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We explore the local quantum coherence and the local quantum uncertainty, based on Wigner-Yanase skew
information, in the ground state of the anisotropic spin-1/2 XY chain in a transverse magnetic field. We show
that the skew information, as a figure of merit, supplies the necessary information to reveal the occurrence of the
second-order phase transition and the completely factorized ground state in the XY model. Additionally, in the
same context, we also discuss the usefulness of a simple experimentally friendly lower bound of local quantum
coherence. Furthermore, we demonstrate how the connection between the appearance of nonanalyticities in the
local quantum uncertainty of the ground state and the quantum phase transitions does not hold in general, by
providing explicit examples of the situation. Lastly, we discuss the ability of the local quantum coherence to
accurately estimate the critical point of the phase transition, and we investigate the robustness of the factorization
phenomenon at low temperatures.
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I. INTRODUCTION

In nature, there exist genuinely quantum transitions in the
ground states of quantum many-body systems, resulting in
qualitatively distinct phases of matter. Such phase transitions,
which are purely driven by quantum fluctuations due to the
Heisenberg uncertainty principle, are known as quantum phase
transitions (QPTs) [1]. Although QPTs occur at absolute
zero temperature as one of the parameters of the system is
continuously changed across a critical point (CP) λc, they
can also be observed at sufficiently low temperatures, where
thermal fluctuations are not strong enough to excite the system
from its ground state. QPTs are intrinsically connected with
the energy level crossings taking place in the ground states
of the quantum many-body systems, which typically lead to
the appearance of nonanalyticities in the ground-state energy.
In particular, while a discontinuity in the first derivative of
the ground-state energy is recognized as a first-order QPT,
a discontinuity or a divergence in the second derivative
characterizes a second-order QPT, in which case the first
derivative of the ground-state energy is continuous. On the
other hand, there are also more involved types of QPTs [2],
which cannot be understood within this standard framework.

Quantum spin chains present several different kinds of
quantum critical behavior, and thus serve as a natural play-
ground for studying QPTs. In addition, when being subject to
an external transverse magnetic field, they exhibit another fun-
damental aspect known as factorization [3]. This phenomenon
is defined as the presence of a fully factorized ground state
emerging at a particular value of the magnetic field, namely
at the factorization point (FP) λf . The occurrence of the
factorization phenomenon has been demonstrated to be in
connection with a change of symmetry in the ground state and
also with a transition in the two-spin quantum correlations [4].

Quantum systems possess correlations of genuine quantum
nature, which are fundamental to numerous applications of
quantum information science [5]. Since correlations among
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the constituents of many-body systems are closely related
to the emergence of the QPTs and the factorized ground
state, it is natural to investigate the link between these two
phenomena and correlation measures. In fact, this relation has
been recently studied from many different angles in quantum
critical spin chains. Specifically, correlation measures such
as entanglement [6] and quantum discord [7] have been
employed as figures of merit for the examination of the QPTs
and factorization phenomenon [8–15]. Whereas most authors
only considered the absolute zero temperature [8–10], others
examined the problem at finite temperatures as well [11–15].

The concept of skew information was first introduced by
Wigner and Yanase half a century ago [16]. The Wigner-
Yanase skew information (WYSI) has several equally inter-
esting interpretations in quantum physics discussed in the
literature [17–20]. On the one hand, it can be adopted as a
measure of the information embodied in a state that is skew
to (not commuting with) an observable (a self-adjoint matrix)
[16]. On the other hand, it can be used as a measure of quantum
uncertainty of an observable in a quantum state [19]. Moreover,
it has been very recently shown that WYSI constitutes a
reliable measure of the coherence in a quantum state [20],
where a simplified experimentally friendly alternative version
of the coherence measure has also been introduced. Even
though various types of bipartite correlations in the ground
state of quantum spin chains have been studied largely in the
context of QPTs, the relation between the coherence contained
in single-spin or two-spin density matrices and the QPTs and
factorized ground state has not been discussed before.

