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Negative-U superconductivity on the surface of topological insulators

Jian-Huang She1,2 and Alexander V. Balatsky3,4

1Department of Physics, Cornell University, Ithaca, New York 14853, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Institute for Materials Science, Los Alamos, New Mexico 87545, USA
4Nordic Institute for Theoretical Physics (NORDITA), Roslagstullsbacken 23, S-106 91 Stockholm, Sweden
(Received 24 June 2014; revised manuscript received 16 September 2014; published 25 September 2014)

We study the effects of a finite density of negative-U centers (NUCs) on the surface of a three-dimensional
topological insulator. The surface Dirac fermions mediate a power-law interaction among the local Cooper pairs
at the NUCs, and the interaction remains long-ranged for weak disorder. Superconductivity can be generated in
the presence of a random distribution of NUCs. The NUCs play dual roles as both pair creators and pair breakers,
and the competition of the two effects results in a nonmonotonic dependence of the mean-field superconducting
transition temperature on the density of NUCs. Global phase coherence is established through coupling the
locally superconducting puddles via Josephson coupling. Rare fluctuations play important roles, and a globally
superconducting phase can only be achieved at large enough concentration of NUCs. The p-wave component
of the superconducting order parameter gives rise to frustration among the superconducting grains, which is
captured by a Potts-XY type model. New phases with chiral order, glass order, and, possibly, topological order
can then emerge in the system of superconducting grains.
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I. INTRODUCTION

Topological phases of matter have recently attracted much
attention in condensed matter physics. One prominent example
is the topological insulator (TI), which is insulating in the bulk
but possesses metallic surface states with linear dispersion
[1,2]. Such novel properties of TIs are protected by time
reversal symmetry (TRS) and charge conservation symmetry
(CCS). It is of both theoretical and practical importance to
find ways to break these symmetries on the surface of TIs.
Breaking TRS on the TI surface gives rise to a topological
magnetoelectric effect [3], and breaking CCS leads to the
formation of Majorana zero modes at the superconducting
vortices [4]. In practice, there are two ways to break the surface
symmetries. One way is to fabricate heterostructures of TIs and
other symmetry broken materials, e.g., magnetic insulators that
break TRS, superconductors that break CCS. Proximity effect
then induces symmetry breaking at the TI surface. Another way
is to deposit certain types of impurities on the TI surface, which
has the advantage of simple experimental setup and better
tunability for both bulk materials and thin films. Depositing
magnetic impurities on the TI surface to break TRS has been
extensively studied both theoretically and experimentally (see,
e.g., Refs. [5–8]). Depositing impurities on the surface of
TIs, or more generally Dirac materials including graphene,
to generate pairing and break CCS was only proposed very
recently by the present authors and collaborators [9,10].

The basic idea of Refs. [9] and [10] is to adsorb nonmagnetic
molecules on the surface of Dirac materials, and use their
vibration to produce local negative-U interactions [11]. Local
Cooper pairs can form at such negative-U centers (NUCs),
breaking CCS. The local electron density of states with a dilute
concentration of NUCs has been studied in Refs. [9,10], where
it was found that strong enough coupling between electrons
and local vibrations destroys the Dirac cone structure locally.
In this paper, we study the collective behavior of a finite
density of NUCs on the surface of TIs, with a focus on

their superconducting properties. Here, we treat the NUCs
in a broader context. A NUC is generally understood as an
impurity that forms an electronic state that prefers to be either
empty or doubly occupied. It can have a phononic origin as
considered in Refs. [9,10], or it can have an excitonic origin,
where a certain valence state of an element is skipped (e.g.,
Tl2+, Pb3+, Sn3+, Bi4+, see, e.g., Ref. [12]).

