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Reconnection of quantized vortex filaments and the Kolmogorov spectrum
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The energy spectrum of the three-dimensional (3D) velocity field, induced by collapsing vortex filaments,
is studied. One of the aims of this work is to clarify the appearance of the Kolmogorov-type energy spectrum
E(k) ∝ k−5/3, observed in many numerical works on discrete vortex tubes and quantized vortex filaments in
quantum fluids at zero temperature. Usually when explaining classical turbulent properties of quantum turbulence
the model of vortex bundles is used. This model is necessary to mimic the vortex stretching, which is responsible
for the energy transfer in classical turbulence. In my consideration I do not appeal to the possible “bundle
arrangement” but instead explore the alternative idea that the turbulent spectra appear from a singular solution,
which describes the collapsing line at moments of reconnection. One more aim is related to an important
and intensively discussed topic—the role of hydrodynamic collapse in the formation of turbulent spectra. I
demonstrated that the specific vortex filament configuration generated the spectrum E(k) close to the Kolmogorov
dependence and discussed the reason for this as well as the reason for deviation. I also discuss the obtained results
from the points of view of both classical and quantum turbulence.
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I. SCIENTIFIC BACKGROUND AND MOTIVATIONS

I discuss the possibility of realization of the Kolmogorov-
type energy spectrum E(k) ∝ k−5/3 of the three-dimensional
(3D) velocity field, produced by the quantized vortex filaments,
collapsing towards reconnection.

The first motivation of this work is related to the problem
of modeling classical turbulence with a set of chaotic vortex
tubes. This idea has been discussed for quite a long time.(For
details, see, e.g., Refs. [1–3]). In classical fluids thin vortex
tubes do not exist because they spread due to viscosity, so
the concept of vortex filaments should just be considered
as a model. Quantum fluids, where the vortex filaments are
real objects, give an excellent opportunity for studying the
question of whether the dynamics of a set of vortex lines
is able to reproduce (at least partially) the properties of real
hydrodynamic turbulence. This case is usually referred to
as a quasiclassic behavior of quantum turbulence. Turbulent
motion of superfluid helium had been studied for a long time
(see, e.g., Ref. [4] and review articles [5,6]). The modern
stage of study of turbulent motion of superfluid helium started
with the work by Maurer and Tabeling [7], who observed the
Kolmogorov spectrum E(k) ∝ k−5/3 in flowing helium below
Tλ, and then in works of their successors (see, e.g., Refs. [8,9]
and also the review [10]).

The most common view on the quasiclassical turbulence is
the model of vortex bundles. The point is that the quantized
vortices have a fixed core radius, so they do not possess the
very important property of classical turbulence—stretching
of vortex tubes with a decrease in core size. The latter is
responsible for the turbulent energy cascade from large scales
to the small scales. Collections of near-parallel quantized
vortices (vortex bundles) do possess this property, so the idea
that the quasiclassical turbulence in quantum fluids is realized
via a set of vortex bundles of different sizes and intensities
(number of threads) seems quite natural. Another argument
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in favor of the bundle structure is related to the distribution
of energy in the space of scales. In the classic turbulence the
most energy is concentrated on the large scales, far exceeding
the viscous boundary of the inertial interval. By analogy, the
energy of quasiclassic turbulence should be concentrated on
scales �δ (here δ is the intervortex space of the order ofL−1/2,
where L is the vortex line density), implying that there must be
some tendency towards bunching. Indeed, in a chaotic vortex
tangle the energy is proportional to the vortex line density
L (E ∝ L) but in the quasiclassic case it should grow faster
(probably E ∝ L 4/3; see Ref. [3], Section 9.3).