In this work, we consider the anisotropic spin-1/2 XY chain
in a transverse magnetic field due to the fact that this model
exhibits both a QPT and a nontrivial factorized ground state.
We first reveal how the QPT and factorization phenomenon
are linked with the local quantum coherence (LQC) [20],
as quantified by WYSI, in single-spin and two-spin reduced
density matrices of the ground state of the spin chain. We
examine the effects of simplification of the coherence measure
on the information we can gain from it about the appearance of
the QPT and factorized ground state. We show that the
signal of the QPT manifests itself even in the experimentally
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accessible simplified version of the single-spin coherence,
whose measurement does not require a full tomography of the
state. We also find out that although this simpler alternative still
spotlights the CP of the QPT, the factorized ground state can
no longer be detected in this setting. Moreover, by studying a
novel quantum correlation measure, namely local quantum
uncertainty (LQU) [21], which is closely related to LQC,
we discuss the consequences of the optimization involved in
the evaluation of this measure for the identification of the
CP and FP. Our results show that there exist nonanalyticities
appearing in LQU that in fact do not correspond to any critical
behavior. Finally, we also take into account the effects of finite
temperature to discuss how precisely the coherence measure
can estimate the CP of the QPT, and the robustness of the
factorized ground state against thermal effects.

This paper is organized as follows. In Sec. II, we introduce
the anisotropic spin-1/2 XY chain in a transverse magnetic
field, along with its analytic solution. In Sec. III, we study
the single-spin and two-spin coherence based on WYSI in
the ground state of the XY model. We discuss the relation of
coherence to the QPT and factorization phenomenon both at
absolute zero temperature and low temperatures. Section IV
includes the summary of our results.

II. SPIN-1/2 XY CHAIN IN A TRANSVERSE FIELD

The Hamiltonian of the one-dimensional anisotropic spin-
1/2 XY chain in a transverse magnetic field is given by

H = −λ

2

N∑
j=1

[
(1 + γ )σ j

x σ j+1
x + (1 − γ )σ j

y σ j+1
y

] −
N∑

j=1

σ j
z ,

where σ
j
x,y,z are the usual Pauli operators at the j th site,

λ denotes the strength of the inverse field, γ ∈ [0,1] is the
anisotropy parameter, and N is the number of spins. While the
Hamiltonian H is in the Ising universality class for γ � 0 and
corresponds to the Ising Hamiltonian in a transverse field when
γ = 1, it reduces to the XX chain for γ = 0. This model has
an order-disorder type second-order QPT occurring at the CP
λc = 1, which separates a ferromagnetic and a paramagnetic
phase. Furthermore, although the ground state of the XY model
is in an entangled state in general, there exists a nontrivial
factorization line corresponding to γ 2 + λ−2 = 1. Thus, the
ground state becomes completely factorized at the FP,

λf = 1√
1 − γ 2

. (1)

In the thermodynamic limit (N → ∞), the XY model can
be exactly diagonalized with the help of the usual technique of
Jordan-Wigner and Bogoluibov transformations [22]. Due to
the translational invariance of the system, the reduced density
matrix of two spins at the sites i and j is dependent only on
the distance between them, r = |i − j |. Considering that the
XY Hamiltonian is also invariant under parity transformation
(exhibits Z2 symmetry), the reduced density matrix of two
spins, having the distance r between each other, is given by

ρ0r = 1

4

[
I + 〈σz〉

(
σ 0

z + σ r
z

)] + 1

4

∑
α=x,y,z

〈
σ 0

ασ r
α

〉
σ 0

ασ r
α , (2)

where I is the four-dimensional identity matrix. The magneti-
zation and two-spin correlation functions are defined as [22]

〈σ z〉 = −
∫ π

0

(1 + λ cos φ) tanh(βωφ)

2πωφ

dφ,

〈
σx

0 σx
r

〉 =

∣∣∣∣∣∣∣∣∣∣

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1

...
...

. . .
...