Negative-U superconductivity (see Ref. [13] and references
therein) has been proposed as a possible pairing mechanism
for Pb- and K-doped BaBiO3 [12], cuprates [14], Tl-doped
PbTe [15], and also as a generic mechanism to reduce phase
fluctuations and enhance Tc [16,17]. A mean-field theory
(MFT) has been developed in Refs. [18,19] for a system of
randomly distributed NUCs. We deviate from the previous
approaches by considering NUCs coupled with massless Dirac
fermions inherent to Dirac materials [20,21]. Furthermore, we
study inhomogeneous superconductivity generated from rare
fluctuations [22–25], which, to the best of our knowledge, has
not been considered before for NUCs.

II. PSEUDOSPIN KONDO LATTICE MODEL

We consider NUCs on the surface of a three-dimensional
TI. The local orbitals (diα) on the NUCs hybridize with the
Dirac fermions (ckα) that propagate on the whole surface.
We consider the onsite attractive interaction U to be much
larger than the hybridization amplitude. The singly-occupied
states at the NUCs have much higher energy than the empty
and doubly-occupied states, and can be projected out by the
standard procedure of Schrieffer-Wolff transformation [26].
We consider the NUCs to be partially filled, and the empty
sites and doubly occupied sites have the same energy. The
local orbitals can then be represented by Anderson’s pseu-
dospins, with T +

i = d
†
i↑d

†
i↓, T −

i = di↓di↑, and T z
i = 1

2 (nd
i − 1).

These pseudospin operators obey SU(2) algebra as ordinary
spins. The whole system is thus described by a pseudospin
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Kondo lattice model with Hamiltonian H = Hc + HK , where

Hc =
∑
kαβ

c
†
kαhαβ(k)ckβ, (1)

HK = J

2N

∑
i

(
T +

i ci↓ci↑ + H.c. + 1

2

∑
σ

T z
i c

†
iσ ciσ

)
, (2)

with the kinetic term h(k) = vF ẑ · (σ×k), the Fermi velocity
vF , Pauli matrices σ , the unit vector ẑ perpendicular to the TI
surface, and the charge Kondo coupling J .

A. Single impurity: charge Kondo effect

We consider first the effect of coupling to Dirac fermions at
a single NUC. With strong enough coupling, the pseudospins
can be screened by the Dirac fermions, where they form
pseudospin singlets with pairs of Dirac fermions, generating
the charge Kondo effect. This effect has been studied for
normal metals in Ref. [27], and can be easily generalized
to the present case. The characteristic temperature scale, the
charge Kondo temperature TK , can be calculated from renor-
malization group or large-N mean-field theory, as it is done
for its spin counterpart [28]. It is essentially determined by the
local density of states (LDOS) ρ(R,ε) at the impurity site (see,
e.g., Ref. [29]). For Dirac fermions with a large Fermi surface,
the LDOS is approximately constant, ρ(R,ε) � ρ0, and TK

is of the usual Fermi-liquid form TK � εF exp(−1/Jρ0),
with Fermi energy εF [27]. For Dirac fermions with μ = 0,
the LDOS is linear in energy, ρ(R,ε) = |ε|/2πv2

F , and one
has TK � 	(1 − Jc/J ), with a cutoff 	. In this case, the
charge Kondo temperature is only nonvanishing when the
Kondo coupling is larger than the critical value Jc = 2πv2

F /	.
Otherwise TK = 0. With a linear density of states, the Dirac
fermions are much less effective in screening the NUCs than
a normal electron gas.

B. Two impurities: pseudospin interactions

We consider next the interaction between two NUCs
mediated by the Dirac fermions,

Hij = I⊥
ij T z

i T z
j + I

‖
ij

(
T x

i T x
j + T y

i T y

j

)
. (3)

The couplings are determined by fermion bubbles in the charge
and pairing channels [18,19],

I⊥
ij = J 2T

2N2

∑
n

Tr[Gij (ωn)Gji(ωn)],

I
‖
ij = J 2T

2N2

∑
n

Tr
[
σyGT

ij (ωn)σyGij (−ωn)
]
. (4)

Consider first the clean case. For μ large, the Green’s function
has the same asymptotic form as that of a two-dimensional
electron gas, i.e.,