Conception of the bundle structure is justified for high
temperatures, where the coupling with normal component
is strong and bundles of quantized vortices are frozen into
the normal component eddies. The situation changes for
very low temperatures (which I consider further), where
the normal component is absent and there are no obvious
reasons for the bundle formation. There exist a number of
attempts (mainly numerical; analytical evidences are lacking)
to demonstrate the existence of a bundle, but the corresponding
efforts are preliminary (see, e.g., papers [11,12] and references
therein). On the other hand, for low temperature, the regular
vortex bundles, even if they are prepared artificially, they
are extremely unstable (see, e.g., Refs. [3,13,14]). They can
be easily destroyed by reconnections either between the
neighboring threads or in collisions with the other bundles. As
a result, the regular structure “melted” and vortex filaments
are randomized.

It should be realized that the conception of the bundle
structure is the secondary one. It originated from the idea
of quasiclassic behavior of quantum turbulence. In turn the
latter idea is based on several pieces of evidence, such as the
decay of the vortex tangle observed in some experiments (see,
e.g., papers [15–17] and also the reviews [18–20]), numerical
results on the energy spectra, and also some peculiarities
of flow behind of obstacles, both stationary and moving
(oscillating).

Among various arguments supporting the idea of quasi-
classic behavior of quantum turbulence, the strongest is the
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k dependence of the spectra of energy E(k) obtained in nu-
merical simulations. There are several works that demonstrate
a dependence of E(k) close to the Kolmogorov lawE(k) ∝
k−5/3. These are works based on both the vortex filament
method [11,21–23] and the Gross-Pitaevskii equation [24–26].
At first sight this fact demonstrates the connection with
classical turbulence and tells about nonuniform distribution
of energy with larger energy for small k (large scales). The
vortex bundle scenario seems to follow naturally from this
fact. However, the following argument must be taken into
account: The modeling of the classical turbulence with a set of
chaotic quantized vortices is undoubtedly an outstanding goal,
which can be considered as a breakthrough in the tantalizing
problem of turbulence, but it requires an enhanced level of
scientific rigor: All arguments and evidences of any hypothesis
should be carefully scrutinized. In particular, there should be
a possibility of alternative interpretation of experimental and
numerical facts. For instance, the bunching of filaments is not
the only way to accumulate energy on a large scale. This can be
also realized by the presence of very large vortex loops. A more
advanced variant is a set of polarized vortex loops. At the stage
of the putting forward of various hypotheses, this proposal is
not any worse than the vortex bundle conception. Similarly,
the bundle structure is not a unique variant to generate the
Kolmogorov-type spectrum; moreover there are no relevant
calculations, just an appeal to the analogy with the classical
turbulence. Therefore, it quite tempting to find a mechanism
for the appearance of the Kolmogorov-type spectrum which
is directly based on the vortex lines dynamics, and I offer the
collapsing vortex filaments as a candidate for this purpose.

The second motivation is related to another important
and intensively discussed topic: the role of hydrodynamic
collapse in the formation of turbulent spectra. The striking
examples of such type of spectra are the Phillips spectrum for
water-wind waves, created by white caps (wedges of water
surface) or the Kadomtsev-Petviashvili spectrum for acoustic
turbulence created by shocks. In works [27,28] the authors
studied the collapse of the vorticity field, characterized by
explosive grow of vorticity field due to stretching of vortex
tubes. They also reported about velocity spectra close to the
Kolmogorov law. In the case of quantum fluids, vortices do not
change their inner structure and the singularity arises due to
the approach of interacting vortex filaments. The result of this
approach is appearance of a very acute kinks, and the energy
of interaction between closely located parts can essentially
exceed contributions from smooth elements of lines.

Finally, the third motivation is that the question of energy
spectra induced by various configurations of vortex filaments
is interesting. Indeed, moving chaotically vortex filaments
explicitly determine the entire motion of the fluid and in
particular the energy spectrum. The case of the reconnecting
lines is of a special interest, because the reconnection events
(rather frequent) are very important ingredient of dynamics
of vortex lines. As a by-product, the spectra induced by
reconnecting lines was discussed both in quantum and classical
cases (see, e.g., [23,28,29]), but as numerical results without
revelation of the principle reasons for the appearance of the
Kolmogorov (power-like) spectra.