Gr−2 Gr−3 · · · G−1

∣∣∣∣∣∣∣∣∣∣
,

〈
σ

y

0 σy
r

〉 =

∣∣∣∣∣∣∣∣∣∣

G1 G0 · · · G−r+2

G2 G1 · · · G−r+3

...
...

. . .
...

Gr Gr−1 · · · G1

∣∣∣∣∣∣∣∣∣∣
,

〈
σ z

0 σ z
r

〉 = 〈σ z〉2 − GrG−r ,

where the function Gr is given as follows:

Gr =
∫ π

0

tanh(βωφ) cos(rφ)(1 + λ cos φ)

2πωφ

dφ

− γ λ

∫ π

0

tanh(βωφ) sin(rφ) sin(φ)

2πωφ

dφ,

and ωφ =
√

(γ λ sin φ)2 + (1 + λ cos φ)2/2 with β = 1/kT

being the inverse temperature. We should note that here we
neglect the effects of spontaneous symmetry breaking (SSB)
as it has been almost always done in the literature except for
the few works that studied the impact of such effects [14,15]
in the ordered phase. Additionally, as with most of the previous
treatments, the ground state we deal with in this work is not
the real ground state but rather the one that is widely known
as the thermal ground state. Indeed, the thermal ground state
corresponds to the limit β → ∞ of the canonical ensemble,

ρ = lim
β→∞

e−βH

Z
, (3)

where Z is the partition function. We also remind the reader
that if the ground state is nondegenerate, then it is the same
as the one obtained from Eq. (3). However, in the case of
degeneracy in the ground state, from Eq. (3) we obtain an
equal mixture of all possible ground states, which is what
happens in the one-dimensional anisotropic XY model in a
transverse field.

III. COHERENCE AND LOCAL QUANTUM
UNCERTAINTY IN THE SPIN-1/2 XY CHAIN

The definition of the WYSI, which we adopt as a measure
of coherence, is given by [16]

I (ρ,K) = − 1
2 Tr[

√
ρ,K]2, (4)

where the density matrix ρ describes a quantum state, K is
an observable, and [.,.] denotes the commutator. While the
WYSI reduces to the variance V (ρ,K) = TrρK2 − (TrρK)2

for pure states, it is upper bounded by the variance for mixed
states. It is important to recognize that, unlike other indicators
of uncertainty, WYSI remains unaffected from the classical
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mixing. Thus, it filters out the purely quantum uncertainty in a
measurement. It has been very recently proven by Girolami
that I (ρ,K) given by Eq. (4) satisfies all the criteria for
coherence monotones [23] and consequently can be used as a
reliable measure of coherence [20]. We note that the absence
of coherence implies that no quantum uncertainty can be
observed, and statistical errors are due to classical ignorance.

K-coherence of a quantum state is defined as the coherence
carried by ρ when measuring the observable K (which is
assumed to be bounded and nondegenerate) [20]. Furthermore,
in order to be able to rewrite the coherence measure I (ρ,K)
as a function of observables, Girolami has also introduced a
simplified alternative version by dropping the square root from
the density matrix ρ,

IL(ρ,K) = − 1
4 Tr[ρ,K]2, (5)

which is a meaningful and an experimentally friendly lower
bound, since it can be measured in an interferometric setup
only by performing two programmable measurements, in-
dependently of the dimension of the quantum system. One
can define the LQC for composite systems to quantify the
coherence contained in them locally. For a bipartite system,
the LQC is written as I (ρAB,KA ⊗ IB) if we quantify the local
coherence with respect to the first subsystem. Due to the fact
that the systems we consider in our work are invariant upon
exchanging two spins, the LQC remains also unchanged.

