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Dynamic Hubbard model for solids with hydrogen-like atoms
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We discuss how to construct a tight-binding model Hamiltonan for the simplest possible solid, composed of
hydrogen-like atoms. A single orbital per atom is not sufficient because the onsite electron-electron repulsion
mixes in higher-energy orbitals. The essential physics is captured by a dynamic Hubbard model with one
electronic orbital and an auxiliary spin degree of freedom per site. We point out that this physics can lead to a
substantial shift in the position and width of electronic energy bands relative to what is predicted by conventional

band-structure calculations.
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I. INTRODUCTION

Just like understanding the physics of the simplest atom,
hydrogen, proved essential to the understanding of more
complex atoms, we argue that understanding the essential
physics of a solid composed of hydrogen-like atoms is a
prerequisite to understand more complex solids. When such
a simplified solid is discussed, it is usually to illustrate the
physics of the Mott metal-insulator transition occurring for
a %—ﬁlled band [1]. Here instead we focus on the physics

of energy bands with band filling larger than %, where there
are necessarily some atomic orbitals/Wannier states that are
doubly occupied by electrons.

Tight-binding Hamiltonians commonly used to model
correlated electrons in solids such as the Hubbard model, the
Anderson model, the 7-J model, and the Holstein model fail
to describe the essential physical fact that double occupancy
of an atomic orbital changes the wave function of the single
electron in the orbital [2]. In fact, the wave function for the
two electrons is not even a single Slater determinant. An
approximate description with a single Slater determinant can
be given, but the single-electron orbital in the two-electron
wave function is different from that in the single-electron
wave function, due to electron-electron repulsion. This is of
course well known in atomic physics since at least the work of
Hartree 85 years ago [3,4], but surprisingly has not yet found
its way into the mainstream description of interacting electrons
in solids [5].

In tight-binding models with one orbital per site the singly
occupied orbital in an atom is denoted by

1) = c}10) (1a)
and the doubly occupied orbital by
114) = clel0), (1b)
which in particular implies that
(TIC?IO) = It =1 2

and implies electron-hole symmetry at the atomic level,
i.e., creating an electron in the empty orbital [left side of
Eq. (2)] is the same as creating a hole in the doubly occupied
orbital [right side of Eq. (2)]. This is assumed to be the
case in all the conventional Hamiltonians mentioned above.
However, it is qualitatively incorrect because the doubly
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occupied state is never a single Slater determinant but rather
a linear combination of Slater determinants involving higher
single-electron states [6]:

1) = Amnchpcl,10), (3a)
D lAml =1, (3b)

m,n

where the sum runs over a complete set of atomic orbitals,
with the lowest single-particle orbital denoted by m = 0, i.e.,
Cos = Cq, as well as over continuum states [7]. Hence,

M) = Aoc) 10) = Acold) + D Aouch,10)  (4a)
n n#0

and

(I lep 1) = Ao # 1, (4b)

contrary to Eq. (2). For the particular case Z = 2, the numerical
value of A, calculated in Ref. [7], is 0.9624. Both the fact
that Aygy < 1 and the fact that there is more than one term on
the right side of Eq. (4a) has important consequences for the
properties of solids formed by these atoms [6]. Fundamentally,
the fact that Eq. (2) is invalid and Eq. (4) is valid reflects the
basic physical fact that atoms are not electron-hole symmetric,
nor are solids.

While this physics is ubiquitous, it is important to analyze
when it will be important and when it can be neglected, just
as other ubiquitous physics such as spin-orbit interaction,
electron-phonon interaction, Hund’s rule terms, longer-range
Coulomb interactions, etc., are neglected in the single-band
Hubbard model because their effect is quantitatively small
and/or because it is assumed their effects do not change the
physics qualitatively. The energy eigenvalues for an electron
in the single-particle orbitals of hydrogen-like atoms are
€, = —13.6(Z%/n?) eV, with Z the charge of the nucleus.
When we apply this model to more complicated atoms, Z will
be the net charge of the atom when there are 0 electrons in the
orbital under consideration, and Z — 1, Z — 2 the net charges
of the atom when there are one and two electrons in the orbital,
respectively. The coefficients A,,, in Eq. (3) can be expressed
as

Hicl el |0
Amn — (T\H I1C¢m4 n¢| ) (5)
EO_(€m+€n)
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with H; = ¢*/|F — 7| (in first quantized form) the electron-
electron interaction and E, the exact ground-state energy
of the doubly occupied orbital. The matrix elements of
H; in the numerator of Eq. (5) are of order Z, while the
energy differences in the denominator are of order Z> for
(m,n) # (0,0), so only in the limit of large Z will one
have A,,, ~ Ofor (m,n) # (0,0), Ago ~ 1,and Ey ~ 2¢; + U.
As Z decreases and the electron-ion interaction becomes
comparable to the electron-electron interaction (Z ~ 1), the
matrix elements A,, become appreciable which implies
through the sum rule (3b) that Ay becomes increasingly
smaller.

