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The spin resonance observed in the inelastic neutron scattering data on Fe-based superconductors has played
a prominent role in the quest for determining the symmetry of the order parameter in these compounds. Most
theoretical studies of the resonance employ an RPA-type approach in the particle-hole channel and associate the
resonance in the spin susceptibility χS(q,ω) at momentum Q = (π,π ) with the spin-exciton of an s+− supercon-
ductor, pulled below 2� by residual attraction associated with the sign change of the gap between Fermi points
connected by Q. Here we explore the effect of fluctuations in the particle-particle channel on the spin resonance.
Particle-particle and particle-hole channels are coupled in a superconductor and to what extent the spin resonance
can be viewed as a particle-hole exciton needs to be addressed. In the case of purely repulsive interactions, we find
that the particle-particle channel at total momentum Q (the π channel) contributes little to the resonance. However,
if the interband density-density interaction is attractive and the π resonance is possible on its own, along with spin-
exciton, we find a much stronger shift of the resonance frequency from the position of the would-be spin-exciton
resonance. We also show that the expected double-peak structure in this situation does not appear because of the
strong coupling between particle-hole and particle-particle channels, and ImχS(Q,ω) displays only a single peak.
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I. INTRODUCTION

The spin resonance, observed by inelastic neutron scattering
(INS) experiments first in the cuprates [1] and then in
heavy-fermion [2] and Fe-based superconductors (FeSCs) [3],
has been the subject of intense theoretical and experimental
studies over the past decade using both metallic [4–7] and
near-localized strong-coupling scenarios [8] (see Ref. [9] for
a review). The theoretical interpretations of the resonance can
be broadly split into two classes. The first class of theories
assumes that the spin resonance is a magnon, overdamped
in the normal state due to the strong decay into low-
energy particle-hole pairs, but emerging prominently in the
superconducting state due to reduction of scattering at low
energies [7,10]. In this line of reasoning, the resonance energy
�res is the magnon energy and as such it is uncorrelated with
the superconducting gap �. However, the decay of magnons
into particle-hole pairs is only suppressed at energies below
2�, hence the magnons become sharp in a superconductor
only if their energy is below 2�. The symmetry of the
superconducting state does not play a crucial role here. It
is only relevant that the superconducting gap is finite at the
Fermi surface (FS) points connected by the gap momentum Q.

Theories from the second class assume that the resonance
does not exist in the normal state and emerges in the supercon-
ducting state as a feedback effect from superconductivity, like,
e.g., the Anderson-Bogolyubov mode in the case of a charge
neutral single condensate component, a Leggett mode in the
case of several gap components, a wavelike excitation of a
spin-triplet order parameter, or a pair vibration mode in the case
of a gap parameter possessing internal structure [11]. These
“feedback” theories can be further split into three subclasses.
In the first, the resonance is viewed as a spin-exciton, i.e.,
the pole in the dynamical spin susceptibility χ (q,�) dressed
by multiple particle-hole bubbles [4–6]. Such χ (q,�) can
be obtained by using a computational scheme based on the
random-phase approximation (RPA). It was argued that, if
the superconducting gap changes sign between FS points

connected by Q, the residual attraction pulls the resonance
frequency to �res < 2�, where the decay into particle-hole
pairs is reduced below Tc and vanishes at T = 0. As a result, at
T = 0, χ ′′(q,�) has a δ-functional peak at �res. In this respect,
if the resonance is an exciton, its existence necessary implies
that the superconducting gap changes sign either between
patches of the FS connected by Q or between different Fermi
pockets again connected by Q. The role of the resonance in
allowing to determine the structure of the gap in a number of
different superconductors has been highlighted in Ref. [12].
Theories of the second subclass explore the fact that in a
superconductor the particle-hole and particle-particle channels
are mixed and argue that the strongest resonance is in the
particle-particle channel and the measurements of the spin
susceptibility just reflect the “leakage” of this resonance into
the particle-hole channel. The corresponding resonance has
been labeled as the π exciton [13], where the π boson is a
particle-particle excitation with total momentum Q (a “pair
density-wave” in modern nomenclature [14–16]). Finally,
theories of the third class explore the possibility that the
resonance emerges due to coupling between fluctuations in
particle-hole and particle-particle channels. Within RPA, such
resonance is due to nondiagonal terms in the generalized
RPA, which includes both particle-hole and particle-particle
bubbles. It was called a plasmon [17] to stress the analogy
with collective excitations in an electronic liquid.

