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Coupled oscillations of vortex cores confined in a ferromagnetic elliptical disk
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By solving the Thiele equation with simultaneous application of a radio-frequency (rf) magnetic field (hrf )
and an rf spin current ( j sp), the dynamic susceptibility of exchange-coupled vortices in response to hrf and j sp

was obtained. It was found that the four eigenmodes expected for two vortices trapped in a magnetic elliptical
disk were coupled to different components of hrf and j sp. As a consequence, orthogonal hrf and j sp (which are
simultaneously generated by the application of an rf current to an elliptical disk) can excite two modes with
different eigenfrequencies. This result suggests that a fieldlike nonadiabatic torque caused by an rf spin current
can be spectroscopically distinguished from the one caused by the rf magnetic field.
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I. INTRODUCTION

To understand the dynamics of spins and also to discover
their potential applications for spintronic devices, the magneti-
zation dynamics in artificial micrometer- and nanometer-scale
magnets have been studied extensively. The spin-transfer
torque (STT) is a particularly interesting phenomenon because
it is capable of switching the magnetization, making it a
promising candidate for applications in nonvolatile magnetic
memories [1–3]. The STT can also displace magnetic domain
walls (DWs) in ferromagnetic wires [4,5]. When an electric
current flows through a DW, the spin angular momentum of the
conduction electrons is transferred to the local magnetization
both adiabatically and nonadiabatically [6,7]. Consequently,
the STT is exerted on the local magnetization within the DWs,
and its strength depends upon the DW’s magnetic structure.
However, note that the Oersted field caused by the current
flowing through the wire also affects the spin dynamics [8–10].
To quantify the relationship between the STT and the magnetic
structure, it is important to individually evaluate the effects due
to the STT and those due to the Oersted field.

In this study, we solve the Thiele equation considering
both the radio-frequency (rf) Oersted fields and the rf spin
torques in order to study the motion of two magnetic solitons
(i.e., magnetic vortices) confined in an elliptical-shaped
ferromagnetic disk [Fig. 1(a)]. The magnetic vortex is an
in-plane continuous swirling closure magnetization structure
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with a tiny central core that is magnetized perpendicular to the
plane [11,12]. The states of a pair of vortices are characterized
by two Boolean parameters: the polarity pj and the chirality
cj , where j = 1,2 is the index of each vortex. The polarity
pj describes whether the out-of-plane component at the core
points up (pj = +1) or down (pj = −1). The chirality cj

describes whether the in-plane curling direction is clockwise
(cj = +1) or counterclockwise (cj = −1). In the case of
two vortices confined to an elliptical disk, the vortices have
opposite chirality (c1 = −c2) in order to decrease the exchange
energy of the disk.

There have been several reports on vortex-vortex interac-
tions in laterally [13–19] and longitudinally [20,21] separated
disks. Studies on vortex pairs confined to a single disk are
reported in Refs. [22] and [23]. It is known that magnetic
interactions among vortices can remove the degeneracy of the
gyration modes in the two vortices with different combinations
of pj and cj . The dynamic susceptibility of magnetostatically
coupled vortices has been analytically studied by Shibata
et al. [13] (using a rigid vortex model) and Sukhostavets
et al. [14] (using a two-vortex model). In such systems,
the presence of the eigenmodes of the center-mass motion
and the relative motion of the vortex cores was theoretically
predicted [21,23]. An exchange interaction among vortices
can also remove the degeneracy. The dynamical properties
of exchange-coupled vortices in the same ferromagnetic
disk have been investigated by Buchanan et al. [22]. They
observed an rf-field induced resonance spectrum of two
exchange-coupled vortices using a vector network analyzer
to measure ferromagnetic resonance. The eigenmodes that
appeared in the exchange-coupled vortices were consistent
with those expected from a phenomenological calculation and
corresponding micromagnetic simulations. It was noted that a
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FIG. 1. (Color online) A pair of vortices confined in an elliptical
disk. (a) Micromagnetic simulation of the magnetization distribution.
Left: Colors represent the in-plane magnetization direction. Right:
Black and white represent downward and upward out-of-plane
magnetization, respectively. Gray denotes regions with no out-of-
plane magnetization component (in-plane magnetization component
only). (b) The coordinate system used in this study. The origin of the
coordinate system is placed at the center of the elliptical disk.