Put another way, using the conventional Hubbard model for
the description of the doubly occupied atomic states amounts
to doing first-order perturbation theory in the interaction H; for
the eigenvalue of the doubly occupied orbital and zeroth-order
perturbation theory for the eigenstate. This is absurd unless
the spacing between noninteracting energy levels, which is of
order Z?2, is much larger than the matrix elements between
noninteracting states and the perturbation, which is of order Z
in general (provided it is not zero because of different angular
momenta). This is never the case in real atoms, and the effects
discussed here will be largest for negatively charged ions
(small Z), where the mixing between the lowest-energy states
and higher-energy states due to electron-electron repulsion will
be larger because of the smaller spacing between energy states
and hence Ay will be smaller.

In addition to Z being small, another requirement for this
physics to be important in the solid state is that the band
described by this Hamiltonian be more than half full, so that
doubly occupied atomic states are unavoidable. For the band
less than half full, the conventional Hubbard U will keep the
amplitude of doubly occupied sites small and this physics will
not be very important.

In recent years, “dynamic Hubbard models” have been
proposed to incorporate this physics in the simplest possible
way [6,8—15]. Models that have been discussed so far contain
either a single atomic orbital per site plus an auxiliary boson
(spin % [9,13] or harmonic oscillator [10,12]) degree of free-
dom, or two orbitals per site and no auxiliary boson [11,14].
They reflect the fundamental fact that creating an electron in
the empty atomic orbital is qualitatively different from creating
a hole in the doubly occupied orbital for the reasons exposed
above.

One consequence of this physics is that electrical conduc-
tion in an almost full band is qualitatively different from
electrical conduction in an almost empty band [6,15], and
in particular we have shown that this can lead to pairing
and superconductivity in electronic energy bands that are
almost full, driven by lowering of electronic kinetic en-
ergy [16,17]. We have also recently shown that this leads
to a tendency of the system to expel electrons from the
interior to the surface when electronic energy bands are almost
full [18,19].

In this paper, we discuss the modeling of a solid with
hydrogen-like atoms with a dynamic Hubbard model with a
spin degree of freedom. Extension to other types of atoms
is briefly considered. In particular, we find that the physics
described by the dynamic Hubbard model will lead to a shift
in the position and width of energy bands that are full or almost
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full relative to what is predicted by conventional band-structure
calculations.

II. HYDROGEN-LIKE ATOM

The simplest nontrivial form for the ground-state wave
function of two electrons in a hydrogen-like atom is of the
Hartree form

W(ri,r2) = z(r)ez(r2), (6a)

7,
QDZ(VI) — ;67 r/ag (6b)

withag = h?/(m,e?) the Bohr radius. This is an approximation
to the linear combination of Slater determinants given by
Eq. (3). For the singly occupied orbital the wave function
is Eq. (6b) with Z = Z, with Ze the nuclear charge. For the
doubly occupied orbital the kinetic and potential energies for
each electron and the electron-electron interaction energy are
given by

2 2
- = e’ -,
Ein(Z2) = ——Z72°" = —7°, (7a)
2meag 2ay
- et .
Epol(Z) =—-—27Z, (7b)
ao
- 562 .
Eee(Z) =-—Z (7C)
8 ap

so that the total energy for the two-electron ion is

2

i . 5.
z%ﬁzi(ﬁ-azz+—z> 8)
ap 8

and is minimized by

s e
Z=z-3=7-5=12 ©)

so that the wave function expands upon double occupancy
from radius ag/Z to radius ap/Z. The spatial extent of the
wave function becomes larger the smaller the ionic charge Z,
and diverges as Z — 5/16 = 0.3125.