The interplay between the “damped spin-wave” scenarios,
the spin-exciton π resonance, and the plasmon scenarios for
2D high-Tc cuprates has been studied in detail in the past
decade. The outcome is that near and above optimal doping
the resonance is best described as a spin-exciton, with rela-
tively weak corrections from coupling to the particle-particle
channel [5,18,19], while in the underdoped regime, where
superconductivity emerges from a pre-existing pseudogap
phase, both spin-exciton and spin-wave scenarios have been
argued to account for the neutron resonance [9]. The situation
is more complicated in 3D heavy-fermion systems [10,20]
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because there the excitonic resonance has a finite width even
at T = 0 if the locus of FS points separated by Q intersects a
line of gap nodes.

In this work, we discuss the interplay between spin-exciton,
π resonance, and plasmon scenarios in FeSCs. Previous studies
of the resonance in FeSCs [6] focused only on the response
in the particle-hole (spin-exciton) channel and neglected the
coupling between particle-hole and particle-particle channels.
Our goal is to analyze the effect of such coupling.

As we said, the resonance peak has been observed below
Tc in several families of FeSCs [3]. The spin response above
Tc in FeSCs is rather featureless away from small doping,
which implies that the magnetic excitations in the normal
state are highly overdamped and don’t behave as damped
spin waves. The full analysis of the spin resonance in FeSCs
is rather involved as these systems are multiband materials
with four or five FSs, on which the superconducting gap has
different amplitudes and phases. Still, the basic conditions
for spin-excitonic resonance are the same as in the cuprates
and heavy-fermion materials: namely, the resonance emerges
at momentum Q if the superconducting gap changes sign
between FS points connected by Q. This condition holds if the
superconducting gap has s+− symmetry, as most researchers
believe, and changes sign between at least some hole and
electron pockets. An alternative scenario [21], which we will
not discuss in this paper is that the superconducting state
has a conventional, sign-preserving s++ symmetry, and the
observed neutron peak is not a resonance but rather a hump at
frequencies slightly above 2�.

In FeSCs that contain both hole and electron pockets, the
resonance has been observed at momenta around Q = (π,π ),
which is roughly the distance between hole and electron
pockets in the actual (folded) Brillouin zone. To account
for the resonance and, at the same time, avoid unnecessary
complications, we consider a minimal three-band model (one
hole pocket and two electron pockets), and neglect the angular
dependence of the interactions along the FSs. Including this
dependence and additional hole pockets will complicate the
analysis but we do not expect it to lead to any qualitative
changes to our results.

We find that for repulsive density-density and pair-hopping
interactions, the resonance peak is, to a good accuracy, a
spin-exciton. The π resonance does not develop on its own, and
the coupling between the resonant spin-exciton channel and the
nonresonant π channel only slightly shifts the energy of the
excitonic resonance. We also considered the case (less justified
microscopically) when the interaction in the π channel is
attractive, such that both spin-exciton and π resonance develop
on their own at frequencies below 2�. One could expect in
this situation that the full dynamical spin susceptibility has
two peaks. We found, however, that this happens only if we
make the coupling between particle-hole and particle-particle
channels artificially small. When we restored the original
coupling, we found, in general, only one peak below 2�.
The peak is a mixture of a spin-exciton and π resonance
and at least in some range of system parameters its energy is
smaller than that of a spin-exciton and a π resonance. This
implies that, when both channels are attractive, the coupling
between the two plays a substantial role in determining the
position of the true resonance which can, at least partly, be

viewed as a plasmon. A somewhat similar result has been
obtained earlier for the cuprates [5,17,19]. For some system
parameters, we did find two peaks in ImχS(Q,ω), but for one
of them ImχS has wrong sign. We verified that this indicates
that for such parameters the system is unstable either against
condensation of π excitations (i.e., against superconductivity
at momentum Q), or against the development of SDW order
in co-existence with superconductivity.

The paper is organized as follows. In the next section,
we consider the model. In Sec. III, we obtain the dynamical
spin susceptibility within the generalized RPA scheme, which
includes the coupling between particle-hole and particle-
particle channels. In Sec. IV, we analyze the profile of χS (Q,ω)
first for purely repulsive density-density and pair-hopping
interactions, and then for the case when we allow the density-
density interaction to become attractive. We summarize our
conclusions in Sec. V.