Gij (ωn) ∼ r−1/2 exp

[
−|ωn|r

vF

+ isgn(ωn)kF r

]
. (5)

Then one obtains at zero temperature,

I⊥
ij ∼ cos(2kF r)/r2 (6)

with 2kF oscillation, and

I
‖
ij ∼ 1/r2, (7)

decaying monotonically. For μ = 0, the Green’s function reads

Gij (ωn) = −iωn

2πv2
F

K0

( |ωn|r
vF

)

+ ẑ · (r̂×σ )
i|ωn|
2πv2

F

K1

( |ωn|r
vF

)
, (8)

where Kα(x) are the modified Bessel functions of the second
kind. The pseudospin interactions are thus of the form

I⊥(r) ∼ I ‖(r) ∼
∫

dωω2K2
α(|ω|r/vF ) ∼ 1/r3, (9)

decaying faster than the case with large chemical potential. At
finite temperatures, the interactions have an exponential decay
Iij ∼ e−r/ lT , controlled by the thermal length lT ∼ vF /T . We
note that the interaction between two Cooper pairs does not
oscillate with their separation, in contrast to the usual RKKY
interaction. Here the interaction is always ferromagnetic,
tending to align the phases of Cooper pairs.

In the presence of weak disorder, the Green’s function
acquires a random phase shift [30,31], with

Gij (ωn) → Gij (ωn) exp

[
−i

sgn(ωn)

vF

∫
dsṼ (r)

]
, (10)

where Ṽ (r) is the impurity potential, and the integral is over
the straight line connecting r i and rj . For large μ, the charge
part then becomes

I⊥
ij ∼ cos(2kF r + ϕij )/r2, (11)

with a random phase shift ϕij . Averaging over the impurity
configurations gives〈

I⊥
ij

〉 ∼ r−2
ij cos(2kF r) exp(−rij / le), (12)

which is exponentially suppressed outside the mean free path
le. However, in the pairing channel, the random phase shift
from the two electrons that form a Cooper pair cancels,
in accordance with Anderson’s theorem. This gives the
remarkable result that I ‖

ij remains of the long-range power-law
form even after taking the impurity average,〈

I
‖
ij

〉 ∼ 1/r2. (13)

This result is very different from its spin counterpart, where
the impurity averaged RKKY interaction decays exponentially,
while the even moments of the interactions remain long ranged,
signaling large amplitude fluctuations [30–32]. We note that
for μ = 0, due to the generation of a finite density of states
by disorder for the surface Dirac fermions [33], the power
in I

‖
ij remains the same as the case for large μ. Thus disorder

enhances the coupling among the NUCs with large separations.

C. Many impurities: superconductivity from MFT

A finite density of NUCs naturally leads to superconductiv-
ity. To get superconductivity, both pairing and phase coherence
need to be achieved. We study first the onset of pairing in
MFT [18,19], and then proceed to consider the transition to
a globally phase coherent state using a rare-fluctuation based
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approach. Condensation of the local Cooper pairs at the NUCs
induces a pairing interaction among the Dirac fermions,

δHc = J

2N

∑
i

(c†i↑c
†
i↓〈T −

i 〉 + ci↓ci↑〈T +
i 〉). (14)

A pairing gap ∗
i = 〈c†i↑c

†
i↓〉 is thus generated for the Dirac

fermions, whose value can be determined from

∗
i = −J

2

∑
j

∫ β

0
dτ 〈cj↓cj↑(τ )c†i↑c

†
i↓(0)〉〈T +

j 〉. (15)

The pairing gap of Dirac fermions acts as a potential well for
the local Cooper pairs, with Zeeman type coupling

Hs = J

2N

∑
i

(∗
i T −

i + iT +
i ), (16)

from which one obtains

〈T +
i 〉 = Tr[T +

i exp(−βHs)]/Tr[exp(−βHs)]. (17)

To leading order in the coupling strength, we have

〈T +
i 〉 ∼ βJ∗

i . (18)