Figure 1 shows schematically the four states of interest
here. Figures 1(a) and 1(b) are the ground states of the atom
with one and two electrons, respectively, with unexpanded and

...... . e
g o.. —a
+ + © + + 6
E(1) E2) D) EQ)
(@ (b) © @

FIG. 1. States (a) and (b) are the lowest-energy states for one and
two electrons, with unexpanded and expanded orbitals, respectively.
States (c) and (d) are one- and two-electron states with expanded
and unexpanded orbitals, respectively, and correspondingly higher
energies. In the conventional Hubbard model, only states (a) and (d)
are considered.
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expanded orbits, respectively, and energies

2
e
E(1) = Exin(Z) + Epot(Z) = __ZZ’

(10a)
2(10
E(2) = 2[Exin(Z) + Epo(2)] + Eee(2)
2
= S (722748, (10b)
ao

The states 1(c) and 1(d) are excited states (but they are not
orthogonal to the ground states): Fig. 1(c) for the single
electron in the expanded orbit, and Fig. 1(d) for the two
electrons in the nonexpanded orbit, with energies

2
E(l) = Exn(2) + Epu(Z) = —;—ao(z2 — 8, (11a)

E(2) = 2[Ekm(Z) + Epot(Z)] + Eee(z)
2

=S 72z -2, (11b)
ap
respectively. We note that the energies satisfy
_ 82 e?
E()—E(l)= ——, (12a)
2 ap
- 62
EQ)— EQ2) =8§*—, (12b)
ao

so the difference in the energy of the excited state and the
ground state is independent of Z, and in addition they satisfy

EQ2)— EQ2)=2[E() — E(1)]. (13)

The right side of Eq. (13) is twice the cost in single-electron
energy in expanding the orbital from its single-electron radius
to the larger radius appropriate to the two-electron atom. The
two-electron atom pays that cost but gains twice as much
from the reduction in electron-electron repulsion achieved by
expanding the orbital:

2
EeoZ) — Eo(Z) = 2322—0 —4[E()— EQD].  (14)

From this point of view, it can be said that the orbital expansion
is driven by lowering of the electron-electron interaction
energy at a cost of single-particle energy.

Itis also interesting to ask whether the expansion is “kinetic
energy driven” or “potential energy driven.” Upon double
occupancy and resulting orbital expansion, the electron-ion
potential energy increases more than the reduction in electron-
electron repulsion, giving rise to a net increase in potential
energy:

Epol - Epol = 2[Epol(Z) - Epol(Z)] + Eee(Z) — E.(Z)
2
=265z - 9), (15)
ao

which is always positive due to the requirement that Z > 0.
On the other hand, the kinetic energy always decreases

_ _ &2 1)
Eyvin — Exin = 2[Exin(Z) — Exin(2)] = —25a—<z — 5)
0

(16)
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for a total energy lowering

2

B~ B = EQ) = EQ) = —5" (17
so one can say that the orbital expansion upon double occu-
pancy is always “kinetic energy driven.” Also, in comparing
the lowering of kinetic energy Eq. (16) with the lowering of
electron-electron repulsion energy Eq. (14) we find that the
former is larger as long as

Z>38 (18)

or 7 > 8/2 = 0.15625, a rather small value. The ratio of
kinetic energy lowering to electron-electron energy lowering
is
AEkm _ 2_Z B l (19)
AE,, 8 2
so that for hydrogen, for example (Z = 1), the lowering of
kinetic energy upon double occupancy and resulting orbital
expansion is more than three times larger than the lowering of
electron-electron repulsion energy.
In the conventional Hubbard model, the orbital expansion
is not considered. The value of the Hubbard U in the unrelaxed
atomic orbital is

5¢é?
Ubare = Eee(z) = g_Z~ (20)
ap

In the expanded orbital, the electron-electron repulsion is
lower, given by

- 5e?
Uexp = E.(Z) = g%(z —9). 21

However, the actual “effective U is larger than Uy, since the
single-particle energy cost in expanding the orbital has to be
taken into account. The effective U is given by

502 5
Uyt = E2) — 2E(1) = gf;—()(Z - E) (22)

so that it is the average of the repulsions in the expanded and
unexpanded orbitals. Note that Upye and U, are also given
by the expressions

Upare = E(z) - 2E(1)a
Uep = E2) — 2E(1).

(23a)
(23b)

Finally, it is of interest to compute the overlap matrix
element of the single-particle expanded and unexpanded
orbital

@z _(1-9)"
S = 5) = — = .
<¢Z|¢Z> (Z—;Z)S (1 _ %)3

(24)

This is plotted in Fig. 2 as function of the ionic charge
Z. The overlap decreases as the ionic charge decreases and
approaches zero for Z — % where the expanded orbital
becomes infinitely large. Note, however, that the Hartree
approximation underestimates the magnitude of these effects.
For example, for Z =2 the Hartree wave function gives
S = 0.9892 and the highly accurate Hylleraas wave function

that includes radial and angular correlations and should be
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FIG. 2. Overlap matrix element of the expanded and unexpanded
orbital S versus atomic charge Z.

essentially exact gives S = 0.9810. This value is obtained
from the square root of the overlap matrix element of the
two-electron wave function with the wave function of two
electrons in the unexpanded orbitals.

