) we therefore expect |G(t)|2 ∼ (TKt)−1/2 for
the RLM and |G(t)|2 ∼ (TKt)−1/4 for the IRLM at the self-
dual point. This provides an interesting example where the
interactions strongly renormalize the large-time exponent of
the Loschmidt echo.

B. Microscopic model and scaling limit

When comparing predictions from field theory to results
obtained numerically for the microscopic models obtained by
DMRG and FRG, one needs to be careful about the range of
validity of the field-theory description. Two conditions have to
be fulfilled simultaneously: (a) the large L limit TKL/vF � 1
and (b) the scaling limit TK/B 	 1. At a given large L they
impose an upper as well as lower bound on γ ′. As a first step,
let us assume correspondence between the microscopic model
and the field theory in the proper limit and let us choose γ ′ =
0.05 with L = 200 as a point of reference. The corresponding
reference curve for the Loschmidt echo |G(t)|2 obtained for
U = 2 using DMRG is scaled with the field-theory Kondo
temperature T FT

K = 4(γ ′)4/3. We then determine the Kondo
temperature T fit

K for the microscopic IRLM by collapsing all
curves (with different γ ′) on top of this scaled reference curve.
The ratio between T fit

K extracted by this procedure and the
field-theory prediction T FT

K is shown in the main panel of
Fig. 3. For γ ′ � 0.3, we leave the scaling limit regime and
deviations between the field-theory T FT

K and the T fit
K of the

microscopic model become prominent. For very small γ ′, one
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FIG. 3. (Color online) Dependence of the Kondo temperature on
γ ′ for the IRLM (including the RLM with U = 0). We show the ratio
of the Kondo temperature T fit

K obtained by collapsing our numerical
DMRG data by hand, the T

χ

K from Eq. (22), and the field-theory

prediction T FT
K = 4(γ ′)

1
1−h .

does no longer fulfill TKL/vF � 1 and finite size effects yield
deviations in the Kondo temperatures. This is confirmed by
the fact that reducing the size of the system (from L = 200 to
L = 100) enhances this effect.

We remark that for the IRLM it has been shown
[18,26,27,58,59] that yet another reasonable definition of TK

at small values of U/γ is the charge susceptibility

T
χ

K = − 2

πχ
χ = d〈n〉

dε

∣∣∣∣
ε=0

. (22)

This choice of TK for the microscopic IRLM again results in a
very convincing collapse of the curves at small U/γ . With this
definition of TK we can fix the prefactor of the field-theory TK

to 4, by demanding that the two definitions agree at U = 0.
Since T

χ

K does not rely on calculating the Loschmidt echo, we

can now for U = 0 compare T
χ

K with T FT
K in the limit L → ∞.

The condition TKL/vF � 1 is thus guaranteed to hold and
the finite size deviations for small γ ′ disappear, while effects
arising from the second inequality TK/B 	 1 being no longer
fulfilled remain roughly the same as for U = 2 (see Fig. 3).

Since overall the Kondo temperatures TK defined from
field theory, or via the fit procedure as well as the charge
susceptibility for the microscopic model agree reasonably
well, in the following we will only use the field-theory defi-
nition TK = T FT

K to collapse the curves obtained numerically
for the microscopic model. Nevertheless, it is important to
keep in mind that simultaneously fulfilling both inequalities
in numerical computations for finite chains infers restrictions
on γ ′.

C. Quench dynamics of the lattice model

Let us now discuss the numerical data obtained for the time
evolution of the Loschmidt echo as well as the entanglement
entropy. The main plot of Fig. 4(a) shows a comparison of
the Loschmidt echo obtained by DMRG and FRG at U = 0.1
and for different γ ′. The agreement between the two methods
is very convincing for this small value of the two-particle
interaction. FRG can be used to tackle larger system sizes
and times, which is the reason why data for L = 500 is
shown compared to L = 200 for DMRG. The inset of this
panel shows the collapse of the same FRG curves when the
Kondo temperature TK is used as the proper energy scale.
In addition, a similar collapse of DMRG data for a larger
value of the interaction strength U = 2 corresponding to the
self-dual point is presented. The large-time BCFT predictions
of Eq. (14) of Sec. III A with �BCC(U = 0.1) ≈ 0.1210 and
�BCC(U = 2) = 1/16 (shown as dashed lines) are consistent
with our numerical data. Similarly, Fig. 4(b) shows the
one-parameter scaling of the entanglement entropy. The main
plot depicts U = 0.1, while the inset covers U = 2. The
curves collapse well when rescaled by TK , and the long time
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FIG. 4. (Color online) Time evolution of the Loschmidt echo and the entanglement entropy after a quantum quench in the IRLM.
(a) Comparison between our FRG and DMRG data for the Loschmidt echo at U = 0.1. (Inset) Universal collapse of the Loschmidt echo
curves when rescaled by the Kondo temperature TK (for U = 0.1 and 2). The dotted lines correspond to the large-time BCFT predictions. (b)
Universal scaling of the entanglement entropy for U = 0.1 and 2.0 (inset). At large time, one recovers the expected CFT behavior (red dotted
line).
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behavior is consistent with the universal CFT prediction for
the entropy (12).