In the work I introduce the general method for calculation
of the energy spectrum via the vortex line configuration, then

I choose the analytic relation for the shape of kink, and
conduct the mixed analytic and numerical evaluation of E(k).
I demonstrate that the spectrum E(k) is very close to the
Kolmogorov dependence ∝ k−5/3 and discuss the reason for
this as well as the reason for deviation.

II. CALCULATION OF SPECTRUM

The formal relation, allowing the calculation of E(k) =
ρsvkv−k/2 = ρsωkω−k/2k2 (this follows, e.g., from the ob-
servation that in k space ωk = k × vk, and kvk = 0 due to
incompressibility) via the vortex line configuration {s(ξ )}, can
be written as follows (see [30,31]):

E(k) = ρsκ
2

16π3k2

∮ ∮
s′(ξ1)s′(ξ2)dξ1dξ2e

ik(s(ξ1)−s(ξ2)). (1)

Here ρs is the superfluid density, κ is the quantum of circulation
equal to h/mHe = 9.97 × 10−4 2cm/s, where h is Planck’s
constant and mHe is the mass of the helium atom. The vortex
line configuration s(ξ ) = ⋃

si(ξi) is the union of lines si(ξi),
where si(ξi) describes the i-vortex line position parameterized
by the label variable ξi , s′

i(ξi) denotes the derivative with
respect to variable ξi (the tangent vector), and

∫
C

= ∫
C

∑
j . In

the isotropic case, the spectral density depends on the absolute
value of the wave number k. Integration over the solid angle
leads to the formula (see Refs. [31,32])

E(k)= ρsκ
2

(2π )2

∮ ∮
s′(ξ1)s′(ξ2)dξ1dξ2

sin(k|s(ξ1) − s(ξ2)|)
k|s(ξ1) − s(ξ2)| .

(2)

For anisotropic situations, formula (2) is understood as the
angular average. Thus, for calculation of the energy spectrum
E(k) of the 3D velocity field, induced by the collapsing vortex
filament, I need to know the exact configuration {s(ξ )} of vortex
lines.

III. SHAPE OF KINK

Despite the huge number of works devoted to the dynamics
of collapsing lines both in classic and quantum fluids [33,34]
(this list is far from full) the exact solution s(ξ ) for the shape
of curves has not yet been obtained. The main results are
obtained by different approaches, combining analytical and
numerical methods, such as the vortex filament method (in
both the local induction approximation and the Biot-Savart
law), as well as the full 3D studies of Navier-Stocks equations
or the nonlinear Schrödinger equation for vortices in the Bose-
Einstein condensate.

Qualitatively, the results of these investigations are quite
similar and can be described as follows. Due to long-range
interaction in the Biot-Savart integral, the initially arbitrarily
oriented vortices, when they approach each other, start by
reorienting their close segments so as to bring them into
an antiparallel position. Further, cusps may appear on the
approaching segments of two vortex lines. The curvature of
these cusps may be so large that the self-induced velocity of
each perturbation overcomes the repulsion from the adjoining
vortex line. Further the cusps grow and approach each other
closer; this increases their curvature and, correspondingly,
their self-induced velocities, and this process is repeated faster
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FIG. 1. (Color online) The touching quasihyperbolae describing
the collapsing lines [see Eq. (3)] obtained in Ref. [34]. In the inset
I set (as an example) the kinks on the antiparallel collapsing vortex
tubes obtained in numerical simulation [35].

and faster. It is important that this process grows explosively,
since the distance between the two perturbed segments, 	,
decreases according to the relation 	 ∼ (t∗ − t)1/2, where
t∗ is some quantity depending on the relevant parameters
and initial conditions. Thus, in a finite time the vortex lines
collapse. Asymptotic lines are two hyperbolic curves lying
on opposite sides of the pyramid (see, e.g., [36,37]). A little
different scenario without the pyramid structure was observed
in Ref. [38]. In a recent study [34], it was shown that the
curves are not exact hyperbolas, but slightly different lines
(the authors call these curves quasihyperbolae) of type h(ξ ) =√

a2ξ 2/(a2 + ξ 2) + a2 + ξ 2, and that they lie not in the planes
of the pyramid sides but on the curved surfaces, bent inwards.
In the moments just before the collapse, when the vortex cores
nearly touch each other, the very acute kink appears. This
curves may be written in parametric form (cf. formula (16) of
Ref. [34]):

s1,2(ξ ) = (±[h(ξ ) − c],±ξ, {h[h(ξ ) − b]}). (3)