II. THE MODEL

The FeSCs are multiband metals with two or three hole FS
pockets centered around the � point (0,0) and two elliptical
electron pockets centered at (π,π ) in the folded BZ with two
iron atoms per unit cell. The electron pockets are elliptical and
related by symmetry, while the hole pockets are C4-symmetric,
but generally differ in size. Since we are only interested in
studying the role of the particle-particle channel in the spin
response function, for which the nonequivalence between hole
pockets is not essential, we consider the case of two hole
pockets and assume that they are circular and identical, and
also neglect the ellipticity of electron pockets. Under these
assumptions our model reduces effectively to only one hole
pocket (c fermions) and one electron pocket (f fermions). The
fact that there are actually two hole and two electron pockets
only adds up combinatoric factors.

The free part of the Hamiltonian is

H0 =
∑
k,σ

(
ξ c

kc
†
kσ ckσ + ξ

f

k+Qf
†
k+Qσ fk+Qσ

)
, (1)

where

ξc
k = μc − k2

x + k2
y

2mc

, (2)

ξ
f

k+Q = −μf + k2
x + k2

y

2mf

. (3)

We do not study here how superconductivity develops
from interactions, as that work has been done elsewhere [22].
Instead, we simply assume that the system reaches a supercon-
ducting state with s+− symmetry before it becomes unstable
towards magnetism and take the superconducting gaps as
inputs. In this state, the free part of the Hamiltonian is

H SC
0 =

∑
k,σ

(
Ec

kc
†
kσ ckσ + E

f

k+Qf
†
k+Qσ fk+Qσ

)
, (4)

where the dispersions are Ec
k = √

(ξ c
k)2 + (�c)2, E

f

k+Q =√
(ξf

k+Q)2 + (�f )2, and �c = −�f ≡ �.
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Now we consider interactions that contribute to the spin
susceptibility. They consist of a density-density interband
interaction u1 and a correlated interband hopping u3. Intraband
repulsion only affects the chemical potentials but does not
otherwise contribute to the spin susceptibility. Interband
exchange, in principle, contributes in the π channel but in
renormalization group analysis it flows to small values [23].
In general, u1 and u3 depend on the angle in momentum space
via coherence factors associated with the transformation from
the orbital to the band basis [24]. However, this complication
is not essential for our purposes and we take both interactions
to be momentum independent. The interaction Hamiltonian is

Hint = u1

∑
[1234],σ �=σ ′

c†p1σ
f

†
p2σ ′fp3σ ′cp4σ

+u3

∑
[1234],σ �=σ ′

(
c†p1σ

c
†
p2σ ′fp3σ ′fp4σ + H.c.

)
, (5)

where the sum over momenta obeys momentum conservation
as usual (p1 + p2 = p3 + p4).

Because the interactions in the band basis are linear
combinations of Hubbard and Hund interactions in the orbital
basis, weighted with orbital coherence factors, the sign of
u1 and u3 depends on the interplay between intraorbital and
interorbital interactions [21,25]. The interaction u3 contributes
to the superconducting channel, and for an s+− gap structure
must be repulsive. The sign of u1 is a priori unknown. In
most microscopic studies, it comes out positive (repulsive),
but in principle it can also be negative (attractive). We do not
assume a particular sign of u1 and consider first a case where
u1 is positive and then when it is negative. For the first case, we
show that a resonance can only originate from the particle-hole
channel. For negative u1, the π channel can produce collective
modes as well, and we show that in general the resonant mode
is a mix between spin exciton and a π resonance.

III. SUSCEPTIBILITIES AND RPA

We focus on susceptibilities at antiferromagnetic momen-
tum Q, which separates the centers of hole and electron
pockets. Following similar work done on the cuprates [5],
we define spin and π operators as

Sz(Q) = 1√
N

∑
k

[
c
†
kασ z

αβfk+Qβ + f
†
k+Qασ z

αβckβ

]
, (6)

π (Q) = 1√
N

∑
k

[
ckασ x

αβfQ−kβ

]
. (7)

To make a closer connection to Ref. [5], the operator π can
be equivalently defined as π = 1√

N

∑
k[gkakασ x

αβaQ−kβ], with
|gk| = 1/2 and the sign of gk is chosen so that it is positive near
the hole FS and negative near the electron FS (gk = −gQ−k).