Considerations about the limits of applicability of field-
theory scaling in lattice models similar to the equilibrium ones
outlined in Sec. III B are also crucial for the dynamics. In
particular, we expect that for “large” values of γ ′ the scaling
limit condition is not fulfilled perfectly. This is the reason
why for the largest considered γ ′ at small times deviations
from scaling and even oscillations in the Loschmidt echo
are apparent in Fig. 4. The amplitude of the latter vanishes
for γ ′ → 0 and their frequency is set by the bandwidth.
We here will not further investigate this nonuniversal piece
of physics [60]. Nonetheless, the curves collapse nicely at
large times and allow us to access larger rescaled times TKt .
In particular, only for sizable γ ′ sufficiently large TKt for
analyzing the asymptotic behavior can be reached. In general,
we find that “small” values of γ ′ describe well the universal
scaling curve for small TKt , while larger values of γ ′ leave
the scaling limit regime for small TKt but collapse very well
for larger values of TKt . It is known from equilibrium that
sampling the entire scaling function for a finite size lattice
model requires the use of different values of the impurity
strength [31]. After rescaling by TK the different curves
overlap and in combination form the scaling function. We
will use this procedure also for our other impurity models.

IV. LUTTINGER LIQUIDS LEADS

A. Single-lead case

Although the nonequilibrium dynamics of the IRLM stud-
ied above involved two noninteracting reservoirs connected
through a single-level dot quenching, the tunneling between
a single interacting Luttinger liquid lead and a quantum dot
results in very similar physics. This motivates why this case
is discussed next. We consider a reservoir given by Eq. (6)
(α = L only) whose low-energy physics in the gapless regime
(−1 < � < 1) falls into the Luttinger liquid universality class
with Luttinger parameter g−1 = 2 − 2

π
arccos � [28]. In the

bosonized language [28], the reservoir can be described in
terms of a massless compactified boson � = �L = φr + φl

whose right- and left-moving components are scattering off
the quantum dot. The chiral fields φr (x) and φl(x) live
on the interval [0,∞), with the impurity at x = 0. It is
again convenient to unfold the semi-infinite wires to define
a chiral boson φ (say, right-moving) on the real line: φ(x) =
φr (x) for x > 0, and φ(x) = φl(−x) for x < 0. One then
expects that the low-energy sector of the Hamiltonian (5) is
given by

H = g

4π

∫ ∞

−∞
dx [∂xφ(x)]2+�(t)J̃ ′(e−iφ(0)S+

0 +H.c.) + . . . ,

(23)

with J̃ ′ ∝ J ′ for small J ′ and S0 is the auxiliary spin of the
impurity as in the IRLM. The boundary term has dimension
h = 1

2g
< 1 and is thus relevant for all values of −1 < � <

1. Remarkably, this field theoretical Hamiltonian is formally
equivalent to that of the two lead IRLM Eq. (18), so all the
formulas derived for the IRLM also apply here. In particular,
the system again flows to a “healed” fixed point at low energy

and the corresponding Kondo energy scale reads [61]

TK ∝ (J̃ ′)2g/(2g−1) ∝ (J ′)2g/(2g−1). (24)

In analogy to the IRLM, we choose the prefactor to be
4. Further pursuing the analogy, the large-time behavior of
the Loschmidt echo is given by Eq. (14) with �BCC = 1

8g
.

The entanglement entropy in this case is expected to scale
exponentially to ln(2), which signals the onset of the singlet
formation between reservoir and the dot level.