Substituting it back to the gap equation, we obtain the mean-
field Tc equation

1 − xJ 2

16

∑
kn

Tr[σy ĜT (k,ωn)σy Ĝ(−k, − ωn)] = 0, (19)

with x the concentration of NUCs. Here, the disorder-averaged
Dirac fermion Green’s function Ĝ(k,ωn) is a 2×2 matrix in spin
space. This equation is of the RPA form typical for a Stoner-
type instability, 1 − gχpair = 0, with an effective coupling
g ∼ xJ 2, and the pair susceptibility χpair ∼ Tr[σy ĜT σy Ĝ]. It
is a direct generalization of the results of Refs. [18,19] to
spin-orbit coupled systems.

For Dirac fermions with large chemical potential, one can
consider only the conduction band. In the Born approximation,
the disorder-averaged Green’s function reads

G(k,ωn) = 1

2

σ 0 + σ · ek

iω̃n − ξk
, (20)

with kinetic energy ξk = vF k − μ, and unit vector ek =
k/k = (cos θk, sin θk,0) (see, e.g., Ref. [34]). The frequency
dependence is renormalized by pseudospin flip scattering, with

ω̃n = ωn + 1

2τe

sgn(ωn). (21)

For dilute NUCs, the scattering rate is

1/2τe = πxJ 2N (0)/8, (22)

where N (0) is the conduction electron density of states at the
Fermi level. For dense NUCs, the impurities are the vacancies,
and one has

1/2τe = π (1 − x)J 2N (0)/8. (23)

The resulting gap equation is the same as that of a normal
metal [18,19], i.e.,

(2τp)−1
∑

n

(|ωn| + 1/2τe)−1 = 1, (24)
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FIG. 1. (Color online) Superconducting transition temperature
as a function of the concentration of negative-U centers for Dirac
fermions with large Fermi surface. Here, πJ 2N (0)/8 = 5,15,25
(from left to right). We have used 1/2τe = πxJ 2N (0)/8 for x < 1/2
and 1/2τe = π (1 − x)J 2N (0)/8 for x > 1/2.

where (2τp)−1 = πxJ 2N (0)/8 characterizes the pairing
strength. We have τp = τe for dilute impurities. Carrying out
the frequency summation, one obtains [18,19]

2πτpTc = �

(
1

2

)
− �

(
1

2
+ 1

4πτeTc

)
+ ln

W

Tc

, (25)

where � is the digamma function, and W is a cutoff.
One can see that NUCs play dual roles for superconduc-

tivity: they produce attractive interactions that drive pairing
(τp term), and the randomness of their positions leads to
pair breaking effects (τe term) as in the case of magnetic
impurities [35]. The competition of the two effects is manifest
for dilute impurities. One can see from the numerical solution
of the gap equation (Fig. 1) nonmonotonic behavior of Tc for
low impurity concentrations. With increasing pairing strength,
superconductivity is generated, and Tc first increases with
the concentration of NUCs. At higher concentrations, the
pair breaking effect takes over, and Tc may be suppressed.
For concentrations close to unity, as x increases, impurity
scattering gets weaker, while pairing gets stronger. Thus Tc

increases monotonically (see Fig. 1).
For Dirac fermions with μ = 0, the linear dispersion

leads to a different form of gap equation. Consider the
Green’s function of the form Ĝ−1(k,ωn) = iω̃n − Ĥc, with
the Hamiltonian Ĥc = vF (σxky − σykx), and the self-energy
corrections incorporated in ω̃n. The gap equation becomes

1 − αp

2

∑
n

ln
W

|ω̃n| = 0, (26)

with the pairing strength αp � xJ 2/(8πv2
F ). The effect of

impurity scattering in this case is more subtle than the case
with large Fermi surface. A finite density of states is generated
at the Dirac point by impurity scattering, for which simple
Born approximation is not enough. The essential physics is
captured by the self-consistent Born approximation (SCBA)
[33], and the result takes the form

