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Superconducting spintronics with magnetic domain walls
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The recent experimental demonstration of spin-polarized supercurrents offers a venue for establishment of a
superconducting analog to conventional spintronics. Whereas domain-wall motion in purely magnetic structures
is a well-studied topic, it is not clear how domain-wall dynamics may influence superconductivity and whether
some functional property can be harnessed from such a scenario. Here, we demonstrate that domain walls in
superconducting systems offer a unique way of controlling the quantum state of the superconductor. Considering
both the diffusive and ballistic limits, we show that moving the domain wall to different locations in a Josephson
junction will change the quantum ground state from being in a 0 state to a π state. Remarkably, we also show that
domain-wall motion can be used to turn on and off superconductivity: the position of the domain wall determines
the critical temperature Tc and thus whether the system is in a resistive state or not, causing even a quantum phase
transition between the dissipationless and normal state at T = 0. In this way, one achieves dynamical control over
the superconducting state within a single sample by utilizing magnetic domain wall motion which has interesting
consequences in terms of a domain-wall-controlled superconducting magnetoresistance effect.
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I. INTRODUCTION

The research fields of spintronics and superconductivity,
once disparate, have in recent years been moved closer to one
another due to several key discoveries. The unification of these
two fields might seem futile at first glance since ferromagnets
are spin-polarized whereas the main constituent of a supercon-
ductor, the Cooper pair, resides in a spinless singlet state in con-
ventional Bardeen-Cooper-Schrieffer theory [1]. Nevertheless,
it turns out that the mutual interplay between magnetism and
superconductivity opens a rich vista of new physics far beyond
the notion that ferromagnetic order has a detrimental influence
on superconducting order. Even setting aside for the moment
the possibility of intrinsically unconventional spin-triplet
superconductors such as Sr2RuO4 [2] and uranium-based
heavy-fermion compounds [3–5] such as UGe2, URhGe, and
UCoGe, it has been realized over the last years that proximate
structures of ferromagnets and perfectly conventional s-wave
superconductors can sustain long-ranged and spin-polarized
superconducting correlations, even in extreme environments
such as half-metallic compounds [6].

The core principles which make possible such an unlikely
synthesis between magnetic and superconducting order are
the Pauli principle and symmetry breaking [7–9]. The former
dictates that Cooper pairs in superconductors are not neces-
sarily confined to a spinless state, but that a spin-polarized
state may arise as long as the overall wave function of the
pair satisfies fermionic interchange statistics. Such a change
in spin polarization of the Cooper pair can be triggered by
considering hybrid structures composed of ferromagnets and
superconductors. Since translational symmetry is explicitly
broken at the interface region, the Cooper pair wave function
becomes a mixture of its original bulk state and a state with new
symmetries generated at the interface region [10,11]. Cooper
pairs with electrons that carry the same spin would not be
subject to paramagnetic pair breaking and could in principle
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propagate for large distances ∼100 nm inside the ferromagnet
regardless of the strength of the exchange field, limited only
by coherence-breaking processes such as inelasticity, spin-flip
scattering, and thermal decoherence.

Precisely such behavior can occur in textured ferromagnets,
to be contrasted with monodomain ferromagnets. In fact, such
long-ranged and spin-polarized superconducting correlations
may arise even from conventional s-wave superconductors
when a magnetic inhomogeneity of some sort is present [12]. A
number of proposals have been put forth in this regard, ranging
from multilayered magnetic structures, domain-wall ferro-
magnets, and interfaces with spin-active scattering [13–20]
and also with a focus on the relation to magnetoresistance
effects [21,22]. Moreover, the appearance of higher harmonics
in the current-phase relation in SFS junctions has recently been
shown to be intimately linked to the long-ranged and spin-
polarized nature of such supercurrents [23–26]. Experiments
have quite recently been able to unambiguously verify the ex-
istence of long-ranged supercurrents flowing through textured
magnetic structures [6,27,28]. By now, it is then established
that the superconducting proximity effect in ferromagnets
may become long-ranged and spin-polarized under suitable
circumstances. Although this is certainly interesting from a
fundamental physics viewpoint, it begs the question: can these
spin-polarized superconducting correlations be utilized for
some practical purpose?