However, when “deriving” Eq. (23), we dropped the
term J ′�′(n̂1,L − 1

2 )(n̂0 − 1
2 ) ∼ ∂xφ(0)Sz

0 for �′ �= 0 of the
microscopic lattice model which is marginal and could
therefore change the exponents in a nonuniversal way. Within
field theory, one considers the limit J ′ → 0. Therefore, since
this marginal term scales with J ′ as well, we do not expect
it to modify our results in the field-theory limit. In practice,
however, we also consider sizable J ′ to cover the full crossover,
so one needs to verify numerically the importance of this
marginal coupling. Gradually increasing the interaction term
J ′�′ starting at 0, we find numerically that the long-time
exponent of the Loschmidt echo seems to be independent of
this marginal contribution as shown in Fig. 5. Note, however,
that the time scale for which asymptotic behavior is reached
evolves to larger times with increasing J ′�′.

As an alternative protocol one could consider a setup in
which the interaction term J ′�′(n̂1,L − 1

2 )(n̂0 − 1
2 ) is present

already initially (only the reservoir-dot hopping is switched
on). We expect that in this case the long-time exponent of the
Loschmidt echo acquires an extra contribution depending on
J ′�′; see Ref. [62] for a related calculation.

Our DMRG results are presented in Fig. 6. The data for the
Loschmidt echo, Fig. 6(c) for �′ = �, collapse rather nicely
if rescaled by TK for both positive and negative �. Moreover,

the long time prediction |G(t)|2 ∼ (TKt)−
1

2g —shown as black
dashed lines—appears to be consistent with our data, despite
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FIG. 5. (Color online) DMRG data for G(t) in the single lead
case at fixed J ′. Gradually increasing the interaction J ′�′ between
the dot and the single lead (L = 200) reveals that the marginal term
dropped in our field-theory analysis does not alter the large-time
exponent. The time scales for which asymptotic behavior can be
observed, however, increases with increasing J ′�′. The field-theory

prediction |G(t)|2 ∼ (TKt)−
1

2g is included as a dashed red line.
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FIG. 6. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of the tunneling
between a Luttinger liquid lead (L = 400) and a quantum dot. The predicted asymptotic long time behavior is indicated as dashed lines. (a)
and (b) �′ = 0. (c) and (d) �′ = �. (a) and (c) Loschmidt echo. (b) and (d) Entanglement entropy. The inset in (d) shows that the steady-state
value of ln(2) is approached exponentially fast, thus indicating that the impurity becomes maximally entangled with the lead for large times.

the presence of the marginal term J ′�′(n̂1,L − 1
2 )(n̂0 − 1

2 ). We
find that the data for �′ = 0 collapse using the same TK albeit
with stronger oscillations [see Fig. 6(a)]. In Figs. 6(b) and 6(d),
we depict the entropy. Scaling is again very convincing.
The inset of Fig. 6(d) shows that for t → ∞, S(t) indeed
approaches ln(2) in an exponential fashion.

B. Dot contact

The low-energy limit of the dot contact corresponds to
two Luttinger liquid reservoirs connected through an effective
spin- 1

2 impurity S0. It can be described in the bosonized
language starting from the single-lead setup discussed above
by introducing two bosons (one per channel)

Hchain,α = g

4π

∫ ∞

−∞
dx (∂xφα)2. (25)

The contact term (8) is then given by

Hlink(t) = �(t)J̃ ′

⎛
⎝S+

0

∑
α=L/R

e−iφα (0) + H.c.

⎞
⎠ + . . . , (26)
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FIG. 7. (Color online) DMRG data for G(t) for the dot contact
at fixed J ′. Gradually turning on the interaction J ′�′ between the
dot and the leads (L = 200) reveals that the marginal term dropped
in our field-theory analysis of the dot case does not alter the large-
time exponent found (see Fig. 5 for the single-lead setup). The time
scales for which asymptotic behavior can be observed increases with

increasing J ′�′. The field-theory prediction |G(t)|2 ∼ t
− 1

4 (1+ 1
g ) is

included as a dashed red line.
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with J̃ ′ ∝ J ′ for small J ′. As in the single-lead case, this
term has dimension h = 1

2g
(< 1 for g > 1/2 on which we

focus) and is thus relevant. The Kondo temperature is given
by Eq. (24). Note that we have again dropped the term
J ′�′ ∑

α(n̂1,α − 1
2 )(n̂0 − 1

2 ) ∼ [∂xφL(0) + ∂xφR(0)]Sz
0, which

is also marginal and could change the scaling exponent. In
analogy to the single lead case, we analyze the influence of
this marginal contribution on the asymptotic exponent of G(t)
numerically by increasing J ′�′ starting at 0. As shown in
Fig. 7, the exponent again appears to be independent of the
marginal contribution, although the asymptotic time regime is
shifted to larger times with increasing J ′�′.