For notational convenience, we split Sz into two operators
such that Sz = Sc + Sf , where

Sc(Q) = 1√
N

∑
k

c
†
kασ z

αβfk+Qβ, (8)

Sf (Q) = 1√
N

∑
k

f
†
k+Qασ z

αβckβ. (9)

TABLE I. Coefficients of bare susceptibilities. Note: k′ = k + Q.

a b Aab(k) Bab(k)

1 1 (vc
ku

f

k′ )2 (uc
kv

f

k′ )2

1 2 −uc
kv

c
ku

f

k′v
f

k′ −uc
kv

c
ku

f

k′v
f

k′

1 3 uc
kv

c
k(uf

k′ )2 −uc
kv

c
k(vf

k′ )2

1 4 (vc
k)2u

f

k′v
f

k′ −(uc
k)2u

f

k′v
f

k′

2 2 (uc
kv

f

k′ )2 (vc
ku

f

k′ )2

2 3 −(uc
k)2u

f

k′v
f

k′ (vc
k)2u

f

k′v
f

k′

2 4 −uc
kv

c
k(vf

k′ )2 uc
kv

c
k(uf

k′ )2

3 3 (uc
ku

f

k′ )2 (vc
kv

f

k′ )2

3 4 uc
kv

c
ku

f

k′v
f

k′ uc
kv

c
ku

f

k′v
f

k′

4 4 (vc
kv

f

k′ )2 (uc
ku

f

k′ )2

We now define the susceptibilities χab(�m) in terms of
Matsubara frequencies as

χab(�m) =
∫ 1/T

0
dτ ′ei�mτ ′ 〈TτAa(τ ′)A†

b(0)〉, (10)

where Aa = (Sc,Sf ,π,π †)a . The actual spin susceptibility is
given by χS = χ11 + χ12 + χ21 + χ22.

The bare susceptibilities χ0
ab can be calculated in the

usual way in terms of Green’s functions and are given by
bubbles made out of c and f fermions, with different Pauli
matrices in the vertices. At T = 0 and after performing
analytic continuation to real frequency space, the (retarded)
susceptibilities have the following form:

χ0
ab(ω) = 2

N

∑
k

[
− Aab(k)

ω − Ec
k − E

f

k+Q + iγ

+ Bab(k)

ω + Ec
k + E

f

k+Q + iγ

]
, (11)

where χ0
ab, Aab, and Bab are symmetric matrices. The expres-

sions for Aab and Bab are presented in Table I in terms of
coherence factors, which are given by

uc
k =

√
1

2

(
1 + ξ c

k

Ec
k

)
, (12)

vc
k =

√
1

2

(
1 − ξ c

k

Ec
k

)
sgn �c, (13)

and similar expressions for u
f

k′ and v
f

k′ .
To obtain the full susceptibilities χab, we used the general-

ized RPA approach. Within this approach

χab = (1 − χ0V )−1
ac χ0

cb, (14)

where the sum over repeated indices is implied and V is given
by

V = 1

2

⎛
⎜⎝

u1 u3 0 0
u3 u1 0 0
0 0 −u1 0
0 0 0 −u1

⎞
⎟⎠. (15)
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The solution for the full spin susceptibility can be written in
a simpler form once we note that the matrix χ0

ab has additional
symmetry. Indeed, the functions Aab(k) and Bab(k) can be
separated into parts that are even or odd with respect to ξc

k and
ξ

f

k . If the momentum sums are evaluated only near the FSs,
where the integration region can be chosen to be symmetric
with respect to positive and negative values of ξc

k and ξ
f

k , then
the odd parts cancel out and χ0

ab acquires the following form:

χ0 =

⎛
⎜⎝

a b c −d

b a d −c

c d e f

−d −c f e

⎞
⎟⎠. (16)

If we rotate the basis of operators from (Sc,Sf ,π,π †) to
(Sc + Sf ,π − π †,Sc − Sf ,π + π †) we find that both V and
χ0 become block diagonal, so the first 2 × 2 system decouples
from the second one. In this case, the solution for the subset
(Sc + Sf ,π − π †) takes the simple form

χS = χ0
S + δχ0

S

1 − uS

(
χ0

S + δχ0
S

) , (17)

χπ = χ0
π + δχ0

π

1 − uπ

(
χ0

π + δχ0
π

) , (18)

where

δχ0
S = uπ

1 − uπχ0
π

(
χ0

Sπ

)2
, (19)