Spin-polarized resistive currents are known to play an
instrumental role in the field of spintronics. One of their
hallmarks in this context is the ability to transfer angular
momentum to the magnetic order parameter in a material,
an effect known as spin-transfer torque [29,30]. One of the
most actively pursued research directions in this field is as
of today controllable domain-wall motion, which may be
accomplished via several routes [31] such as spin-polarized
currents, magnons, and external magnetic fields. Now, such
domain walls provide an ingredient to generate spin-polarized
superconducting correlations as they represent an inhomo-
geneous magnetization texture. Therefore, the generation of
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spin-polarized supercurrents junctions may be used to obtain
a superconducting spin-transfer torque acting on the mag-
netization of a ferromagnet [32–35]. Supercurrents flowing
through magnetic domain walls have also been investigated
experimentally [36]. In terms of domain-wall dynamics, the
dissipationless nature of the supercurrent flow offers an
interesting venue in terms of reduced energy loss and Joule
heating, one of the main obstacles for efficient wall motion.
Conversely, one should also expect a reciprocal effect, namely
that the domain wall itself will influence how the triplet
superconducting correlations are manifested in the system.
It is this topic that we shall address in the present paper,
demonstrating an intriguing outcome.

In this work, we will show that domain walls in super-
conducting junctions offer a way of exerting control of the
quantum ground state of the system. Varying the position of a
domain wall with a realistic magnetization profile taking into
account magnetic anisotropy and spin stiffness, we demon-
strate that the position of the domain wall controls whether the
junction is in a 0 or π state. In this way, it becomes possible
to exert dynamic control over the quantum ground state within
a single sample: the motion of the domain wall manipulates
the proximity effects responsible for the oscillatory nature of
the superconducting order parameter in the ferromagnetic (F)
region, as well as the magnetic correlations and destruction
of superconductivity in the superconducting (S) layers. More-
over, we will show that the domain-wall dynamics can result in
an effective superconducting switch, where the system changes
from a resistive state to a dissipationless one. We compute
the critical temperature of a domain-wall nanostructure in the
ballistic regime in an entirely self-consistent manner, which is
necessary when it is unknown a priori what the ground state
of the system is. We find suitable spin-switch candidates that
transition from a superconducting state to a normal one, even
at T = 0, as the domain wall is shifted. These results show
that superconducting spintronics via magnetic domain wall
motion can be used not only to change the superconducting
quantum state, but even turn superconductivity itself on
and off (see Fig. 1). Interestingly, this also implies that a
huge magnetoresistance-like effect controlled by domain-wall
motion would take place in this system since it would be tuned
from a dissipative to superconducting state via the domain-wall
position which thus corresponds to vastly different resis-
tances depending on the magnetization configuration of the
system.

We first outline the theoretical framework used in our calcu-
lations to compute the superconducting quantum ground state.
Next, we present analytical and numerical results for 0-π tran-
sitions both in the ballistic and diffusive regime of transport,
including the possibility of switching from a resistive to dis-
sipationless state simply by moving the domain wall. We then
give a detailed discussion of our results, including candidate
materials for the predicted effects, and experimental feasibility
of our proposed setup. Finally, we summarize our findings.

II. DOMAIN WALLS IN JOSEPHSON JUNCTIONS

To model a realistic domain wall, we minimize the
free energy functional for an inhomogeneous ferromagnet

FIG. 1. (Color online) Proposed setup. A magnetic domain wall
is present in a ferromagnetic layer of width L, separating two
conventional s-wave superconductors. Inducing domain-wall motion
to a new position can alter the quantum ground state of the junction,
triggering a 0-π transition. Moving the domain-wall changes the
critical temperature Tc and may even reduce it to zero (middle figure),
thus destroying superconductivity. The domain-wall can be moved via
an applied current, external field, or spin-wave excitations to specific
locations by artificially tailored pinning sites, e.g., via geometrical
notches in the sample.

including exchange stiffness and anisotropy:

F =
∫

dx
[
A(∂xM)2/2 − KeasyM

2
z + KhardM

2
x

]
. (1)

Here, A is the exchange stiffness while Keasy and Khard are the
anisotropy energies associated with the easy and hard axes of
the magnetization, M, respectively. The result [37] is M(x) =
M0[0, sin θ (x), cos θ (x)] where θ (x) determines the domain-
wall profile and is given by

θ (x) = 2 arctan{exp[(x − X)/λ]}, (2)

where λ = √
A/Keasy is the domain-wall width. We have also

introduced the position of the center of the domain wall X,
which will play an important role in what follows. With the
magnetization texture in hand, we now insert it into the corre-
sponding equations of motion for the Green’s function which
in turn enables us to compute the supercurrent in the system. In
the diffusive regime, we make use of the quasiclassical Usadel
equation [38] with the above magnetization profile M(x):

D[∂̂,Ĝ[∂̂,Ĝ]] + i[ερ̂3 + diag[h · σ ,(h · σ )τ ],Ĝ] = 0. (3)

Here D is the diffusion constant, h||M is the exchange field,
ε is the quasiparticle energy, ∂̂ is the derivative operator, Ĝ

represents the total Green’s function, and ρ̂3 and σ are 4×4
and 2×2 Pauli matrices, respectively. The Usadel equation
is supplemented by the Kupriyanov-Lukichev [39] boundary
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conditions at interfaces along the x axis:

2ζ Ĝ∂̂Ĝ = ±[ĜBCS(φ±),Ĝ], (4)

in which ĜBCS is the bulk solution, ± (φ±) denotes the left
and right interface (superconducting phase), and ζ controls
the interface transparency. Note that the exchange field h also
sets the length scale for the ferromagnetic coherence length
ξF = √

D/h (and later, in the ballistic limit, ξF ∝ 1/h). For
stability in the numerical computations, we use the so-called
Ricatti parametrization [40] of the Green’s function. Finally,
the supercurrent may be computed according to the formula:

Isuper = j0

∫ ∞

0
dε Tr

{
ρ̂3

(
ǧ

∂ǧ

∂x

)K}
, (5)

where j0 = −N0|e|D/16 is a normalization constant where
N0 is the normal-state density of states and e is the electron
charge. The key observation is that when the Josephson current
Isuper changes sign, a 0-π transition has taken place.

We now turn to the ballistic regime to investigate the
transport and thermodynamic properties of SFS nanojunctions
with controllable domain walls. We utilize the microscopic
Bogoliubov–de Gennes (BdG) technique [41] which enables
us to fully isolate the superconducting pairing correlations
in the system and investigate the precise behavior of the
proximity-induced supercurrent. In terms of the quasiparticle
amplitudes unσ and vnσ with excitation energy εn and spin σ ,
the BdG equations are compactly written as⎛
⎜⎜⎜⎝

H − hz −hx + ihy 0 �

−hx − ihy H + hz � 0

0 �∗ −(H − hz) −hx − ihy

�∗ 0 −hx + ihy −(H + hz)

⎞
⎟⎟⎟⎠�n

= εn�n, (6)

where we define the vector �n ≡ (un↑,un↓,vn↑,vn↓)T . The pair
potential �(x) must be determined self-consistently by solving
the BdG equations together with the condition

�(x) = g(x)

2

∑
n

[un↑(x)v∗
n↓(x) + un↓(x)v∗

n↑(x)] tanh

(
εn

2T

)
,

(7)

where g(x) is the attractive interaction that exists solely inside
the superconducting region and restricts the sum to those
quantum states with positive energies below an energy cutoff,
specified below. The single-particle Hamiltonian H is ex-
pressed as H = 1/(2m)(−∂2

x + k2
x + k2

y) − μ + U (x), where
μ is the Fermi energy and U (x) is the spin-independent
interface scattering potential which we take to be of the form
U (x) = UB[δ(x + L/2) + δ(x − L/2)], where L is the width
of the ferromagnetic region. The terms 1/(2m)(k2

x + k2
y) in the

Hamiltonian represent the energy of the transverse modes.
To determine the self-consistent ground state of the SFS

system, one must calculate the free energy, F , given by

F = −2T
∑

n

ln

[
2 cosh

(
εn

2T

)]
+ 〈|�(x)|2〉

g
, (8)

where 〈. . .〉 denotes spatially averaging over the entire system,
and the pair potential is self-consistently calculated in Eq. (7).

The supercurrent can be found by taking the derivative of
the free energy with respect to the phase difference φ: jx =
2e(∂F/∂φ). Note that we have not made any assumption of
a weak proximity effect in the above; the results are obtained
by solving the full proximity effect equations numerically.
We normalize the energy scales by the zero-temperature bulk
superconducting gap, �.