Another related concept is the LQU, which is a full-fledged
discordlike family of measures of purely quantum correlations
[21]. In fact, LQU is merely an optimized version of the LQC
over all possible local observables, that is,

U�
A = min

K�
A

I
(
ρ,K�

A

)
, (6)

where � denotes the spectrum of K�
A , and the minimization

over a chosen spectrum of observables leads to a specific
measure from the family. However, for a two-qubit system,
all the members of the family turn out to be equivalent. Then,
the LQC can be analytically calculated as

UA(ρAB) = 1 − λmax{WAB},
where λmax is the maximum eigenvalue of the 3×3 symmetric
matrix WAB whose elements are given by

(WAB)ij = Tr{√ρAB(σiA ⊗ IB)
√

ρAB(σjA ⊗ IB)},
where indices i,j = {x,y,z} are given for the usual Pauli
operators. We note that Eq. (6) is normalized to 1 for maximally
entangled pure states, and moreover it reduces to the linear
entropy for any pure bipartite state.

Having collected all the required tools for our analysis, we
are now in a position to start our discussion regarding the
relation between QPTs and factorization phenomenon, and
quantum coherence based on WYSI. Let us first consider just
a single spin from the whole chain. Since the XY model has
translational invariance, all single-spin density matrices are
the same and they are given by

ρ0 = ρi = 1
2

(
1 + 〈σ z〉 0

0 1 − 〈σ z〉
)

, (7)

where 〈σ z〉 is the transverse magnetization, and the density
matrix is written in the basis of the eigenvectors of σz. Note
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FIG. 1. (Color online) Single-spin σx coherence for γ = 0.5
(a) and γ = 1 (c), along with its first derivative (with respect to
λ) for γ = 0.5 (b) and γ = 1 (d), as a function of λ. As the red
solid line denotes the measure, the dashed blue line corresponds to
its simplified version.

that, from this point on, we are working with the ground state
in the limit T → 0 unless otherwise is stated.

In Fig. 1, we display the results of our analysis for the σx

coherence (coherence carried by ρ0 when measuring σx) in the
single-spin density matrix ρ0 given by Eq. (7) for two different
values of the anisotropy parameter γ , namely for γ = 0.5, and
γ = 1, which corresponds to the Ising model in a transverse
field. As can be observed from the plots of the derivatives
of the measure shown in Figs. 1(b) and 1(d), while both the
σx coherence I (ρ0,σx) and its simplified alternative IL(ρ0,σx)
correctly spotlight both the location and the order of the CP
of the second-order QPT at λc = 1 through a divergence in
their first derivatives, no sign of the nontrivial FP can be seen
for γ = 0.5 at field λf ∼ 1.1547. As for γ = 1 the FP would
correspond to λf → ∞ according to Eq. (1), we do not expect
to see its signal in the plots. We should also remember that we
are analyzing the thermal ground state, thus the ground state
is not pure despite being still separable at the factorization
field λf . All the same, it is notable that even the simplified
single-spin coherence measure given by Eq. (5) detects the
CP of the QPT since it can be determined without a full
tomography of the state.

The fact that there exists a relation between the appearance
of a divergence in the derivative of the single-spin coherence
of the ground state and the occurrence of the QPT can be
understood within a general framework developed by Wu et al.
[8]. The energy of two spins at the sites i and j is given by

E(ρij ) =
∑
ij

Tr{Hijρij }, (8)

where ρij is the reduced density matrix of the spins and Hij

is their reduced Hamiltonian whose summation over all sites
restores the full Hamiltonian of the chain,

∑
ij Hij = H . It

is straightforward to obtain the first two derivatives of the
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two-site energy given by Eq. (8) with respect to the field λ as

∂E(ρij )

∂λ
=

∑
ij

Tr

{
∂Hij

∂λ
ρij

}
,

∂2E(ρij )

∂λ2
=

∑
ij

[
Tr

{
∂2Hij

∂λ2
ρij

}
+ Tr

{
∂Hij

∂λ

∂ρij

∂λ

}]
.