deformation of the closure domain during the gyration plays
an important role in the dynamic susceptibility of vortices
confined in the same disk. The temporal variation in the
magnetic energy caused by the deformation of the closure
domain depends on the phase difference in the translational
modes of the exchange-coupled vortices. Although these
modes have been well studied when excited by an rf field, the
dynamic susceptibility with respect to an rf current (which is
significant for evaluating the spin-transfer torque) has not yet
been sufficiently researched. Furthermore, only three of the
four theoretically expected eigenmodes have been observed
under the influence of an rf magnetic field. In this study,
the dynamic susceptibility of exchange-coupled vortices with
respect to the simultaneous application of hrf and j sp was
analytically studied by solving the Thiele equation. From the
analytical calculation, it was found that degeneracy in the
translational modes excited by hrf and j sp could be removed by
using the vortices trapped in the isolated elliptical disk, unlike
in the cases of a single vortex or magnetostatically coupled
vortices. That is to say, the contributions of the rf current
and the rf magnetic field to dynamic susceptibility can be
separately examined. We also found that all of the theoretically
expected four eigenmodes can be realized by using both the
rf magnetic field and the rf current. The precise formulation
of the core motions induced by hrf and j sp and the method
used to evaluate the nonadiabaticity parameter of STT will be
presented in this paper.

This paper is organized as follows. In Sec. II, the analytical
model we used to solve this problem is explained. In Sec. III,
the magnetostatic energy that determines the restoring force
of the vortices is discussed. In Sec. IV, the solutions of the
Thiele equation are derived, and each eigenmode is explained.
A comparison between the analytical calculation and the

micromagnetic simulation is described in Sec. V; we also
propose a method to experimentally examine the β term using
a vortex pair. Finally, our study is summarized in Sec. VI.

II. ANALYTICAL MODEL

A. Coordinate system

The coordinate system used in this study is schematically
shown in Fig. 1(b). The lateral dimensions of the ellipse are
a × b, and the thickness is L. The origin of the coordinate
system is at the center of the disk. The position of each vortex
core is described by rj = (xj ,yj ), where j is the index number
of the core. The center-of-mass coordinate, rcm ≡ (r1 + r2)/2,
and the relative coordinate, r rel ≡ r2 − r1, are also used. An rf
electric current (namely the rf spin current, j sp) or rf magnetic
field (hrf) is applied in arbitrary in-plane directions. j sp or
hrf will excite the rotational motion of the vortex cores at its
eigenfrequency. The rotational motion of each core can be
expressed in the following equation:(

xj

yj

)
=

(
xj0 + Xje

iωt

Yj e
iωt

)
, (1)

where ω is the angular frequency, xj0 is the equilibrium
position, and Xj and Yj are the complex amplitudes of core
rotation. The amplitudes in real space are given by

Re[Xje
iωt ] = Re[Xj ] cos ωt − Im[Xj ] sin ωt,

(2)
Re[Yje

iωt ] = Re[Yj ] cos ωt − Im[Yj ] sin ωt.

B. Thiele equation

The motion of each vortex core in the x-y plane can be
described by the Thiele equation [24,25] including spin torque
terms [6,7,26–29]:

G(pj ) × (u − ṙj ) = −δU (r1,r2)

δrj

− αD ṙj + βDu. (3)

The first term on the left-hand side of Eq. (3) consists of
the adiabatic spin-transfer torque and the gyroforce. Here, the
gyrovector G(pj ) is given by

G(pj ) = −2πLMs

γ
pj ẑ = −G0pj ẑ, (4)

where Ms and γ are the saturation magnetization and the gyro-
magnetic ratio, respectively. The velocity vector u, associated
with the spin transfer torque from spin current j sp, can be
described by

u = eiωt

(
μBP

qeMs

jx,
μBP

qeMs

jy

)
≡ eiωt (ux,uy), (5)

where μB, P , and qe denote the Bohr magneton, spin
polarization, and electron charge, respectively. jx and jy

are the x and y components of the electric current density,
respectively.