III. INDUCING A 0-π TRANSITION VIA DOMAIN-WALL
MOTION

We start by demonstrating the possibility of having 0-π
transitions induced by moving the domain wall in the diffusive
regime. In Figs. 2(a)–2(b) and 2(c)–2(d) we have computed
the supercurrent-phase relation and critical current using two
different parameter sets for the sake of showing that this effect
does not just occur for special fine-tuned parameters. Fig-
ures 2(b) and 2(d) illustrate the critical current as a function of
the domain-wall position X in the ferromagnet. In all plots, the
transition is clearly seen: the current-phase relation is inverted
whereas the critical current decays towards zero and then rises
to finite values. The usage of the quasiclassical Usadel equation
places a limitation on how strong exchange fields h that we
may consider. Nonetheless, Fig. 2 shows that the domain-wall
position continues to induce 0-π transitions when raising
the exchange field and there is no reason to expect different
behavior for even stronger ferromagnets where the exchange
field constitutes a considerable fraction of the Fermi energy.
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FIG. 2. (Color online) Josephson current in the diffusive limit.
Supercurrent-phase relation and critical current for two different
parameter sets. (a), (b): h/� = 8,λ/L = 0.05,L/ξ = 1.5; (c), (d):
h/� = 30, λ/L = 0.1, L/ξ = 1. In all cases, we have used an
interface parameter ζ = 4, corresponding to a weakly transparent
interface in terms of tunneling, and a temperature T/Tc = 0.1. To
make contact with the experimental setting, we note that weak
exchange fields of order a few � (corresponding to ∼5 meV) have
been reported in weak PdNi ferromagnetic alloys [42]. We also
underline that ξ above is the bulk superconducting coherence length,
which can exceed 100 nm in dirty bulk superconductors such as Al.
The parameter sets used above are thus accessible experimentally.
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In fact, one should expect to see 0-π oscillations induced by
even smaller increments of the domain-wall position, precisely
as seen when comparing Figs. 2(b) and 2(d). We note that
our calculation is done for a scenario where the system has
relaxed to equilibrium with the domain wall at position X in
the junction, thus corresponding to several measurements of
the current (yet within one single sample) with the domain wall
at rest in different positions. We will later discuss precisely
how this may be accomplished experimentally. An alternative
measuring scheme would consist of doing measurements on
distinct samples with domain walls at pinned, predetermined
locations by means of geometrical notches or other sources of
pinning potentials in the ferromagnet [43].

The underlying physics for this phenomenon may be most
easily understood in the limit of a infinitesimally thin domain
wall. In that case, one may think of the ferromagnetic region
as an effective bilayer with two ferromagnets in an antiparallel
configuration. Whether the junction is in a 0 or π state is
determined by the total phase shift picked up by an Andreev
bound state carrying the supercurrent through the ferromagnet.
This phase shift depends on the exchange field orientation and
the length of the junction. When the ferromagnet consists of
two regions with antiparallel magnetization, the phase shift is
partially compensated when the bound state first propagates
through one ferromagnet and then the second one with opposite
magnetization direction. In fact, when the layers have exactly
the same width, the junction is essentially equivalent to an
SNS system [44]. However, if the layers are allowed to have
different thicknesses, the phase shift picked up by the Andreev
bound state will allow for a π state to be formed as long
as h and/or L are sufficiently large to induce a π -phase
difference as the bound state makes a full round trip between
the superconductors. We can then qualitatively understand
why moving the domain wall will induce 0-π transitions:
the position of the wall determines the effective phase shift
experienced by the Andreev bound state as it propagates
between the superconductors. When the domain wall is finite,
the analogy to a bilayer breaks down since spin rotation
takes place and induces a strong magnetization component
perpendicular to the easy axis close to the domain-wall center.
In our approach, we have access to an arbitrary domain-wall
profile and have verified that the domain-wall position still
determines whether the junction is in a 0 or π state in the
case where the domain wall extends over a large part of the
junction. We demonstrate this in Fig. 3 for several choices of
the domain-wall width λ. The curves in the panels correspond
to different domain-wall positions X such that the entire
domain wall always fits inside the junction—in this way,
we make certain to probe only the effect of the position
of the domain wall rather than to produce a qualitatively
different shape of the magnetization texture. The blue curves
represent a 0 state whereas the orange curves denote a π state.
When the domain-wall width λ increases sufficiently, the
transition between these quantum states is lost. Interestingly,
the position X of the domain wall where the transition occurs
depends in a nonmonotonic fashion on the width λ. This is ul-
timately a reflection of the oscillatory dependence on the spin-
dependent phase shifts accumulated by quasiparticles traveling
through the ferromagnetic region, with the phase shifts depend-
ing on both the position X and the width λ. We emphasize here
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FIG. 3. (Color online) Role of domain-wall width for 0-π transi-
tions. Supercurrent-phase relation for the case h/� = 30 and L/ξ =
1, using a weakly transparent interface ζ = 4 with a temperature
T/Tc = 0.1. Various domain-wall widths λ are considered and the
curves in each panel represent the position X of the domain-wall
center ranging from the middle of the junction X/L = 0.0 to
X/L = 0.25. In this way, the entire domain wall always fits inside
the junction. We also plot the position Xc where the junction makes
a transition from a 0 to a π state as a function of λ.

that even for domain walls with λ/L � 1, the actual extension
of the domain wall determined by the profile Eq. (2) covers a
considerable portion of the junction and does not correspond
to an abrupt bilayer setup (see Appendix and Fig. 7).