Considering that the derivatives of the reduced Hamiltonian are
continuous with respect to the magnetic field λ, we realize that
possible discontinuities in the derivatives of the ground-state
energy have their roots at the elements of the reduced density
matrices ρij . Specifically, whereas a discontinuity in the first
derivative of the ground-state energy (a first-order QPT) hints
at a discontinuity in at least one of the elements of the reduced
density matrix ρij , a discontinuity or divergence in the second
derivative of the ground-state energy (a second-order QPT)
suggests a divergence of at least one of the elements of the
derivative of the reduced density matrix ∂ρij /∂λ. Having this
discussion in mind, it is rather straightforward to comprehend
why two-spin or even single-spin coherence might be sufficient
to pinpoint the CP of the QPT. However, it is very important to
note that such a correspondence between the nonanalyticities
in physical quantities (which are functions of the reduced
density matrix elements) and the CPs of QPTs does not
always hold [8]. Depending on the mathematical properties
of the considered quantity (correlation measures, coherence
measures, etc.), it is possible that the CP of a QPT is not caught
by a measure due to some unlucky coincidences. Conversely,
we can also see nonanalyticities in a measure that in fact do
not correspond to any quantum critical behavior. Therefore,
whether such issues occur for the LQC and LQU is one of the
questions that we will answer in this paper.

We continue our investigation by exploring the two-spin
LQC in the XY model, where we consider the nearest-neighbor
spins, i.e., r = |i − j | = 1. Note that from this point on, we
consider the local coherence, meaning the observable acts only
on one of the subsystems, that is, we evaluate I (ρAB,KA ⊗ IB).
Let us first examine the local σx coherence contained in
the reduced two-spin system ρ01 given by Eq. (2). Figure 2
presents the outcomes of our analysis regarding the local σx

coherence in the ground state. It is evident that the results
presented here seem very similar to those that are shown in
Fig. 1 for the single-spin σx coherence in terms of the link
between the second-order QPT at the CP λc = 1 and the
divergence in the derivative of the coherence. However, we
notice that a new intriguing finite discontinuity shows up in
the derivative in Fig. 2(b) at the field λ ∼ 1.1547, which is a
result of the small kink appearing in Fig. 2(a). This is merely
the signal of the completely factorized ground state occurring
at the FP λf ∼ 1.1547. It is worth remarking that it is rather
unexpected to see a manifestation of the FP in the behavior
of the coherence (even when ignoring the effects the SSB)
since the WYSI has no direct relation to quantification of
entanglement for mixed states. We also point out an important
difference between the coherence measure based on the WYSI
and its simplified version introduced by dropping the square
root from the density matrix of the system. In particular, even
though both the original definition and its simplified alternative
might be equally useful in most regards, the simplified one,
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FIG. 2. (Color online) Two-spin local σx coherence for γ = 0.5
(a) and γ = 1 (c), along with its first derivative (with respect to λ) for
γ = 0.5 (b) and γ = 1 (d), as a function of λ. As the red solid line
denotes the measure, the dashed blue line corresponds to its simplified
version.

namely IL(ρ0,σx), does not feel the existence of the factorized
ground state at the FP.

The reason behind this disagreement is without a doubt the
appearance of the square root in the definition of the WYSI.
We stress that the emergence of the finite discontinuity in the
derivative at λf is not an accident, and it can be seen for
other values of the anisotropy parameter γ as well. Having a
closer look at the two-spin reduced density matrix, we realize
that this discontinuity has its roots in the elements of

√
ρ01,

and it is transferred from them to the LQC. Therefore, not
only the WYSI but also the other physical quantities that
are similarly based on

√
ρ01 can pinpoint the FP λf . For

instance, bipartite entanglement measures such as concurrence
and entanglement of formation, which is itself a function of
concurrence, have been studied in the ground state of the XY
model. Interestingly, both of these measures also depend on√

ρ01, but, since they vanish at λf due to the fact that even the
thermal ground state is separable at the factorization field, the
connection between the elements of

√
ρ01 and the factorization

phenomenon has not been explicitly realized. We emphasize
that this correspondence is fundamentally different from what
happens for the QPT since neither ground-state energy nor any
other thermodynamic quantity had a discontinuity at λf .