δχ0
π = uS

1 − uSχ
0
S

(
χ0

Sπ

)2
. (20)

and uS = (u1 + u3)/4 and uπ = −u1/4. The bare susceptibil-
ities in this basis are given by

χ0
S = χ0

11 + χ0
12 + χ0

21 + χ0
22 = 2

(
χ0

11 + χ0
12

)
, (21)

χ0
π = χ0

33 − χ0
34 − χ0

43 + χ0
44 = 2

(
χ0

33 − χ0
34

)
, (22)

χ0
Sπ = χ0

13 − χ0
14 + χ0

23 − χ0
24 = 2

(
χ0

13 − χ0
14

)
. (23)

The first two bare susceptibilities contain contributions of
products of two normal Green’s functions and of two anoma-
lous Green’s functions, while χ0

Sπ is composed of one normal
and one anomalous Green’s function (see Fig. 1 for some
contributions of χ0

Sπ to the spin response function).
We obtained expressions for the real parts of the bare

susceptibilities by replacing the momentum sums by integrals
and evaluating them within an energy range from −� to �

FIG. 1. Some mixed-channel contributions to the spin suscepti-
bility and Raman scattering. The solid lines represent f fermions and
the dashed lines c fermions, corresponding to quasiparticles from the
electron and hole pockets, respectively.

FIG. 2. (Color online) Real part of the bare spin susceptibilities
(T = 0, units of �−1) in the case of perfectly nested circular pockets
(m ≡ mc = mf = 1

100�
). In all numerical calculations, μ = 10�

and we include a finite broadening γ = �/200 when evaluating
momentum integrals.

about the FSs. They are valid in the range 0 < ω < 2� in the
limit when the broadening γ → 0:

Reχ0
S (ω) =L + ω2

4�2
Reχ0

π (ω), (24)

Reχ0
π (ω) =m

π

4�2

ω
√

4�2 − ω2
arctan

(
ω√

4�2 − ω2

)
, (25)

Reχ0
Sπ (ω) = ω

2�
Reχ0

π (ω), (26)

where L = m
π

ln (2�/�) and we have neglected terms of order
(�/�)2.

In Fig. 2, we present the results of numerical calculations
of the bare susceptibilities in the case of perfectly nested FSs
(μc = μf ≡ μ). The susceptibility χ0

S would diverge at ω =
0 in the absence of superconductivity, but becomes finite at
a finite �. Conversely, χ0

π at ω = 0 would be zero in the
absence of superconductivity, but becomes nonzero because of
�. Note that all three susceptibilities monotonically increase
with frequency in the domain 0 � ω � 2� and diverge at
ω = 2�. The imaginary parts of the three bare susceptibilities
(not shown in the plot) are infinitesimally small and undergo a
discontinuous jump at ω = 2�. If we make the electron pocket
elliptical, the divergence in the real part is replaced by a local
maximum.

We see that χ0
S (ω) and χ0

π (ω) have finite value at ω = 0. We
recall that, in the absence of superconductivity, χS(0) would
diverge and χπ (0) would vanish at perfect nesting. At ω =
2�, both bare susceptibilities diverge. The cross-susceptibility
χ0

Sπ (ω) vanishes at ω = 0 simply because it is composed from
one normal and one anomalous Green’s function but rapidly
increases with ω and becomes comparable to χS(ω) and χπ (ω)
at ω � 2�.

The cross-susceptibility between particle-hole and particle-
particle channels has been recently analyzed for an s+− super-
conductor in the context of Raman scattering [26]. There, it was
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computed in the charge channel and was found to be very small
due to near-cancellation between contributions from Fermi
surfaces with plus and minus values of the superconducting
gap. In our case, we found that the contributions from hole and
electron FSs add up rather than cancel. The difference is that in
Raman scattering the side vertices in the susceptibility bubble
have the spin structure given by δα,β , while in our case the spin
structure is, say, σ z

α,β . For an s+− gap, Raman bubbles from
hole and electron pocket have the same vertex structure but
differ in the sign of the anomalous Green’s function, hence the
two contributions to cross-susceptibility have opposite signs,
resulting in a cancellation that is complete in the case of perfect
nesting and near-complete in the case of one circular and one
elliptical pocket. This cancellation does not occur in our case
because the σ z structure of the side vertices additionally flips
the sign of one of the two diagrams, and the contributions to
χ0