The terms on the right-hand side of Eq. (3) are described
as follows. The first term on the right-hand side of Eq. (3)
is the restoring force attributed to the magnetic potential
U (r1,r2). In general, the magnetic potential consists of the
magnetostatic energy, exchange energy, Zeeman energy, and
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anisotropy energy. However, the force associated with ex-
change energy is negligible compared with that associated with
the magnetostatic energy in the micron-scale disk [10]. The
magnetocrystalline anisotropy energy is ignored in this study
because a soft magnetic material, permalloy, is generally used
to study the dynamics of a magnetic vortex. Thus, the magnetic
potential can be written as U = Um + Uz, where Um and Uz

indicate the magnetostatic energy and the Zeeman energy,
respectively. The magnetostatic energy can be expressed in
the center-of-mass and relative frames simultaneously by the
following:

Um = κx

2
x2

cm + κy

2
y2

cm + μ

4
(xrel − b)2 + μ

4
y2

rel, (6)

where κx and κy correspond to the stiffness constant of the
vortex along the x and y axes in the center-of-mass frame,
respectively, and μ corresponds to the stiffness constant in the
relative frame. The detailed derivation of Eq. (6) is shown in
Sec. III.

Herein, we will discuss the Zeeman energy of two vortices
in an isolated elliptical disk. If the core displacement caused
by an external magnetic field is much smaller than the
inter-core distance, and the rotational amplitude of each core
is sufficiently small, it is reasonable to assume that the
Zeeman energy for the vortices in the elliptical disk is given
by a linear combination of the Zeeman energy for the two
isolated vortices. The Zeeman energy of a vortex formed in
a circular disk is given by Uz,single = cl( ẑ × Hext) · r , where
l ≡ πξMsLR, ξ = 2/3 for a “side-charge-free” model, R is
the disk radius (namely, the radius of the vortex structure), and

r is the position of the vortex core [30]. As a consequence, the
Zeeman energy for vortices in the elliptical disk is given by

Uz = c1l( ẑ × Hext) · r1 + c2l( ẑ × Hext) · r2. (7)

In this paper, we consider the rf magnetic field as the only
external magnetic field: Hext = hrf = eiωt (hx,hy), where hx(y)

is the amplitude of the rf field.
The second term on the right-hand side of Eq. (3) is the

damping force, with α being the Gilbert damping constant
and D the diagonal element of the damping tensor. The third
term on the right-hand side of Eq. (3) is the nonadiabatic spin
transfer torque. Here, β is the nonadiabaticity parameter.

III. MAGNETOSTATIC ENERGY

In this section, the magnetostatic energy of the vortex pair
is discussed. The changes in the magnetostatic energy because
of the applications of the magnetic field along the y and x

axes are calculated in Secs. III A and III B, respectively.
The validity of the expressions derived in Secs. III A and
III B is confirmed by micromagnetic simulation in Sec. III C.
The magnetostatic energies in the relative and center-of-mass
frames are summarized in Sec. III D.

A. Two cores moving along the x direction

If the elliptical disk has two vortices, a diamond-shaped
magnetic domain appears at the center of the disk as shown in
Fig. 1(a). Figure 2(a) shows a schematic of the spin orientation
in the elliptical disk. 90◦ domain walls are formed at line
segments AB, BC, CD, and DA in Fig. 2(a). If magnetic poles
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FIG. 2. (Color online) (a) Schematic of magnetic moment distribution. A diamond-shaped magnetic domain (i.e., quadrilateral ABCD)
appears at the center of the disk. Line segments AB, BC, CD, and DA correspond to 90◦ domain walls. (b) The coordinate system for the
magnetic field calculation and the coordinate model for the magnetostatic energy in the line segment AB. (c) Numerically calculated values of
the magnetic field H (x ′,0) as a function of x ′ at θ = 44.7◦. (d) Integration area to calculate the magnetostatic energy from the magnetic-field
distribution. The integration area shown in (d) is simplified to (e).
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appear at the domain walls, the magnetostatic energy will
increase near the walls. Now, we calculate the magnetostatic
energy as a function of the distance between the two cores
along the x axis, rx . As shown in Fig. 2(a), we define the angle
between AB and BD as θ . We assume that points B and D
move along the x axis, and that points A and C are fixed. The
angle θ has a relationship with rx given by the following:

sin θ = b√
b2 + r2

x

, cos θ = rx√
b2 + r2

x

. (8)

First, we calculate the magnetostatic energy near the wall AB.
The magnetic charge density on the wall AB can be described
as

q = Ms(cos θ − sin θ ). (9)