Next, we discuss the results of the same analysis for the
local σz coherence in the ground state. Note that the σz

coherence vanishes, as required, for the single-spin state ρ0

as it is diagonal in the σz basis. However, it is clear that this
is no longer true for the LQC. Figure 3 displays the local
coherence carried by the nearest-neighbor two-spin density
matrix ρ01, when measuring the observable σz, and also its
derivative. We observe that the LQC in this case, despite
behaving quantitatively differently from the σx coherence for
both the XY model (γ = 0.5) and the Ising model (γ = 1),
leads us to the same conclusion about the CP of the QPT and
the FP.

We finish our examination of the LQC with the local σy

coherence in the ground state of the XY chain. Comparing
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FIG. 3. (Color online) Two-spin local σz coherence for γ = 0.5
(a) and γ = 1 (c), along with its first derivative (with respect to λ) for
γ = 0.5 (b) and γ = 1 (d), as a function of λ. As the red solid line
denotes the measure, the dashed blue line corresponds to its simplified
version.

Fig. 4(a) to what we observe in Figs. 3(a) and 2(a), we see
an unexpected behavior, that is, the coherence in this case
has a minimum at the CP λc = 1, which is also reflected
in the derivative of the measure shown in Fig. 4(b). As a
consequence, the second-order QPT cannot be detected as a
divergence in the first derivative of the LQC. This is actually
the result of an unlucky coincidence, which apparently cancels
out the divergence in the derivative at the CP, occurring only
for this particular observable and in the case of γ = 0.5.
In fact, checking Figs. 4(c) and 4(d), it is clear that the
coherence exhibits the expected behavior for γ = 1. On the
other hand, the simplified σy coherence does not suffer from
this issue at any value of the anisotropy parameters γ . Thus,
the example we presented here is not a systematic issue related
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FIG. 4. (Color online) Two-spin local σy coherence for γ = 0.5
(a) and γ = 1 (c), along with its first derivative (with respect to λ) for
γ = 0.5 (b) and γ = 1 (d), as a function of λ. As the red solid line
denotes the measure, the dashed blue line corresponds to its simplified
version.
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FIG. 5. (Color online) Two-spin local quantum uncertainty for
γ = 0.5 (a) and γ = 1 (c), along with its first derivative (with respect
to λ) for γ = 0.5 (b) and γ = 1 (d), as a function of λ.

the coherence measure based on WYSI for identifying the CP
of the QPT. We also point out that the FP at λf ∼ 1.1547
manifests its presence in the coherence measure again through
a discontinuity in the first derivative.

Having discussed the LQC in the ground state of the XY
chain case by case, we now turn our attention to what the LQU,
which is in fact the optimized version of the LQC over the set
of all possible observables, has to say about the QPT and the
factorization phenomenon. Figure 5 displays the behavior of
the LQU and its derivatives for the cases of γ = 0.5 and 1.
Apart from the appearance of the divergence at the CP λc = 1
and the finite discontinuity at the FP λf ∼ 1.1547 in the first
derivative of the measure, we also observe two pronounced
maxima in Fig. 5(a) and in Fig. 5(c), corresponding to
finite discontinuities in the derivatives shown in Figs. 5(b)
and 5(d). Indeed, the XY model has neither a QPT nor a
factorized ground state at these points. A closer glance at the
measure reveals the reason behind this: due to the optimization
procedure in the definition of the LQU, there might occur
sudden changes of the optimal observable, as we vary the
magnetic field continuously. Particularly, in both Figs. 5(a)
and 5(c), the optimal observable jumps from σz to σx at these
two new maxima. Hence, it is important to mention that the
nonanalyticities in the derivative of the LQU here do not come
from the elements of the two-spin reduced density matrix ρ01

but rather stem from the definition of the LQU naturally, and
thus they should not be related to a quantum critical behavior.