The matrix element S plays a key role in determining the
properties of electrons in the energy band generated by this
atomic orbital [12]: the quasiparticle weight decreases and
the effective mass of the carriers increases as the band filling
increases, with the magnitude of these effects determined by
the deviation of § from unity.

III. DYNAMIC HUBBARD MODEL WITH AUXILIARY
SPIN DEGREE OF FREEDOM

A. Simplest model

The simplest form for the site Hamiltonian for a dynamic
Hubbard model with an auxiliary spin-% degree of freedom
is [13]

H; = €, + €o(niy +n;y) + wool + ga)oa;

+ (Uo — 28000’ )nisn;y (25a)
€ = woy/ 1+ g2 (25b)

so that the (lowest) energy is zero when there are no electrons
at the site. The spin part of the Hamiltonian is

(26a)
(26b)

Hyin(n = 0,n = 1) = woo + gwoo!.,
Hspin(” =2)= 0)00'; - gonzi

when there are n electrons at the site. The eigenvalues of these
spin Hamiltonians are

€ = twoy/1+ g2 27
and the eigenvectors

In) = u(m)|+) +v(n)|—),
In) = v(n)|+) —un)|-)

(28a)
(28b)

with |n) denoting the ground state and |7) the excited state
for the spin with n electrons at the site, |+) and |—) the basis

S e, e eres e
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FIG. 3. Dynamic Hubbard model representation of the atomic
states. The |—) and |+) spin states correspond to the unexpanded and
expanded orbitals in the limit g — oo. For finite g, they are replaced
by the states |1) and |2), respectively (see text).

states for the spin degree of freedom, and

1 g
=u= |-|1-—, 29
um) =u 3 ( m) (29a)
sy =v=— |+[1+ 5 (29b)
2 /1 + g2
forn = 0,1 and
u2) = v(l), (30a)
v(2) = u(l). (30b)

This Hamiltonian is particularly simple because the eigen-
values (27) are independent of the site occupation and the
eigenvectors for different occupations are related in the simple
way given by Eq. (30), and for this reason it was chosen in
Ref. [13]. Later in this section we consider other possible
versions of this model where these expressions take a less
simple form.

The essential physics of this (and the other versions of this)
Hamiltonian is that the lowest state of the spin is the same for
0 or 1 electron at the site, and different for 2 electrons at the
site. For large g, the lowest-energy states are approximately
|=) for n =0 and n = 1 and |+) for n = 2. The change in
the state of the spin represents the orbital expansion as shown
schematically in Fig. 3. The overlap matrix elements between
small and large orbitals (24) is thus given by

1
S = (1]2) = [2uv| = —— (31
1+g¢

1
gz‘/ﬁ—l. (32)

The lowest site energies in the dynamic Hubbard model (25)
are

so that g is given by

E(0) =0, (33a)
E(1) = €, (33b)
EQ2) = 2¢p + U. (33¢)

If we destroy an electron from the ground state of the two-
electron atom, the spin remains in state |2). The expectation
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value of the Hamiltonian for one electron with the spin state |2)
then gives the energy of one electron in the expanded orbital
E(1):

2

F -1
E() = QIHn = 1)[2) = €p + woy/1 + &2 + = o
1+ g2

(34)

and similarly the expectation value of the two-electron
Hamiltonian with the spin state |1) gives the energy of the
two-electron atom with the unexpanded orbital:

EQ) = (11H(n = 2)|1) = 2¢0 + Uy
g2 —1

+woy/ 14 g2 + ——=wy. (35)
JV1+g?
Note, however, that this implies
EQ2)— E@2)= E(1) — E(1), (36)

which disagrees with Eq. (13) obeyed by the atomic energies.
Thus, it is not possible to find parameters in the model (25) that
will match the four energies of the atomic states considered.
So, we ignore the energy E(2) and determine the parameters
in the model by equating the energies E(1), E(2), and E(1) to
the atomic energies and by Eq. (32). The result is

258 e’

- 37
= 102401 — 82 a (372)
6‘2
€= ——27°, (37b)
2a0
Vom U= 5 (2.3 (37¢)
0= P T 8 4 32)°

Thus, Egs. (32) and (37) determine the parameters in the
dynamic Hubbard model Hamiltonian as a function of the
atomic parameters.