The described configuration is shown in Fig. 1. The signs are
chosen so that s′

1(0)s′
2(0) = −1 (the vortices are antiparallel).

Quantity a is of the order of the curvature radius on the tip of the
kinks; quantity b (related to a; see Ref. [34]) is responsible
for bending the surfaces on which the quasihyperbolae lie.
Quantity c is also of the order of a and is responsible for
closeness of the filaments. All three quantities are smaller than
the intervortex space δ = L−1/2 (where L is the vortex line
density). This vision is consistent with the results of numerous
numerical works, studying the collapse of vortex lines (see,
e.g., Refs. [28,35] and references therein; the decisive picture
obtained in Ref. [35] is shown in the inset of Fig. 1).

IV. NUMERICAL RESULTS

In the left graphic of Fig. 2 I presented the results of
numerical calculation of spectrum E(k) on the base formula (2)
(without prefactor before integral) using a configuration {s(ξ )}
of vortex lines described by Eq. (3). I calculated only the

FIG. 2. (Color online) Right: The spectrum E(k), obtained nu-
merically on the base formula (2). The straight line has a slope −5/3.
Left: The same spectrum obtained on the basis of procedure described
in Sec. V [Eq. (4)].

interaction energy between the approaching parts of different
lines; the self-energy in vicinity of the point of contact
vanishes, since lines are antiparallel and they just annihilate.
The parameters a = 0.1,b = 0.09,c = 0.1 (the case a ≈ c

corresponds to nearly touching curves) had been chosen.
Integration over ξ1,ξ2 was performed from zero to 1. The
upper limit 1 corresponds to the size of the kink, which is the
order of intervortex space δ (see inset of Fig. 1). Obviously,
the choice of the upper limit larger than the intervortex space
δ requires a knowledge of the large-scale arrangement of
the tangle structure. The latter is a central question of the
quantum turbulence problem and represents the tremendous
and outstanding problem. Thus, my results are not applicable
for the real vortex tangle in the small-k limit. But in the interval
of wave numbers k between 1 ÷ 50 (which corresponds to
curvature of the kink and its inverse size) the slope of E(k)
is indeed close to −5/3. I discuss the origin of this in the
following paragraph.

V. ANALYTIC CONSIDERATION

Because of the rapidly oscillating function, the evaluation
of integral (2) is difficult, even numerically. In addition,
numerical results obscure underlying physics; therefore, I
intend to perform an analytical study, at least as far as possible.
The integral (2) can be approximately evaluated for large k

using the method of asymptotic expansion [39]. When k is
large the function sin(k |s(ξ1) − s(ξ2)|) is a rapidly varying
function; therefore, the main contribution into integral comes
from points of minimal value of the separation function
between points of the curves D(ξ1,ξ2) = |s(ξ1) − s(ξ2)|. This
is enhanced by the fact that the distance is included in the
denominator in the integrand of Eq. (2). Thus, the behavior
of the phase function D(ξ1,ξ2) near minimum is crucial for
value of the integral and for its k dependence. Let us study the
phase function D(ξ1,ξ2) for the vortex configuration described
by Eq. (3) just before collapse when c ≈ a. It is convenient
to introduce variables ρ = ξ1 − ξ2 and R = (ξ1 + ξ2)/2 and
recast the double integral