For the ballistic results, in all cases we have assumed a
superconducting correlation length corresponding to kF ξ =
100 and measure all temperatures in units of Tc0, the transition
temperature of bulk S material. We consider T = 0.01, except
when calculating the critical temperature, and fix the energy
cutoff at 0.04, in units of μ. Scattering at the interfaces
is characterized by parameter ZB ≡ mUB/kF . Except when
considering transition temperatures, we set ZB = 1 throughout
the calculations, corresponding to a moderately transparent
interface in terms of tunneling. We have found however that
the domain wall position leading to the 0-π transition is weakly
dependent on ZB . This follows from the fact that the magnitude
of the exchange interaction h shifts the energy spectrum
for spin-up and spin-down quasiparticles by an amount −h

and +h, respectively. Thus, the oscillatory period of the
superconducting correlations in F are primarily determined
from the difference of the spin-up and spin-down wave vectors,
and not the spin-independent interface scattering.

In the ballistic regime, Fig. 4 demonstrates the thermo-
dynamics of the 0-π transition, which follows from the free
energy. We characterize the ground state by findingFS , the free
energy of the whole system in the self-consistent state, and
FN , the normal-state (� ≡ 0) free energy. The normalized
condensation free energy is then �F ≡ (FS − FN )/(2E0),
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FIG. 4. (Color online) Free energy in the ballistic limit. Control
of the quantum state with domain wall motion: (a) depicts the
condensation free energy as a function of domain wall motion for both
of the self-consistently determined π and 0 states. Here λ/L = 0.02,
L/ξ = 1.5, and h/� = 5. (b) corresponds to L/ξ = 1 with all other
parameters the same as (a). The center of the junctions corresponds
to X/L = 0. The effects of larger exchange fields for L/ξ = 1 are
shown in (c) and (d) where h/� = 5π and 10π , respectively.

where E0 is the condensation energy of bulk S material at
T = 0. By comparing the condensation energies of the 0 and π

state configurations as a function of the domain-wall position,
we can therefore immediately identify the ground state of the
system. For both Figs. 4(a) and 4(b), we see that when the
domain wall is located near the center of the ferromagnet
(X = 0), the 0 state is the ground state. However, when the
domain wall is moved closer to the interface, the ground state
is the π state. Since the singlet pair correlations in the magnet
oscillate with a period that is inversely proportional to h, it
is expected that larger exchange fields should result in greater
possibilities for π ground states when varying the domain-wall
position. In Figs. 4(c) and 4(d), we see the periodicity in the
free energy as a function of X whose oscillations clearly double
when doubling h, and indeed many more 0-π state transitions
are observed.

Next, in Fig. 5 we examine the charge transport and
calculate the Josephson current for the same thicknesses
in Figs. 4(a) and 4(b). Additional details of the numerical
procedure are given in the Appendix. The free energy profiles
in Fig. 4 revealed that the 0-π crossover occurs at X/L ≈
−0.14 and X/L ≈ −0.2 for L = 1.5ξ and L = ξ , respectively.
This is consistent with the supercurrent behavior of Fig. 5,
where for those domain-wall positions, the current-phase
relation acquires additional harmonics at the 0-π transition. An
experimentally relevant quantity related to the above results is
the critical current. We therefore show in Fig. 5(c) the critical
current as a function of domain-wall position for the cases

FIG. 5. (Color online) Josephson current in the ballistic limit.
Supercurrent-phase relation for two different ferromagnet widths:
(a) h/� = 5,λ/L = 0.02,L/ξ = 1 and (b) L/ξ = 1.5. In both cases
there is a clear appearance of a second harmonic in the Josephson
relation near the 0-π transition. (c) Critical supercurrent as a function
of domain-wall position for the same F thickness used in (a).

considered in (a). This quantity is determined by finding the
maximum value of the magnitude of the Josephson current over
the entire �φ interval, for each X. The critical current then has
a minimum at the 0-π transition corresponding to the cusp at
X/L ≈ −0.2. Note that the observed behavior is robust in the
sense that it is found in both the ballistic and diffusive limit,
and for differing thicknesses. This should facilitate making
contact with experiment.

IV. SUPERCONDUCTING ON-OFF SWITCH VIA
DOMAIN-WALL MOTION

We next demonstrate that one can obtain a supercon-
ducting switch controlled by the position of the domain
wall. This effect is revealed in the experimentally relevant
critical temperature, which is computed by treating �(x) as a
small parameter and linearizing the BdG equations, Eq. (6).
Controlling Tc requires the structure to be finite sized, and
hence for configurations leading to switching effects, we adopt
hard-wall boundary conditions at the outer edges. Near the
transition, we can thus write [45] �i = ∑

q Jiq�q , where
�i are the expansion coefficients with respect to a standing
wave basis, φi = √

2/d sin(iπx/d), and Jiq ≡ (J u
iq + J v

iq)/2,
where,

J u
iq = �

∫
dε⊥

∑
n

[
tanh

(
εu,0
n

2T

) ∑
m

F ∗
qnmFinm

ε
u,0
n − ε

v,0
m

]
, (9)