Sπ (ω) from hole and electron FSs add constructively.
We next note that the terms δχ0

S and δχ0
π are precisely what

is neglected when the particle-particle channel is not included
in the calculation of the spin susceptibility. Setting these terms
to zero reduces the expressions for the full χS and χπ to the
usual RPA results:

χS = χ0
S

1 − uSχ
0
S

, χπ = χ0
π

1 − uπχ0
π

. (27)

The effect of coupling the two channels can be seen more
clearly by substituting (19) into (17), which yields

χS = χ0
S

(
1 − uπχ0

π

) + uπ

(
χ0

Sπ

)2(
1 − uSχ

0
S

)(
1 − uπχ0

π

) − uSuπ

(
χ0

Sπ

)2

= 1

uS

[
−1 + 1 − uπχ0

π(
1 − uSχ

0
S

)(
1 − uπχ0

π

) − uSuπ

(
χ0

Sπ

)2

]
.

(28)

The positions of resonance peaks are given by the zeros of the
denominator in this equation and we can see that the particle-
hole and particle-particle channels are coupled through the
mixed-channel susceptibility χ0

Sπ (ω).

IV. THE RESULTS

A. Purely repulsive interaction, u1 > 0, u3 > 0

For repulsive interactions uS > |uπ | > 0 and uπ < 0. In
the absence of χ0

Sπ , the resonance in χS is present for
any uS because the bare susceptibility χ0

S is positive and
diverges at ω = 2�, hence the equation 1 − uSReχ0

S (ω) = 0
has a solution for 0 < uS < (Reχ0

S (0))−1. In contrast, the fact
that Reχ0

π > 0 means that no resonance originates from this
channel. When χ0

Sπ is included, we found in our numerical
calculations that the effect of the particle-particle channel is
that the peak in the imaginary part of the full susceptibility is
shifted to a higher frequency [since Re(uSuπ (χ0

Sπ )2) < 0]. We
show representative behavior of real and imaginary parts of
the full spin susceptibility in Fig. 3

This result is also obtained when we consider an elliptical
electron pocket, except that there is a minimum value for uS

below which no resonance is observed. This is due to the fact

FIG. 3. (Color online) Imaginary part (main plot) and real part
(insert) of the full spin susceptibility (T = 0, units of �−1) in the case
of repulsive interactions. In this plot, uS = 26� and uπ = −13�. The
solid, black line indicates the full calculation. For comparison, the
dashed, blue line indicates a calculation that neglects particle-particle
contributions.

that the bare susceptibilities have a local maximum instead of
a divergence at ω = 2�.

B. Partially attractive interaction, u1 < 0,u3 > 0

We now consider an alternative case where the density-
density interaction u1 < 0, hence uπ = −u1/4 > 0. We still
assume u3 > |u1| such that uS > 0. For positive uπ , the
π channel can acquire a resonance on its own since the
equation 1 − uπReχ0

π (ω) = 0 necessarily has a solution at a
frequency between 0 and 2� if uπ < (Reχ0

π (0))−1. We assume
that this inequality holds together with uS < (Reχ0

S (0))−1.
If any of these two conditions are not satisfied, the system
becomes unstable either towards π superconductivity with
total momentum of a Cooper pair Q or towards magnetic order.
In both cases, the analysis of the spin susceptibility has to be
modified to include the new condensates. If the spin-exciton
and π channels were not coupled [i.e., if χ0

Sπ (ω) was absent],
we would find resonances in the spin and π channels at
frequencies ωS and ωπ , respectively, set by 1 − uSReχ0

S (ωS) =
0 and 1 − uπReχ0

π (ωπ ) = 0. This suggests the possibility that
there may be two resonance peaks in the full spin susceptibility
χS(Q,ω) once we restore the coupling χ0

Sπ (ω).
However, we found that for all values of uS and uπ for

which the pure s+− state is stable, there is only a single peak
in the spin susceptibility at a frequency lower than both ωS and
ωπ . We show representative behavior in Fig. 4. The existence
of a single peak is due to the fact that χ0

Sπ is small at small fre-
quencies, hence it does not prevent the increase of the real part
of the spin susceptibility with increasing ω (see insert in Fig. 4)
and only shifts the position of the lower pole (ωS or ωπ ) to a
smaller value ωres. At the same time, at higher frequencies, χ0

Sπ

is no longer small relative to the other bare susceptibilities χ0
S

and χ0
π . As a result, the denominator in χS(Q,ω) in (28) passes

through zero at ω = ωres and then remains negative all the way
up to ω = 2� and does not cross zero for the second time.
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FIG. 4. Imaginary part (main plot) and real part (insert) of the
full spin susceptibility (T = 0, units of �−1) in the case of uS =
30.5� and uπ = 130�. In the absence of coupling we would observe
resonance peaks in the spin and π channels at frequencies ωS ≈
0.57� and ωπ ≈ 1.0�, respectively, indicated on the plot.