∫
C

∫
C

dξ1dξ2 as multiple integral∫
dR

∫
dρ in the domain bounded by lines ρ = 2R and

ρ = −2R. The upper limit for R is not essential, since the
integral gains the main contribution from the vicinity of point
R = 0. Let us consider the behavior of function D(ρ,R).
It is depicted in Fig. 3 (in the extended domain) at the
beginning of coordinates ρ = 0,R = 0 function D(ρ,R) = 0.
The important feature of function D(ρ,R) is its behavior of
it near points ρ = 0 (for different R), which is the median
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FIG. 3. (Color online) Quantity, the phase function in coordi-
nates ρ,R.

part of domain arising from equidistant (ξ1 = ξ2) points of
the touching vortex filaments. For fixed R (perpendicular
to the median direction) the functions D(ρ,R = const.) are
approximated by pieces of parabolas ∝ ρ2, then transferred
into linear function ∝ |ρ| for ρ � a with the same slope for
all R. Thus, all points of the median are points of the local
minimum, and ∂D/∂ρ|ρ=0 = 0 for all R. Another important
feature of the phase function D(ρ,R) is its dependence on R

along the median ρ = 0.
Function D(0,R) is depicted in logarithmic coordinates in

Fig. 4. It is seen that it behaves as ∝ R2 and then passes into
∝ R1 for R ∼ a (crossover region). Thus, I have a complicated
case, when point (R = 0,ρ = 0) is simultaneously both a
corner of domain restricted by curves ρ = 2R and ρ = −2R,
and a stationary point (minimum), i.e., ∇D(ρ,R) = 0. To
move further I pass to polar coordinates R,θ , then by
integrating over angle θ I obtain asymptotic expansion over
1/k. The leading term has the form

E(k) =
∫

0
dR

√
π

k∂2D/∂ρ2|ρ=0

sin (kD(ρ,R))
kD(ρ,R)

∣∣∣∣
ρ=0

. (4)

I used here that integration over θ is identical to integration
over dρ, namely dρ = Rdθ , and the median curve ρ = 0 is
the line where function D(ρ,R = const.) has a local minimum;
∂D/∂ρ|ρ=0 = 0. Therefore, the integration over θ can be car-
ried out by the use of the stationary phase method, which gives
Eq. (4). Calculating the integral in the vicinity of the stationary
point I neglected the slowly changing function s′(ξ1)s′(ξ2),
putting it equal to −1 (recall that the lines are antiparallel).
Additionally, I take sin(kD(ρ,R)) as an imaginary part of
exp(ikD(ρ,R)).Thus, I reduced the whole problem to an
evaluation of the one-dimensional (1D) integral. In the right
graphic of Fig. 2 I present E(k), calculated on the basis of
formula (4). First, please note that spectrum calculated with

FIG. 4. (Color online) Left: Function D(0,R), distance along the
median in the log-log coordinates. Segment of the straight line has
a slope 3/2. Right: The slices of the phase function D(ρ,R) for
different R.

the use of formula (4) is very close to the spectrum calculated
on basis (2); this justifies the approximated procedure, as
described above. Second, and more important, is that again
in the interval of wave numbers k between 1 ÷ 50 the slope
of E(k) is close to −5/3. To understand an appearance of
the ≈k−5/3 dependence I appeal to the so-called Erdelyi
lemma [40], which says that the integral

∫
0 xβ−1f (x)eiλxα

dx

with a smooth enough function f (x) has an expansion in
asymptotic series as

∑
m amλ− m+β

α with the leading term λ− β

α .
In particular, this means that if I took the collapsing filaments
not to be quasihyperbolas but as pure power-like functions
s1,2(ξ ) = (ξ,±ξ 3/2,0) (3/2 parabolas) and implemented the
procedure described above, I would find that the spectrum had
an exact E(k) ∝ k−5/3 form. Coming back to solution (3) and
Fig. (4), I see that function D(0,R) is not 3/2 parabola but it is
more sophisticated function which behaves as ∝ R2 and then
passes into ∝ R1 in the crossover region 	, covering from
1 to 1.5 decades near quantity a. Therefore, in the crossover
region where the quantity D(0,R) is close to R3/2, it should
be expected that E(k) is close to the Kolmogorov dependence
∝ k−5/3 for the wave numbers k of the order 2π/	, which
indeed takes place. The crossover region lies from the scale
of the bend and the scale where branches of hyperbolas tend
to become straight lines. Actually it is close to the size of the
bridging kink on the curves and is of the order of intervortex
space δ = L−1/2 (see the inset in Fig. 1).