J v
iq = �

∫
dε⊥

∑
n

[
tanh

(
εv,0
n

2T

) ∑
m

GqnmG∗
inm

ε
v,0
n − ε

u,0
m

]
. (10)
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Here, � = γ /(4πkF d), with γ equal to the dimensionless
coupling constant in S, and d is the total width of the
system. The integral over ε⊥ accounts for the transverse
in-plane quasiparticle energies. We also define Finm =
π

√
2d

∑
pq(u0

np↑u0
mq↓ + u0

np↓u0
mq↑)Kinm, Ginm = π

√
2d∑

pq(v0
np↑v0

mq↓ + v0
np↓v0

mq↑)Kinm, where Kinm ≡ ∫ d

0 dxg(x)
φi(x)φn(x)φm(x). The u0

np and v0
mq are the expansion

coefficients of the unperturbed [�(x) = 0] quasiparticle
amplitudes in terms of the basis set. Similarly, εu,0

n and εv,0
n

are the unperturbed quasiparticle energies. Penetration of the
superconducting condensate into the ferromagnet results in
the breaking of Cooper pairs by the exchange field and leads
to a decrease of the superconducting transition temperature.
The transition Tc is the critical temperature at which the S
regions become normal so that �(x) = 0 is the only solution
of the self-consistency equation. By varying the temperature
and finding the corresponding eigenvalues of the matrix, Jiq ,
it is straightforward to extract Tc [45].

We illustrate in Fig. 6(a) the rich variety of switching
behavior that can arise when varying the domain-wall position.
We consider superconducting leads with widths on the order of
ξ . Increasing the exchange field tends to increase the number
of Tc oscillations, reflecting the increase in the period of
oscillations in the Cooper pairing amplitude that resides in the
ferromagnet. The critical temperature is typically indifferent
to h near the center of the junction, where the curves coalesce.
As the domain wall shifts away from the center, Tc of the
system drops abruptly to zero and the system transitions to

FIG. 6. (Color online) Controlling Tc with domain-wall motion.
(a) Turning superconductivity on or off: Critical temperature for a SFS
junction as a function of domain-wall position for several different
exchange fields (see legend). We assume here that λ/L = 0.02, dS =
0.95ξ , L/ξ = 1, and ZB = 0. (b) Critical temperature vs domain-wall
position for a S/F bilayer. We consider the same parameter values
that were used in (a) except the superconductor width corresponds
to dS = ξ . In (c) we show the Cooper pair amplitude for the SFS
ground states when T = 0 and for an exchange field of h/� = 7. Its
spatial dependence reveals the transition from the π to 0 state near
the minimum of the Tc curve in (a) occurring at X/L ≈ −0.1, where
the system has transitioned to a normal resistive state. Vertical dashed
lines denote the interfaces between the S and F regions.

a normal resistive state in a way that depends strongly on h.
This is highly suggestive of a superconducting switch where
superconductivity is turned off or on depending on the location
of the domain wall. The application of an external field may
also introduce additional interesting reentrance effects [46]. It
is important to note that this switching effect is not exclusive
to Josephson junctions, as we have found that the same effect
occurs in a S/F bilayer structure as well. We illustrate this point
in Fig. 6(b), where the critical temperature vs domain-wall
position is shown for a bilayer with the same exchange fields
in panel (a). We again observe similar switching effects that
were found in the Josephson junction configuration, thus
demonstrating the robustness of this phenomena. The critical
temperature for bilayers in the dirty limit was found to be
reentrant for a different type of domain structure [47] that
exhibits magnetization rotation across the F layer (rather
than through it). In that case, there are no long-range triplet
correlations present. The critical temperature in SFF systems
where the magnetization is uniform in each F layer can
also exhibit spin valve effects [48–50]; however for collinear
magnetization states, only the singlet and opposite-spin triplet
correlations can be induced.

In analogy with the critical current behavior, the critical
temperature contains fingerprints of the 0-π transition, occur-
ring at around the minimum of the Tc curves. This point is
illustrated in Fig. 6(c), where we show the spatial behavior of
the Cooper pair amplitude for an SFS junction [case (a)] and
h/� = 7. Five differing domain-wall positions are considered:
two above and two below X/L ≈ −0.1, where the entire SFS
system is normal and the pair amplitude vanishes. Clearly, the
domain-wall position relative to this transition point dictates
whether the ground state of the system is the 0 or π state.