The low-energy fixed point of the two-lead model is
slightly more complex than its single-lead analog. It is
convenient to introduce the new basis of bosons φα=R/L =

1√
2
(φσ ± φρ), so that the boundary perturbation now reads

cos φρ (0)√
2

(S+e−iφσ (0)/
√

2 + H.c.). At low energy, the value of the
bosonic field φρ(x) is pinned down at x = 0, while φσ satisfies
a Kondo-like boundary condition φσ (0+) = φσ (0−) + δ/

√
π ,

where δ2 = π2

8g
(see related discussions in Refs. [61,63,64]).

The long-time exponent of the Loschmidt echo Eq. (14) is
thus given by �BCC = 1

16 + 1
16g

, where the 1
16 contribution

corresponds to changing the boundary condition at x = 0
for φρ from Neumann to Dirichlet, while the other piece

1
16g

can be associated with the phase shift δ for φσ . For
noninteracting leads, the problem reduces to the RLM, and
one finds |G(t)|2 ∼ (TKt)−1/2 as expected. When g = 1/2
(isotropic limit � = 1 of the lattice XXZ chain), the Loschmidt
echo decays as |G(t)|2 ∼ (TKt)−3/4, where the value 3/4 is
consistent with the two-channel Kondo orthogonality exponent
reported in Ref. [49].

We summarize our numerical DMRG results for the dot
contact in Fig. 8. Both the Loschmidt echo [Figs. 8(a)
and 8(c)] and the entanglement entropy [Figs. 8(b) and 8(d)]
collapse well using the Kondo temperature Eq. (24), although
the Loschmidt echo obtained for �′ = 0 shows stronger
oscillations again. The entanglement entropy at large times is
consistent with Eq. (12). We find that the large-time behavior
of the Loschmidt echo is in agreement with the power law
prediction Eq. (14), with an exponent consistent with the BCFT
prediction �BCC = 1

16 (1 + 1/g) for �′ = 0 as well as �′ = �.
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FIG. 8. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of the tunneling
between two Luttinger liquid lead (L = 200) via a quantum dot. The predicted asymptotic long time behavior is indicated as dashed lines.
(a) and (b) �′ = 0. (c) and (d) �′ = �. (a) and (c) Loschmidt echo. (b) and (d) Entanglement entropy with the large-time predictions given by
a red dotted line.
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FIG. 9. (Color online) Dependence of the Kondo temperature
on J ′ for the point contact and different �. We show the Kondo
temperature T fit

K obtained from collapsing our numerical DMRG data
by hand (red symbols) as well as the small J ′ field-theory prediction
T FT

K ∼ (J ′)g/(g−1) (black dashed lines) on a log-log scale. The lines
are shifted such that T fit

K and T FT
K coincide at the smallest J ′ available.

The power-law behavior of T fit
K found for small J ′ is consistent with

the prediction from field theory.

C. Point contact

As a last example, let us consider a point contact Eq. (7)
between two Luttinger liquid reservoirs. This case does not
involve a dynamical impurity (quantum dot), and the bosonized
version of the tunneling term reads

Hlink(t) = �(t)J̃ ′ cos[φL(0) − φR(0)] + . . . , (27)

where the dots stand for terms being RG irrelevant in
equilibrium, and J̃ ′ ∝ J ′ for small J ′. We emphasize that
Eq. (27) corresponds only to the tunneling part J ′

2 (c†1,Lc1,R +
c
†
1,Rc1,L) of Eq. (7). We have dropped J ′�′(n̂1,L − 1

2 )(n̂1,R −

1
2 ) ∼ ∂xφL(0)∂xφR(0) as it has scaling dimension 2 and is
therefore RG irrelevant (in equilibrium). Forming odd and even
combinations, one finds that the even boson decouples while
the nontrivial part of the dynamics is encoded in a boundary
sine-Gordon Hamiltonian for the odd field. The dimension of
the perturbation is h = g−1 such that we shall focus on the
attractive regime (g > 1, � < 0) where it is relevant [65].
To leading order in J̃ ′ the RG equation for the amplitude of
the tunneling term is dJ̃ ′/d� = (1 − g−1)J̃ . For J̃ ′ 	 1, the
Kondo scale in that case is thus given by