ω̃n = ωn

(
1 + 1

α

)
+ �0sgn(ωn), (27)

for |ωn| � �0, and

ω̃n = ωn[1 + α ln(W/|ωn|)], (28)

for |ωn|  �0 [36]. A new energy scale �0 = We−1/α is gener-
ated, with the dimensionless scattering rate α � xJ 2/(8πv2

F )
for dilute impurities, and α � (1 − x)J 2/(8πv2

F ) for dense
impurities. Impurity scattering gives rise to a finite density of
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FIG. 2. (Color online) The same plot as Fig. 1 for Dirac fermions
with μ = 0 and J 2/(8πv2

F ) = 1.5,3,6 (from left to right).

states ρ0 ∼ �0/(v2
F α) at the Dirac point. With the knowledge

of the self-energy corrections, the gap equation can be solved
numerically, and the result is qualitatively the same as the case
with a large Fermi surface (see Fig. 2).

This result has important consequences for the competition
between superconducting ordering and charge Kondo effect.
In the weak coupling region, due to the generation of a
finite density of states, the charge Kondo temperature is of
the Fermi liquid exponential form, and superconductivity
dominates. At large coupling, the superconducting Tc saturates
or even decreases, and the charge Kondo effect dominates.
Near TK ∼ Tc, the competition of the two effects can give rise
to a reentrance to normal state at low temperatures [15].

III. SUPERCONDUCTIVITY FROM
RARE FLUCTUATIONS

Now we go beyond MFT, and consider inhomogeneous
superconductivity from rare fluctuations (see Refs. [22–25]
and references therein). For a finite density of randomly
distributed NUCs, there will be rare regions with dense NUCs
devoid of vacancies. These regions will be superconducting
locally at a much higher transition temperature T 0

c than the
global superconducting Tc. When the Josephson coupling
between these superconducting puddles is strong enough,
phase coherence can be achieved, and the whole TI surface
will enter the superconducting phase (see Fig. 3).

When the concentration x is larger than the percolation
threshold xp (e.g., xp � 0.59 on a square lattice), a large
superconducting cluster is formed, ensuring phase coherence.

T

x

FIG. 3. (Color online) Schematic phase diagram for rare fluc-
tuation generated superconductivity. The dashed line represents a
crossover from a high temperature (semi)-metallic phase to a phase
with locally superconducting puddles. The solid line represents a
phase transition into the globally superconducting phase, in which
global phase coherence is established among the local superconduct-
ing puddles via Josephson coupling.

In this case, the superconducting transition temperature is
constrained by the mean-field transition temperature. We note
that near the percolation threshold, since the superconducting
cluster is fractal-like, the mean-field transition temperature is
suppressed by impurity scattering. We consider below the case
of dilute concentration of NUCs with x � xp.

For a given concentration x, the probability to find a region
of size R devoid of NUC vacancies is w(R) ∼ x(R/a)2 ∼
exp[−p(R/a)2], with lattice spacing a, and p ∼ − ln x > 0.
Thus smaller sized puddles are exponentially likely to occur.
For these puddles to be superconducting locally, the size of
the puddles needs to be larger than the local coherence length
ξ ∼ vF /T 0

c . So the optimum size of the superconducting
puddles is R ∼ ξ .

The Josephson coupling between two superconducting
puddles with puddle size R and interpuddle spacing L, with
L  R, is of the form Jp ∼ vF R2

L3 e−L/lT , when mediated by
Dirac fermions with μ = 0 [37]. The 1/L3 dependence can
be deduced from Eq. (9). Disorder generates finite density
of states even for μ = 0, and changes the power. But here
we still use this result as a lower bound. The interpuddle
spacing L needs to be smaller than the thermal length lT to
get an appreciable Josephson coupling. When this condition is
satisfied, i.e., L < lT , we have approximately Jp ∼ vF R2

L3 .
For a dilute concentration of NUCs, the probability that

a given region of size R ∼ ξ is in a superconducting
phase is P (ξ ) ∼ ∫ ∞

ξ
dRw(R) ∼ erfc[

√
p(ξ/a)] ∼ e−p(ξ/a)2

,
for ξ  a. The typical interpuddle spacing is then

L ∼ ξP −1/2(ξ ) ∼ ξ exp
[

1
2p(ξ/a)2

]
, (29)

which is much larger than the typical puddle size. The
condition L < lT gives the constraint