Let us consider some numerical examples. (a) For Z = 1,
S = 0.949 and the parameters in the model are g = 0.332,
wo=6.34¢V, ¢g=—13.6 eV, Uy = 14.35 eV. (b) For Z =
0.3557, S$ = 0.5 and the parameters in the model are g =
1.732, wy = 0.443 eV, ¢ = —1.72 eV, Uy = 3.39 eV.

B. Alternative form of the model

We can generalize the model (25) to
H; = €, +€o(nis +ni)) + o) + gwoo,
+ (UO — aga)oag)nmnu (38)

with €, still given by Eq. (25b), so that E(0) = 0. As long
as the parameter a > 1, the physics is essentially the same
as that of Eq. (25) (which is the case a = 2), particularly for
large g: the state of the spin changes drastically when a hole is
created at the doubly occupied site but does not change when
an electron is created at the empty site. The eigenvalues of the
spin Hamiltonian are now

€ = Fwyy/1+ g2 (39a)
for O or 1 electron at the site, and
€ = twoy/1+ (a — 1)2g2 (39b)
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for 2 electrons at the site, so the eigenvalues are no longer
independent of site occupation for any a # 2.

Introducing the parameter a allows us to satisfy the
condition (13). It will be satisfied if the relation

V14 (a—1)2g2=2\/1+g2 (40)

holds, hence, if a is given by

a=a(g)=1+ /4—}-%. 41)

a increases monotonically as g decreases, froma = 3 for g —
oo to a(g) ~ /3/g for g — 0. The energies are given by

E(1) = e, (42a)

_ 1+2¢% 4 g,/3 +4¢?

E(l) =€+ o, (42b)
21+ g2

EQ) =2ey+ Uy — woy/ 1 + g2, (42¢)

_ 24 g/3+4g2

EQ)=2e0+ Up+ S8V 138 0 (424

V1+g2 ’

so that the atomic relation E(2) — E(2) = 2[E(1) — E(1)]
holds for all g. In the limit of large g, a = 3 and we have
E(l) =€y +2gwy, EQ2) =2€)+ Uy — gwy, EQ2)=2¢+
Uy + 3gwy. For any g the eigenvector amplitudes are given
by

(43a)

2
u(2) = %(1—1— V3+ds )

21+ g%

9 — l 1 V3 +4g?
V@ == 2 _2\/1+g2) '

The coupling constant g is again determined from the
condition S = (1]|2) which now is

\/3 +2g% —g/3+4g?
S =
2./1+ g2
with S given by Eq. (24). It can be seen from Eq. (44) that as

g — 0,5 — +/3/2 = 0.866. In that limit, the spin part of the
Hamiltonian is

(43b)

(44)

H™(n = 1) = w0,

(45a)

H™(n = 2) = w0l — V30! (45b)

l

with energies €(1) = £wp and €(2) = +2wq giving rise to
(1]2) = +/3/2 and satisfying the condition (13).

Therefore, we conclude that the Hamiltonian of the form
(38) with a chosen to satisfy the condition (13) can only be
used to match the four atomic energies (10) and (11) provided
S < 0.866, which from Eq. (24) corresponds to Z < 0.673. In
any event, the regime of the model that gives rise to interesting
properties in the solid is large g, corresponding to small S
and Z.

So, to find the appropriate parameters in the model for a
given Z < 0.673 and corresponding S given by Eq. (24), we
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first find g from Eq. (44). €, and ¢ are still given by Egs. (25b)
and (37b), and the other parameters are given by

25 &2 V1 2

w = —% +8 . (46a)
256 ap 1 4 2g% + /3g2 + 4g*
5¢2 5

Up=> (72— ) +wo/1+g2  (46b)
Sao 32

For the numerical example given in the previous sec-
tion Z = 0.3557, § = 0.5, we obtain for the parameters in
this model g = 2/+/3 = 1.1554, wy = 25¢%/(256+/21ag) =
0.580 eV, ¢y = —1.72 eV, Uy = 4.28 eV, versus g = 1.732,
wy = 0.443 eV, ¢g = —1.72 eV, Uy = 3.39 eV in the simpler
model (25).

C. Third version of the model

Finally, we consider also the Hamiltonian (38) witha = 3
independent of the value of g. Recall that this value of a
satisfies the atomic condition (13) only for g — oo. However,
the deviation from this condition is much smaller than for the
model of the form (25). The lowest eigenvalues for different
occupations are E(1) = €y and

E(Z) = 260 + UO “+ wo+/ 1 + g2 — o/ 1 + 4g2 (47)

and the energies for one electron in the expanded orbital and
two electrons in the unexpanded orbital are, respectively,

_ 2g%—1

E(l) =€+ woy/1 + g> + ——=wp, (48a)
V1+4g?