TK ∝ (J̃ ′)g/(g−1) ∝ (J ′)g/(g−1). (28)

In the following, we will set the prefactor to 4 by convention
(to match the definition of TK in the IRLM). The large-time
behavior of the entanglement entropy and the Loschmidt echo
in the field theory are given by Eqs. (12) and (13), respectively.
This corresponds to having �BCC = 1

16 in Eq. (14), which is
known to be the scaling dimension of the operator changing
boundary conditions from Neumann (J̃ ′ = 0) to Dirichlet
(J̃ ′ → ∞) in the free boson theory.

To sample the entire scaling function for a lattice with
L = 200 sites, we cannot restrict our considerations to J ′ 	
1. It is known that for J ′ → 1 the dual picture of a weak
impurity, instead of a weak link, is the appropriate one [65].
The dependence of TK on the impurity strength is modified [65]
and Eq. (28) does no longer apply. We thus proceed as follows.
We consider different J ′ and scale the DMRG postquench
time-evolution data obtained for the Loschmidt echo by hand
until they collapse [see Fig. 10(a)]. This gives us an estimate
of TK which we then also use to rescale S(t). Approaching
small J ′ we expect to find the scaling Eq. (28) of TK . The
corresponding analysis is shown in Fig. 9. The field-theory
prediction works well for small J ′—compare the symbols to
the dashed lines representing the power law (28)—while rather
large deviations can be found for J ′ � 0.5 (note the y-axis
logarithmic scale). This shows that in contrast to the above

10
-1

10
0

10
1

10
2

TKt

10
-1

10
0

|G
(t

)|
2

Δ=-1/2
1/2

Δ=-1/2

/2

/4

Δ=-0.5878

/8

Δ=-0.6429

(a)

J’={0.05 0.6 0.70.40.20.1 0.15 0.3 0.5, , , , , , , , }

10
-2

10
-1

10
0

10
1

10
2

TKt

0

2

4

S
(t

)

Δ=-1/2
1/2

Δ=-1/2

+1

+2

Δ=-0.5878

Δ=-0.6428

+3

(b)

J’={0.05 0.1 0.15 0.2 0.3 0.4 0.60.5 0.7}, , , , , , , ,

FIG. 10. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of the tunneling
between two Luttinger liquids connected through a point contact (weak junction). (a) Time evolution of the Loschmidt echo scaled by hand.
This determines the Kondo temperature TK used in the right plot. The asymptotic long time predictions |G(t)|2 ∼ (TKt)−1/4 is shown as a black
dashed line. (b) Universal collapse of the entanglement entropy using the TK obtained by a collapse of G(t). The large-time CFT predictions
is given by red dotted lines.
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dot junction cases, in which it was possible to take the small
hopping field-theory expression for TK (for a detailed analysis
indicating this for the (I)RLM, see Fig. 3), determining the
Kondo temperature by hand is vital for the point contact.

In Fig. 10(a), we show the collapsed DMRG data for G(t)
and different � < 0. The collapse works particularly well
for larger |�| and due to finite size effects deteriorates for
|�| → 0. Remind that we cannot further increase |�| as the
leading irrelevant bulk terms will increase and spoil scaling.
Independent of � the asymptotic behavior is consistent with
|G(t)|2 ∼ (TKt)−1/4 (dashed lines) providing indications for
the field-theory prediction �BCC = 1

16 . We remark that the
static orthogonality exponent �BCC for the same lattice model
was studied in Refs. [66–68]. In the latter work the authors
employed a very stringent numerical analysis based on a
logarithmic derivative. In this context, the precise numerical
evaluation of �BCC remains an open question due to the
difficulty to reach very large system sizes (see also Ref. [30]).
In our work, taking the logarithmic derivative to determine
�BCC is impractical due to small oscillations prevailing even
at large times. Therefore, in the light of our analysis, we can
only state that the large-time exponent appears to be consistent
with the prediction �BCC = 1

16 . We certainly cannot rule out
small corrections to this exponent, let alone show or disproof
their existence. Analogous to the problem of reaching very
large system sizes (as encountered in Ref. [68]), we would
need to analyze much larger times, which is impractical.