Tc � T 0
c exp

[− 1
2p(ξ/a)2

]
. (30)

The Berezinsky-Kosterlitz-Thouless transition temperature
is obtained from TBKT ∼ Jp, which then determines the
superconducting transition temperature for small x,

Tc ∼ TBKT ∼ T 0
c exp

[
−3

2
p

(
ξ

a

)2 ]
∼ T 0

c x
3
2 (ξ/a)2

. (31)

For ξ ∼ vF /T 0
c  a, Tc essentially vanishes at small x. As

emphasized in Ref. [24], the interaction between the super-
conducting phase fluctuations and the quantum fluctuations
of the electromagnetic field further suppresses coherence
of each superconducting puddle, giving rise to a quantum
phase transition at finite x. Thus for a dilute concentration
of NUCs, although the mean-field transition temperature can
be appreciable, there are only local superconducting puddles,
and the whole surface is not superconducting due to lack of
global phase coherence (see Fig. 3).

IV. FRUSTRATION IN SUPERCONDUCTING GRAINS

The NUC-based setup has more local tunability than
the proximity induced superconductivity. As an application
of negative-U superconductivity, we consider here possible
new phases generated by an ensemble of superconducting
grains, i.e., Josephson junction arrays, on the surface of TI.
Without frustration, the phases of the superconducting grains
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will order ferromagnetically, and hence superconductivity
is the only possible order. The presence of frustration is
associated with the breaking of TRS. For s-wave supercon-
ductors, external magnetic field or magnetic impurities are
needed to break TRS and generate frustration. A remarkable
property of unconventional superconductors is that TRS can
be spontaneously broken in a superconducting grain, even
if the corresponding bulk phase is time-reversal invariant
[38,39]. Hence frustration can be generated in such grains
of unconventional superconductors.

On the surface of TI with finite chemical potential,
due to strong spin-orbit coupling, superconductivity is a
mixture of s and p waves. The p-wave component leads to
frustrated interactions. Consider large chemical potential, in
the helicity basis, after projecting to a single helicity, we
have effectively a one-band model of spinless fermions, with
px ± ipy-pairing inside the superconducting puddles. The gap
at puddle i can be written as i = eiφi (i)

p ηiapa , where φi

is the phase of the order parameter, (i)
p the amplitude, and

(ηix,ηiy) = 1√
2
(±1, ± i) represents the orbital orientation. The

corresponding Josephson coupling is (see, e.g., Ref. [39])

H
(p)
J = −

∑
i �=j

Aij Re

[
ei(φi−φj )ηiaη

∗
jb

∂

∂ra
i

∂

∂rb
j

1

|r i − rj |2
]

,

(32)

where Aij ∼ ν(i)
p 

(j )
p , with ν the density of states at the

Fermi level. With ∂
∂ra

i

∂

∂rb
j

1
|r i−rj |2 = 2 δab−4r̂a r̂b

r4 , we have

H
(p)
J = −

∑
i �=j

J
(p)
ij Re[ei(φi−φj )ηiaη

∗
jb(δab − 4r̂a r̂b)], (33)

where J
(p)
ij ∼ ν(i)

p 
(j )
p /r4. One can see that the coupling is

strongly orientation dependent.
The orientation can be parameterized as ηix + ηiy =

exp[i2πf ( 1
2 + ni)], with f = 1/4 and ni = 0,1,2,3. Hence

on each puddle, in addition to the U(1) phase φi , one has also
local discrete degrees of freedom described by a four-state
Potts type model. The coupling then can be written as

H
(p)
J = −

∑
i �=j

J
(p)
ij [Cij cos(φi − φj ) + Sij sin(φi − φj )], (34)

with the Potts part of the Hamiltonian

Cij = − cos
π

2
(ni − nj ) + 2 cos 2θr sin

π

2
(ni + nj ),

Sij = 2 sin 2θr sin
π

2
(ni − nj ), (35)

where θr is the angle of the vector connecting two puddles.
The s-wave component of the order parameter has the usual

Josephson coupling

H
(s)
J = −

∑
i �=j

J
(s)
ij cos(φi − φj ), (36)

with J
(s)
ij ∼ 1/r2, decaying much slower than the p-wave

component. For finite chemical potential, both components are
present (see, e.g., Ref. [25]). At large interpuddle spacing, the
Josephson coupling is dominated by the s-wave component.