VI. CONCLUSION AND DISCUSSION

Thus, I evaluated the energy spectrum of the 3D velocity
field induced by collapsing vortex filaments. I obtained it
both numerically and analytically. The latter allowed me to
understand the reason the Kolmogorov-like spectrum appeared
from the shape of collapsing vortex filaments.

Coming back to the aims of the work stated in the
introduction I can suggest that the spectrum E(k) close to
the Kolmogorov dependence ∝ k−5/3, which was observed in
numerical simulations on the dynamics of quantized vortex
filaments [11,21], can appear from the reconnecting lines.
The interval of wave numbers where the spectrum E(k)
≈ k−5/3 is observed is regulated by the curvature of the kink
and intervortex space δ. In reality this spectrum covers a
maximum 1 ÷ 1.5 decades around k ≈ 2π/δ. It should be
stressed, however, that in the key numerical works [11,21]
the ranges for wave number are also of the order of one
decade around k ≈ 2π/δ. Unfortunately, because of a lack
of exact analytic solution for the configuration {s(ξ )} of the
collapsing vortex filaments, the quantity E(k) is approximate
and relies on the asymptotic solution (3). On the other hand (as
seen from the proposed analytical consideration), the spectrum
depends on a few features of the collapsing lines, such as as
the order of tangency and the crossover to a smooth straight
line. The exact shape of kink, however, can affect mainly
the region of large wave numbers k. As for the small wave
numbers k (smaller than 2π/δ), the spectrum E(k) should be
extracted by integrating the base formula (2) over the whole
vortex configuration, including the very remote elements of
vortex filaments (|s(ξ1) − s(ξ2)| � δ). Clearly, this can be
done, provided that I know (at least in a statistical sense) the
large-scale arrangement of the vortex tangle structure. This
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question is central to the quantum turbulence problem and is
a tremendous and outstanding problem. Thus, my approach is
not suitable to investigate the question of the form and origin
of the energy spectrum of quantum turbulence in the limit of
small wave numbers.

Another, more delicate question, touched on in the intro-
duction, concerns the role of the dynamics of discrete vortices
in the physics of turbulence. My results support the point of
view on the role of collapse in the formation of turbulent
spectra conducted in Ref. [27]. On the other hand, besides
the interval of wave numbers (discussed above), other unclear
questions remain. In the Kolmogorov scenario the spectrum
E(k) ∝ k−5/3 was the consequence of a k-independent energy
cascade Pk in the k space. In the scheme based on collapsing
lines the energy cascade does not appear at all (at least in
an explicit form). An assumption can be put forward that the
collapse of lines, which delivers energy into a tiny region near
the point of collapse (then this energy is burned in the process
of full reconnection), plays the role of the vortex stretching in
the transfer of energy to small scales. There are possible other
scenarios related to full reconnection and formation of larger or

smaller vortex loops (recombination processes), which implies
redistribution of the energy between various scales, inducing
the direct and inverse cascades; see Refs. [41,42]).

Of course, there are many other issues relating to higher
structure functions or to the number of reconnections necessary
to maintain a uniform spectrum, although the numerous
number of reconnections (which is ∝ κL 5/2; see, e.g.,
Refs. [43–46]) can lead to the uniform and isotropic picture.
These issues, however, are outside the framework of the
presented work and will be the object of future studies. As
concluding remark I note that evaluation of the spectrum
from reconnecting lines is performed on the basis of elegant
mathematical theory, which allows understanding of the origin
of the Kolmogorov spectrum grounded on the shape of
collapsing curves.
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