Our rescaled DMRG results of S(t) [using the TK extracted
from the by hand scaling of G(t)] for the point contact are
shown in Fig. 10(b). Again, the collapse is reasonable. At large
times, the data follow the field-theory prediction Eq. (12).

V. CONCLUSION

In this paper, we studied the nonequilibrium dynamics
of the Loschmidt echo and of the entanglement entropy
resulting out of abruptly coupling two reservoirs that are
noninteracting Fermi liquids or interacting Luttinger liquids.
The coupling is either realized directly by a weak link
between the two systems (point contact), or indirectly by
an additional single site dot in between them (dot contact).
In addition, we considered the dynamics when coupling a
single Luttinger liquid lead to a single site dot (single-lead
case). Microscopic lattice models were used to describe these
setups. The observables were accessed using both DMRG
and FRG. We checked numerically the scaling expected from
field theory and investigated whether the large-time behavior
can be successfully captured by (boundary) conformal field

theory. Simultaneously fulfilling the conditions TKL/vF � 1,
TK/B 	 1, and B−1 	 t 	 L/vF , under which field theory
is expected to describe the physics of lattice models at fixed
L, sets bounds on the strength of the subsystem hoppings
entering in TK as well as on the time t . Furthermore, the times
reachable are bounded from above by the methods used. Taking
this into account, we gathered evidence that for a microscopic
realization of impurity systems with Fermi or Luttinger liquid
reservoirs, the dynamics is universal and described by field
theory. It would be interesting to generalize our work to finite
temperatures, where the work distribution satisfies an out-of-
equilibrium fluctuation-dissipation relation [69], which might
bear interesting consequences. The finite temperature gener-
alization of the Loschmidt echo would then be 〈eiH0te−iH t 〉0,
where 〈. . . 〉0 refers to thermal average with the density matrix
ρ0 = e−H0/T /Z0, corresponding to the system being held at
temperature T before the quench. Because of this new energy
scale, we expect both the Loschmidt echo and the entanglement
entropy to have a more complicated scaling behavior as
functions of TKt and T t . For instance, at small temperature
T/TK 	 1, one can argue from BCFT that the Loschmidt echo
for TKt � 1 should scale as [πT/ sinh(πT t)]4�BCC , with TK

playing the role of a ultraviolet cutoff. In the large-time regime
t � T −1 � (TK )−1, this implies an exponential decay of the
Loschmidt echo, contrasting with the power-law behavior for
T −1 � t � (TK )−1. We leave the detailed analysis of finite
temperature quenches for future work.

In addition, we expect that the dynamics resulting out of
local quenches for spinfull impurity systems (spin Kondo
effect) should lead to a richer crossover physics. In particular,
the Anderson orthogonality exponent dominating the long time
behavior of the Loschmidt echo will have contributions coming
from both spin channels. Other interesting generalizations of
our work include the study of quantum quenches in impurity
systems governed by more complicated RG flows, with for
instance intermediate fixed points.

ACKNOWLEDGMENTS

We are grateful to the MPIPKS Dresden for hosting the
workshop “Quantum Many Body Systems out of Equilibrium”
where this work was initiated. This work was supported
by the Quantum Materials program of LBNL (RV) and the
Forschergruppe 723 of the DFG (DMK and VM). DMK
thanks the University of California, Berkeley for hospitality
during his visit in summer 2013. RV also wishes to thank
H. Saleur and J.E. Moore for discussions, and the University
of Southern California for hospitality and support through the
US Department of Energy (Grant No. DE-FG03-01ER45908).

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[3] P. Calabrese and J. Cardy, J. Stat. Mech. (2005) P04010.
[4] P. Calabrese and J. Cardy, J. Stat. Mech. (2007) P10004.
[5] V. Eisler and I. Peschel, J. Stat. Mech. (2007) P06005.

[6] M. Fagotti and P. Calabrese, Phys. Rev. A 78, 010306 (2008).
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Türeci, and A. Imamoglu, Nature (London) 474, 627 (2011).

[12] M. Heyl and S. Kehrein, Phys. Rev. B 85, 155413 (2012).
[13] R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett.

110, 240601 (2013).
[14] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[15] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
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