To better understand this, we artificially add a factor ε to
χ0

Sπ and consider how the solutions evolve as we progressively
increase ε between 0 and 1. At small ε, the two solutions
obviously survive and just further split from each other—the
peak that was at a higher frequency shifts to a higher frequency
and the other peak shifts to to a lower frequency. As ε increases,
the peak at a higher frequency rapidly moves towards 2�. If
we keep Imχ0

ab strictly zero, this peak survives up to ε = 1
with exponentially vanishing amplitude. If, however, we keep
a small but finite fermionic damping in the computations of
χ0

ab, we find that the functions χ0
ab(ω) increase but do not

diverge at 2�. In this situation, the higher frequency peak in
χS(Q,ω) vanishes already at some ε < 1.

We also considered the evolution of the two-peak solution
with ε in a different way: we postulated that the two peaks
should be at ωres,1 and ωres,2, both below 2� and solved the
set of equations for uS and uπ which would correspond to
such a solution. At small ε, we indeed found some real uS

and uπ which satisfy “boundary conditions” uSχ
0
S < 1 and

uπχ0
π < 1. However, this holds only up to some εcr. At higher

ε, the solutions for us and uπ become complex, which implies
that the two-peak solution is no longer possible. At even higher
ε real solutions for us and uπ reappear, but they do not satisfy
the boundary conditions. We searched for a range of ωres,1

and ωres,2 and for all values that we tested we found εcr <

1, i.e., again there is only a single peak for the actual case
of ε = 1.

Another way to see that there is only one peak in the
full χS is to substitute the expressions for the real parts
of the susceptibilities, Eqs. (24)–(26), into the denominator
of Eq. (28) and express the real part of the term D =

(1 − uSχ
0
S )(1 − uπχ0

π ) − uSuπ (χ0
Sπ )2 via χ0

π = χ0
π (ω). We

obtain

ReD = (1 − uSL) −
[
uS

ω2

4�2
+ uπ (1 − uSL)

]
Re

[
χ0

π (ω)
]
.

(29)

Because (1 − uSL) and (1 − uπχ0
π (0)) are required to be

positive for the stability of the paramagnetic state, at zero
frequency, D is surely positive. At finite ω, the first term in (29)
is positive, while the second one is negative and its magnitude
monotonically increases with increasing ω. As a result, the
denominator crosses zero only once, at some ω < 2�.

The single resonance peak is a mixture of a spin-exciton
and π resonance and for the representative case shown in
Fig. 4 its energy is smaller that that of spin-exciton and
a π resonance. This implies that, when both channels are
attractive, the coupling between the two plays substantial
role in determining the position of the true resonance. From
this perspective, the resonance at u1 < 0 can, at least partly,
be viewed as a plasmon. A somewhat similar result has
been earlier obtained in the analysis of the resonance in
the cuprates in the parameter range where π resonance is
allowed [5,17,19].

V. CONCLUSIONS

We have studied the spin resonance at antiferromagnetic
momentum (π,π ) in an s+− superconducting state of FeSCs
by including contribution from the particle-particle channel,
which in the superconducting state gets mixed with the
particle-hole channel. We have shown that for purely repulsive
interactions the inclusion of this channel does not qualitatively
change the spin resonance, which remains predominantly
spin-exciton and only slightly shifts to higher frequencies. For
attractive density-density interaction, when both spin-exciton
resonance in the particle-hole channel and π resonance in the
particle-particle channel are allowed, we found that strong
coupling between the two channels destroys the two-peak
structure and only one peak survives, whose frequency is
smaller than would be that of a spin-exciton and π resonance
in the absence of the coupling. We argued that strong coupling
between the particle-hole and particle-particle channels is
peculiar to the spin susceptibility, while for the charge
susceptibility, which, e.g., is relevant for Raman scattering,
the coupling is much smaller.
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