_ 3g?

EQ2)=2¢y+ Uy + wo. (48b)

V1+g?

The relation (13) is no longer satisfied, rather

EQ2)— EQ2) = C[E(1) — E(1)], (49a)
_[1+4g?

so, for example, C = 1.96,1.92,1.84,1.58 for g =4,3,2,1,
closer to the atomic value C = 2 than in the model (25) for
which C =1 for all g.

The eigenvectors are given by Eq. (29) forn = 0,1, and for
n =2by

1 2g
)= |=[1+ 21, 50
u(2) 2( + Tamgz) (50a)
) Ly 28 (50b)
) =— |z |1- —=).
2 V1 +4g2

The coupling constant g is determined from the condition
S = (1]2) which is now

1
S= |=11
(1

1—2g2
_— (51)
V1+5g%+4g*
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1.0

FIG. 4. Overlap matrix element S versus coupling constant g for
the first [Eq. (25), dashed line], second [Eq. (38), solid line], and third
[Eq. (38) with @ = 3, dashed-dotted line] version of the model.

and the other parameters in the Hamiltonian are given by
Eq. (37b) and

25 ¢? V1+4g?

T 512a02¢2 — 1+ /(1 + g1 + 4g2)

5e? 5
Uy=-—— (Z—§)+w0\/1+4g2—w0\/1+g2.

_8610

o (52a)

(52b)

Figure 4 shows the overlap matrix element S versus cou-
pling constant g, Fig. 5 shows the ratio of energy differences
C [Eq. (49)] and Fig. 6 shows the coupling constant g versus
atomic charge Z for the three versions of the model. The second
and third versions become equivalent in the strong coupling
regime which corresponds to the case of negatively charged
ions (small Z).

50 —r—— ‘L_‘ T HHH‘ T

15 / -

0.5 .

ool b v b ]
0 2 4 6 8 10

9

FIG. 5. Ratioofenergies C = [E(2) — E(2)]/[E(1) — E(1)] ver-
sus coupling constant g for the first [Eq. (25), dashed line], second
[Eq. (38), solid line], and third [Eq. (38) with a = 3, dashed-dotted
line] version of the model. In the atom, C = 2 for all values of the
coupling constant.
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FIG. 6. Coupling constant g versus atomic charge Z for the
first [Eq. (25), dashed line), second [Eq. (38), solid line], and third
[Eq. (38) with a = 3, dashed-dotted line] versions of the model.

IV. EFFECTIVE HAMILTONIAN

The Hamiltonian for the lattice system is

H=Y H —tY (clcjo +Hc) (53)
i ij

acting on the product Hilbert space of electron states and spin
states. We denote the site states by the product of electron and
spin states. The action of a fermion creation operator is

cl110)10) = [1)[0) = [1)11),
W) = SITD)12) + S11)12)

(54a)
(54b)

with § = (1]2), § = (1]2). |2) denotes the higher-energy spin
state for two electrons at the site:

2) = v@)I+) — u@)|-). (55)

The first term in Eq. (54b) describes the ground-state to
ground-state (diagonal) transition, i.e., the process where the
orbital expands when doubly occupied. The second term is the
process where the doubly occupied site ends up in an excited
state. We define quasiparticle fermion operators EL by the
relation

o, =1 =1 = i _o1e), + SN2l (56)

to describe the diagonal transitions and to obtain the effective
low-energy Hamiltonian we ignore the second term in Eq. (56):

Her = Y 152}, ¢j0 +Hee))
ij

+ Uest Z fij4fiiy + €o Z(flm +17;), (57a)

17, =1l = (1 = ;11 — (1 = Niti—s]  (57b)
to describe the low-energy physics.

As discussed elsewhere [16], this Hamiltonian gives rise to
high-temperature superconductivity when the band is almost
full and the overlap matrix element S is sufficiently small. The
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condition for superconductivity for an almost full band is [20]

Ukt
D

with D the unrenormalized bandwidth (D = 2z¢, with z the
number of nearest neighbors to a site). Note that as the net ionic
charge Z decreases, the overlap matrix element S decreases
(Fig. 2) and in addition U [Eq. (22)] decreases, so that the
condition (65) is more easily satisfied. Thus, according to
this model high-temperature superconductivity is favored by
having negatively charged ions.