As realized in Refs. [24,39], when the interpuddle spacing is
much larger than the puddle size, the grains of unconventional
superconductors behave as an s-wave superconductor at large
scales.

When the interpuddle spacing becomes comparable to the
puddle size, the coupling arising from the p-wave component
is appreciable, and the interactions among the puddles are
frustrated. Such frustrated XY models have a rich phase
diagram. We consider several limiting cases in the following.

Consider, for example, arranging the puddles to form a
triangular lattice, and tuning the order parameters to have the
same orientation at each puddle, when the p-wave component
dominates the coupling, one obtains an antiferromagnetic
XY model on a triangular lattice (i.e. Sij = 0, Cij = −1 for
ni = nj ). This model is in the same universality class as the
fully frustrated XY model [40], the phase diagram of which
has been extensively studied (see Refs. [41,42] and references
therein). In addition to the U(1) symmetry, the Hamiltonian
is invariant under the global Z2 symmetry: φi → −φi . Hence
domain walls can appear in the system, and the system can
exhibit a chiral phase where the Z2 symmetry is broken, while
the U(1) symmetry is preserved.

Another example is to have the location of the puddles
and the orientation of the order parameter at each puddle to
be random. Their effect can be modeled by a random gauge
field Aij at each bond, and the Haniltonian is of the form of a
random phase XY model

HJ = −
∑
i �=j

J̃ij cos(φi − φj − Aij ). (37)

Here the coupling strength is also random, but its effect is less
important as compared to the phase part, which gives rise to
frustration. When the random phase disorder is strong enough,
the quasi-long-range order of the XY model is destroyed, and
a glass phase is expected (see Refs. [41,43] and references
therein).

Finally, we would like to mention that the system of
superconducting grains on the surface of TI provides a natural
setup to realize more exotic phases with surface topological
orders [44–47]. These phases preserve both TRS and CCS.
However, in order to obtain new phases beyond the original
superconducting state, frustration is required, and hence the
breaking of TRS. These constitute an apparent paradox, which
can be solved in the setup of coupled grains in two steps. In the
grain system, TRS is first broken for a particular configuration
of the order parameter orientations {ni}, which generates
frustration among the phase variables. Frustration leads to the
condensation of vortex bound states [44–47], and the phase
variables can be driven to a liquid state. Then fluctuations
of the order parameter orientations restore TRS, i.e., TRS is
preserved after summing over different realizations of the or-
der parameter orientations,

∫
Dni

∫
Dφi exp(−βHJ [ni,φi]).

Further investigations are needed to establish an explicit
connection between the above Potts-XY type model and the
surface topological orders.

V. CONCLUSIONS

We have shown in this paper that by depositing a finite
density of randomly distributed NUCs on the surface of TI, a
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superconducting surface termination of TI can be achieved. To
generate superconductivity, both pairing and phase coherence
are required. In the mean-field approach, we have shown that
NUCs play dual roles for pairing, as both pair creators and
pair breakers, which results in a nonmonotonic dependence
of the mean-field superconducting transition temperature on
the concentration of NUCs. In the puddle based approach,
local superconducting puddles are first created, which then
interact via Josephson coupling to establish global phase
coherence. The concentration of NUCs needs to exceed a
certain threshold to generate a globally superconducting phase.
New phases can be generated by incorporating frustration
among the superconducting grains. The NUCs provide a

new fundamental element for engineering functional Dirac
materials.
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