V. IMPLICATIONS FOR EXPERIMENTS

It is known [31] that domain-wall motion may be induced both
via application of a current-induced spin-transfer torque and
via external magnetic fields [51]. Besides these conventional
techniques, another possibility was recently unveiled which
might be suitable for our purposes. It was demonstrated in
Ref. [52] that domain-wall motion could be obtained via
excitation of spin waves, resulting in a purely magnonic
spin-transfer torque. Such spin waves could be excited via
application of a local ac magnetic field H = H0 sin(ωt)ẑ,
giving rise to domain-wall motion toward the spin-wave
source. Application of such local fields has been successfully
implemented experimentally previously [53], and might be
feasible in our setup as well. Current-induced domain-wall
motion is also an alternative, although it might require an
additional polarizing ferromagnetic layer in order to achieve
an efficient spin-transfer torque. It has been demonstrated that
spin-triplet correlations can induce magnetization dynamics
and spin-transfer torques [32–35,54], and it is thus reasonable
to expect that domain-wall motion in a Josephson junction can
be induced by a supercurrent spin-transfer torque as well. It
should be noted that the required current densities to move
domain walls are of order 104–105 A/cm2, values which have
been obtained for the critical current density in SFS junc-
tions [55]. Once domain-wall motion has been induced via,
e.g., one of the above mentioned venues, it is possible to control
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where the motion terminates, and thus obtain a new ground-
state configuration, by artificially tailoring pinning sites which
effectively traps the domain wall. This can be accomplished
experimentally by, e.g., making geometrical notches at the
desired locations of the ferromagnetic film/wire [43]. Based on
the above discussion, there should then be several alternatives
available experimentally in order to move the domain wall in
the proposed Josephson junction and thus tune the quantum
state of the system to either a 0 or π junction and even turn
superconductivity on and off. In terms of candidate materials
for observation of the predicted effects, one would need two
standard s-wave superconductors, such as Nb or Al, and a
magnetic region supporting a domain wall with a width of
order 5–10 nm. Such domain walls are known to occur in thin
magnetic films Pt/Co/AIOx , PtI(Co/Pt)n, and (Co/Ni)n (see,
e.g., Ref. [56] for a review). It could also possible to use
standard ferromagnets such as Fe, Co, Ni, and their alloys that
typically feature domain walls which are several tens and up
to a hundred nanometers, but where the wall thickness can
be strongly reduced down to ∼10 nm by reinforcing shape
anisotropy in magnetic nanowires [57]. Moreover, although
we have in our work considered a Bloch-type of domain
wall, we do not expect any qualitative change for Neel or
head-to-head domain walls, whose textures may be obtained
by a rotation in spin space, since the physical principle remains
the same. This is advantageous in the sense that generic domain
walls, as opposed to a specific type of wall texture, will suffice
to experimentally observe the influence on superconductivity
predicted here. Finally, we note that the domain-wall profile
can be altered from the 180◦ Walker profile considered
here in certain experimental systems such as nanopillars where
a more complicated domain wall structure may arise. The
effect of multiple pinned domains at various locations in the
ferromagnet is an interesting future prospect to consider.

VI. CONCLUSION

We have shown that domain wall motion in superconducting
junctions provides a unique way to both tune the quantum
ground state between 0 and π phases and also turn on
and off superconductivity itself. In particular, we find that
the domain-wall motion may even trigger a quantum phase
transition between a resistive and dissipationless state. Our
results point towards new ways to merge superconductivity
and spintronics in order to achieve functional properties by
utilizing domain-wall motion.
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APPENDIX A: NUMERICAL METHOD FOR
THE BALLISTIC REGIME

We here provide additional details regarding the self-
consistent calculation of the Josephson current in the ballistic

limit. It is convenient numerically to determine the Joseph-
son current using the previously calculated quasiparticle
amplitudes and energies. Before presenting our method
for computation of the supercurrent, we first discuss
here the charge conservation laws. From the Heisenberg
equation,

∂

∂t
〈ρ(r)〉 = i〈[Heff,ρ(r)]〉, (A1)

where the effective Hamiltonian Heff that we use to model our
SFS system takes the form

Heff =
∫

d3r

{∑
α

ψ†
α(r)

(
− ∇2

2m
− μ

)
ψα(r)

+ 1

2

[∑
α,β

(iσy)αβ�(r)ψ†
α(r)ψ†

β(r) + H.c.

]

−
∑
α,β

ψ†
α(r)(h · σ )ψβ(r)

}
, (A2)

where ψ†
α and ψα are the usual creation and annihilation

operators with spin α, respectively, and σ are the Pauli ma-
trices. Performing the above commutator yields the continuity
condition,

∂

∂t
〈ρ(r)〉 + ∇ · j = −4eIm[�(r)〈ψ†

↑(r)ψ†
↓(r)〉]. (A3)

In the steady state considered here, the first term on the left
is absent. Thus, for our quasi-one-dimensional geometry, the
conservation law can be rewritten as

∂jy(x)

∂x
=2eIm

{
�(x)

∑
n

[u∗
n↑vn↓ + u∗

n↓vn↑] tanh

(
εn

2T

)}
.