The factor S? represents the quasiparticle weight when the
band is almost full [12]. The second term in Eq. (54b) gives
rise to incoherent processes that contribute to the high-energy
optical absorption and photoemission spectra for bands that
are almost full [6]. Thus, high-temperature superconductivity
in this model is associated with small quasiparticle weight and
large spectral weight for incoherent processes (S* + 5% = 1),
physical features found in high-7, cuprates [21-23].

S<L/1—

(58)

V. SHIFT OF ENERGY BANDS

We argue that the orbital relaxation effect described by
the dynamic Hubbard model will shift the location of energy
bands that are almost full relative to what would be predicted
by density functional band-structure calculations.

Consider a band-structure calculation within density func-
tional theory (DFT) that predicts a full band several eV below
the Fermi energy €p, as shown in Fig. 7. The calculation
assumes that each atomic orbital is doubly occupied, and
predicts that the Fermi level has to come down a distance
APFT for doped holes to go into that band, hence that doped
holes will go into other bands that cross the Fermi energy. The
distance between the top of the band and the Fermi energy is

APFT = EPYY — Eiital, (59)

where Ej,ia and EEIET are the initial and final energies of the
system upon bringing an electron from the top of the band to
the Fermi energy.

€
1 DY
ADI‘T ER

(a) Density functional calculation

(b) Dynamic Hubbard calculation

FIG. 7. In a standard band-structure calculation using density
functional theory (a), the orbital relaxation energy when an electron
is removed from the band is not taken into account. In a correct
calculation that includes the physics described by the dynamic
Hubbard model (b), the top of the band shifts upward by the relaxation
energy [Eq. (60b)] and the band narrows as given by Eq. (62).
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However, the DFT calculation does not take into account
the local relaxation of the orbital when an electron is removed
from this band since on the average all orbitals remain
doubly occupied for infinitesimal hole doping. This has been
pointed out particularly by Fulde and co-workers [24-26]
as a fundamental limitation of band-structure calculations
within the local density approximation in density functional
theory. Instead, a correct calculation that includes the orbital
relaxation physics described by the dynamic Hubbard model
(53) or its effective low-energy Hamiltonian (57) would yield
as final energy

Epiy = Efil — €r (60a)
with
er = E(1)— EQ) (60b)

the orbital relaxation energy discussed in the previous sections.
Hence,

APH = APFT _ ¢y (61)
may become negative as shown on the right panel in Fig. 7,
indicating that doped holes wi!l go into this band, contrary to
the predictions of density functional theory.

In addition to the shift in the position of the energy band,
density functional calculations also will miss the fact that the
orbital relaxation will narrow the band [11] due to the reduced
overlap matrix element between expanded and unexpanded
orbitals. When the band is almost full, the hopping amplitude
from Eq. (57b) is t, = S*t and hence the bandwidth is

D, = S’D (62)

as shown schematically in Fig. 7. The fact that band-structure
calculations miss this band-narrowing effect has also been
emphasized recently by Casula and co-workers [27].

For hydrogen-like atoms within the Hartree approximation
the orbital relaxation energy is given by Eq. (12a) which yields
€r = 1.33 eV. Note, however, that we can also obtain the
orbital relaxation energy from

€ER = %(Ubare — Uesr) (63)

from Egs. (23) and (13). For real hydrogen-like ions we
can obtain U.g from the difference of appropriate ionization
energies and obtain [8]

Upare — Uesr = 4.15 eV (64)

within 10% for Z between 1 and 8 (Upye — Uetr =
4.15,4.10,4.22,4.22,4.21,4.19, 4.15, and 4.05 eV for Z =
1,2, ...,8). Therefore,

er ~2.1eV (65)

for hydrogen-like ions, about 60% higher than in the Hartree
approximation.

For negatively charged oxygen ions as in the Cu-O planes
of high-T, superconductors the relaxation energy is likely to
be even larger. We can estimate [28] the bare U from the Slater
integral [2] F°(2p,2p) ~ 20.5 eV for O° (the spherically
averaged Coulomb repulsion between two electrons in the p
shell) and the effective U from the electron affinities of O,
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and O~

E(0O7)— E(0) = —1.45 eV,
E(0O*)— E(07)=2875eV

(66a)
(66b)
yielding

Uegt = E(O*7) + E(0) —2E(07) =102 eV (67)
and hence for the relaxation energy

€r = 5(Ubae — Uert) = 5.1 eV. (68)

Band-structure calculations using density functional theory
predict that in high-T, cuprates the band resulting from overlap
of oxygen p, orbitals in the plane oriented perpendicular to
the Cu-O bond is several eV below the Fermi energy [29].
Instead, we have argued that to explain high-temperature
superconductivity in the cuprates, it is necessary that doped
holes occupy the oxygen p, band rather than the Cu-Op,
band usually assumed [16,30]. From the arguments presented
here, we conclude that the orbital relaxation energy will shift
the Op, band several eV upward, hence, it is plausible to
conclude that doped holes will occupy that band, contrary
to the band-structure calculation predictions that do not take
orbital relaxation energy into account [31].