Lastly, we briefly explore the ability of the LQC to correctly
estimate the CP of the QPT at finite but sufficiently low
temperatures, which might be considered effectively zero since
the thermal fluctuations in this case are not strong enough
to excite the system from its ground state. In spite of the
fact that singular behavior of the LQC disappears as the
temperature rises, we might still estimate λc to a reasonable
accuracy. Additionally, we also perform a similar analysis
for the FP to check the robustness of the emergence of
factorization phenomena at finite temperatures. Our strategy
can be summarized as follows: since at finite temperature a
divergence in the first derivative of the LQC at T = 0 will be

104431-5
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FIG. 6. (Color online) (a) The critical point estimated by single-
spin σx coherence (red line) and its simplified version (blue line) as
a function of the temperature for γ = 0.5. (b) The factorization field
estimated by local two-spin σx coherence (red line), σy coherence
(blue line) and σz coherence (green line) as a function of time for
γ = 0.5.

replaced by a local maximum or minimum about the singular
point, we search for this extremum to estimate the CP. On
the other hand, if the first derivative is discontinuous, then
we look for an extremum in the second derivative of the
LQC [11].

In Fig. 6(a), we show the performances of the single-spin
σx coherence (red line) and its simplified version (blue line) in
estimating the CP of the QPT. It is important to note that this
experimentally friendly alternative is a very accurate estimator
of the CP of the QPT for γ = 0.5 even at relatively high
temperatures. Moreover, Fig. 6(b) demonstrates the outcome
of the same analysis for the FP considering the σx coherence
(red line), σy coherence (blue line) and σz coherence (green
line). We emphasize that the factorization phenomenon is
robust against the thermal effects until a certain temperature
is reached. In fact, quantum discord has also been studied
to investigate the same problem [14]. However, the detection
of the FP requires the evaluation of discord in the two-spin
reduced system for more than one value of r = |i − j |. In
particular, discord signals the FT through the intersection of
lines plotted for different spin distances, i.e., it has the same
value independent of the distance between the spins. Thus, the
fact that the LQC serves the same purpose only considering
the nearest neighbors might be considered an advantage over
quantum discord. Note that, in the case of a finite XY chain, the
robustness of the factorization phenomena can be explained in
terms of the difference between the excited energy levels [13].

IV. CONCLUSION

In summary, we have presented a systematic analysis of
the relation of the QPT and factorization phenomenon, taking
place in the ground state of the anisotropic spin-1/2 XY chain

in a transverse magnetic field, to the LQC and LQU contained
in the single-spin and two-spin reduced density matrices of
the thermal ground state. On the one hand, we show that
an experimentally accessible simple measure of coherence
based on WYSI can identify the CP of the second-order
QPT in the XY model, even when only a single-spin reduced
system of the chain is considered. Moreover, the single-spin
coherence remains as a very accurate estimator of the CP
even at relatively high temperatures. On the other hand, our
results clearly demonstrate that the connection between the
QPTs and nonanalyticities occurring in the LQC and LQU
should not be taken for granted in general. For instance, the
optimization procedure in the definition of the LQU might
give rise to singularities in the behavior of the measure,
due to a sudden change of the optimal observable, which
do not correspond to any quantum critical behavior. Indeed,
the examples we presented here should be considered as a
particular case of similar situations that might be observed for
all physical quantities involving an optimization procedure in
their definitions [11].

Furthermore, we have shown that despite the fact that the
LQC and LQU have no direct relation to any measure of
entanglement for mixed states, they both show the signal of the
completely factorized ground state in the XY model, due to the
fact that their definitions are based on the WYSI. By further
investigating this correspondence, we have demonstrated that
the finite discontinuities emerging in the derivatives of LQC
and LQU at the FP are actually transformed to the measures
from the elements of the square root of the two-spin density
matrix. This fact also explains why the simplified coherence
measure based on ρ instead of

√
ρ does not tell anything about

the factorization phenomenon. Lastly, we have examined the
robustness of the factorization phenomenon in terms of the
LQC at finite temperatures, and we demonstrated that, as long
as we consider sufficiently low temperatures, the LQC can still
identify the factorized ground state.
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