(A4)

When the pair potential is self-consistently determined using
Eq. (7), the right-hand side of Eq. (A4) vanishes, yielding a
constant current. If the self-consistency condition is not strictly
satisfied, the terms on the right act effectively as sources of
current.

Starting with the quantum mechanical expectation value of
the momentum density, we can can express the quasiparticle
current density jx in terms of the quasiparticle amplitudes as

jx = − e

2m

∑
n,σ

〈
− iψ†

σ

∂

∂x
ψσ + i

(
∂

∂x
ψ†

σ

)
ψσ

〉
(A5)

= 2e

m
Im

{∑
n,σ

[
unσ

∂u∗
nσ

∂x
fn + vnσ

∂v∗
nσ

∂x
(1 − fn)

]}
,

(A6)

where fn is the Fermi function, fn = 1/{exp[εn/(2T )] + 1},
and the σ can be either be either spin-up or spin-down (↑ or
↓) relative to the z-quantization axis.

Our numerical procedure for calculating the supercurrent
involves first assuming a piecewise constant form for the
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pair potential in each S layer. We then discretize the spatial
coordinate xj : xj = (j − 1)�x, where �x ≡ d/(N − 1) for
N grid points subdividing the system width d. We take d to be
large enough until the results become independent of d. The
next step involves Fourier-transforming the real-space BdG
equations [Eq. (6)]. The quasiparticle amplitudes, �n, are thus
written

�n(x) = 1√
d

∫ K

−K

eikxx�̂n(kx)dkx, (A7)

where K ≡ π/�x. For numerical purposes, the Fourier inte-
gral is converted to a discrete sum:

�n(x) = 1√
d

N∑
q=1

eikqx�̂q . (A8)

We write the wave vector index as kq = −K + 2(q −
1)K/(N − 1), so that �kq ≡ kq+1 − kq = 2π/d, correspond-
ing to periodic boundary conditions. We can now Fourier-
transform the real-space BdG equations, resulting in the
following set of coupled equations in momentum space:

⎛
⎜⎜⎝

Ĥ0 − ĥz −ĥx + iĥy 0 �̂

−ĥx − iĥy Ĥ0 + hz �̂ 0
0 �̂∗ −(Ĥ0 − ĥz) −ĥx − iĥy

�̂∗ 0 −ĥx + iĥy −(Ĥ0 + ĥz)

⎞
⎟⎟⎠

×�k = εn�k, (A9)

with matrix elements

Ĥ0(q,q ′) = 1

d

∫ d

0
dx

(
k2
q

2m
+ ε⊥ − μ

)
ei(kq−kq′ )x, (A10)

�̂(q,q ′) = 1

d

∫ d

0
dx�(x)ei(kq−kq′ )x, (A11)

ĥi(q,q ′) = 1

d

∫ d

0
dx hi(x)ei(kq−kq′ )x, i = x,y,z. (A12)
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FIG. 7. (Color online) Spin-texture inside the ferromagnet. Plot
of the magnetization components of the domain wall for different
choices of the domain-wall width λ relative to the junction length L.

Once the momentum space wave functions and energies are
found, they are transformed back into real space and the
pair potential is self-consistently determined via (7). The
newly calculated �(x) is then inserted back into the BdG
equations and the above process is repeated. The requirement
of self-consistency is evident in the large number of iterations
generally needed to satisfy charge conservation.

We generally solve �(x) self-consistently within about
one coherence length of each side of the domain
wall/superconductor interface. This leads to the necessary con-
stant current within that region. Deeper within the S regions,
we impose that �(x) equals |�(x)|eiφL , and |�(x)|eiφR in the
left (L) and right (R) superconductor regions respectively.
The corresponding phase difference �φ = φR − φL across
the S banks provides a well-defined source of current, and
acts effectively as a boundary condition.

APPENDIX B: DOMAIN-WALL PROFILE

We include here for completeness a plot (Fig. 7) of the
spin-texture inside the ferromagnet for different choices of
the domain-wall width λ relative the junction length. As seen,
the net domain-wall rotation makes this model distinct from
an abrupt bilayer setup even when λ � L.
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[11] M. Eschrig, T. Löfwander, T. Champel, J. C. Cuevas, J. Kopu,

and G. Schön, J. Low Temp. Phys. 147, 457 (2007).
[12] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.

86, 4096 (2001).
[13] M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Phys. Rev.

Lett. 90, 137003 (2003).
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