VI. SUMMARY AND DISCUSSION

We have argued that the conventional Hubbard model that
ignores the fact that atomic orbitals expand with increasing
electron occupation misses important physics of real materials,
that a simple extension of the Hubbard model that we call
“dynamic Hubbard model” takes into account. We have
analyzed in detail a dynamic Hubbard model with a single
atomic orbital and an auxiliary spin—% degree of freedom.
Other possible realizations of dynamic Hubbard models are
a purely electronic model with two orbitals per site and a
single orbital model with an auxiliary harmonic oscillator
degree of freedom [6]. The effects described by dynamic
Hubbard models will be quantitatively more important for
bands arising from conduction through negatively charged
ions.

We considered the energies of the various states involved
in hydrogen-like atoms, and how to model these atoms with
various alternative forms of a dynamic Hubbard Hamiltonian
with an auxiliary spin-% degree of freedom. The effective
Hamiltonian resulting from the different versions of the model
is the same as far as the low-energy degrees of freedom
are concerned, with different mappings of the Hamiltonian
parameters to the atomic parameters.

Finally, we have argued that conventional band-structure
calculations miss two important properties of electronic energy
bands for cases where the bands are full or almost full that are
described by dynamic Hubbard models: (1) the position of the
band is higher and (2) the width of the band is smaller than
predicted by band-structure calculations.

Thus, we argue that to learn about the properties of the
simplest possible solid composed of hydrogen-like atoms,
when there is more than one electron per atom (band more
than half full), it is inappropriate both to use the conventional
Hubbard model, conventional band-structure calculations, or
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band-structure calculations combined with dynamical mean
field theory of the conventional Hubbard model [32]. Instead,
one should solve the dynamic Hubbard model Hamiltonian
(53) with one of the versions of the site Hamiltonians H;
discussed, for parameters in the model obtained by the
mapping to the atomic parameters discussed in Sec. III or
alternatively the low-energy effective Hamiltonian (57). Exact
diagonalization methods [13], quantum Monte Carlo [33], or
dynamical mean field theory [34] can be used to study these
Hamiltonians. The physics that results, which in particular
includes superconductivity when the band is almost full [16]
and Eq. (58) is satisfied, is very different than the physics
obtained by the conventional methods and we believe it reflects
the physics of the real system, while the physics obtained
from the conventional methods does not. Of course, the same
considerations apply to more complicated real materials.

We have proposed that this model could apply to the
high-T, cuprates provided doped holes go into a full oxygen
pr band [16,30]. Conventional band-structure calculations
place this band several eV below the Fermi energy [29],
however, we have shown here that the orbital relaxation effect
described by dynamic Hubbard models will shift the position
of full bands or nearly full bands upward by several eV.
Hence, this supports the possibility that doped holes in the
high-T, cuprates may occupy the O p,, orbitals rather than the
Op, orbitals as usually assumed. A detailed analysis of this
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model for the high-7, cuprates including the Cu-Op, band is
given in [35].

Superconductivity through this mechanism is favored both
by having a low Uy and by having a small S. Both Ugg
and S become smaller when the effective ionic charge Z
becomes smaller [Eqs. (22) and (24)]. While we have shown
this explicitly here only for hydrogen-like ions, it is clear that
it will also be the case in general. Thus, superconductivity
is favored by having negatively charged ions. The fact
that negative ions have smaller onsite Coulomb repulsion
should also be favorable for superconductivity within other
superconductivity mechanisms that rely on electron pairing.
For example, within the conventional BCS electron-phonon
interaction mechanism p* should be smaller for systems with
negative ions, leading to a higher 7. It is surprising that this has
not been pointed out before in the literature to our knowledge.
This suggests, for example, that hole-doped LiBC should
have a substantially lower transition temperature than MgB,
because in substituting C for B and Li for Mg, half of the ions in
the planes where conduction occurs become C? rather than B~
thus increasing Z from 1 to 2 and as a consequence increasing
the effective Coulomb repulsion on the C sites. Instead, it
has been predicted, based on electron-phonon calculations,
that presumably do not take this effect into account, that
hole-doped LiB C should have a substantially higher transition
temperature than MgB, [36].
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