If θ deviates from 45°, q is no longer zero. Next, the magnetic
field H caused by q will be evaluated. We set the x ′,y ′
coordinate system, as shown in Fig. 2(b). The origin O ′ of
the x ′y ′ system is set at the midpoint of the wall AB. By
assuming a uniform distribution of the magnetic pole on the
wall AB, H (x ′,0) can be calculated as

H (x ′,0) = λs

2πμ0x ′
1

(x ′2 + s2)1/2
, (10)

where λ is the line density of the magnetic pole given
by Lq, and 2s is the length of the wall AB, given by
b/2 sin θ . The numerically calculated values of the magnetic
field H (x ′,0) as a function of x at θ = 44.7◦ are shown
in Fig. 2(c) [31]. Parameters used in numerical calculation
in this study are summarized in Table I. The strength of
H (x ′,0) rapidly decreases with increasing x ′ and becomes
less than 1 × 103 A/m at x ′ = 28 nm. Next, we calculate the
magnetostatic energy caused by the magnetic pole. If x ′ is
much smaller than the length of the wall AB, the effect of the
magnetic pole around both ends can be ignored. Thus H (x ′,y ′)
can be written as a single variable, H (x ′). In order to calculate
the magnetostatic energy, we consider the energy of a small

TABLE I. Parameters used in numerical calculation and mi-
cromagnetic simulation. Material parameters are assumed to be
permalloy (Fe19Ni81).

Physical quantity Symbol Value

Disk dimensions
Length of major axis a 2 μm
Length of minor axis b 1 μm
Thickness L 30 nm

Material parameters
Saturation magnetization Ms 1.0 Wb/m2

Exchange stiffness constant A 1.0 × 10−11 J/m
Gyromagnetic ratio γ 2.2 × 105 m/As
Spin polarization P 0.7
Gilbert damping constant α 0.01
Nonadiabaticity parameter β 0.01

External driving
Current density jx(y) 1.0 × 1010 A/m2

rf field hx(y) 7.96 A/m

volume 2sLdx ′, and then integrate it from x ′ = 0 to x ′ = ∞,

Um,AB = −2sL

∫ ∞

0
MsH (x ′)

[
cos(π − θ )

+ cos

(
π

2
− θ

)]
dx ′. (11)

The integral in Eq. (11) corresponds to the (blue) shaded area in
Fig. 2(d). However, this integral cannot be calculated because
it goes to ∞ as x ′ goes to 0. Thus we terminate the calculation
at the point x ′

c, where H (x ′) becomes less than 1 × 103 A/m,
and regard the size of the (blue) shaded areas in Figs. 2(d)
and 2(e) as being the same, assuming that the magnetic field
H (x ′

c/2) is uniformly distributed. x ′
c is treated as a variable.

The magnetostatic energy shown in Fig. 2(e) is given by

Um,AB = −2sLMsH

(
x ′

c

2

)
x ′

c

[
cos(π − θ ) + cos

(
π

2
− θ

)]

= M2
s b2L2

8πμ0

(
1 − cos θ

sin θ

)2 1√
x ′2

c

4 + s2
. (12)

Summing up the magnetostatic energies near the other walls,
and changing the variable θ to rx using Eq. (8), the total
magnetostatic energy can be calculated as

Um(rx) = 2M2
s L2

πμ0
(b − rx)2 1√

4x ′2
c + b2 + r2

x

. (13)

To simplify
√

4x ′2
c + b2 + r2

x in Eq. (13), we carry out the
following approximation. In the case of an elliptical disk with
a diameter on the order of a μm, b and rx on the order of a
few μm, and x ′

c on the order of tens of nm [Fig. 2(c)], we
can neglect the variable x ′2

c . Next, assuming that the gyration
radii of the vortex cores are measured in tens of nm, rx can be
approximated by b. Consequently,

√
4x ′2

c + b2 + r2
x � √

2b.
Equation (13) can be simplified as

Um(rx) =
√

2M2
s L2

πμ0b
(rx − b)2

= μ

4
(rx − b)2 = μ

4
(x2 − x1 − b)2, (14)

where

μ ≡ 4
√

2M2
s L2

πμ0b
. (15)

The 4 in the denominator of Eq. (14) is introduced for
convenience in subsequent calculations. As shown in Eq. (14),
the magnetostatic energy can be expressed as that of a
harmonic oscillator. Equation (14) simultaneously shows that
the equilibrium position of each core is x10 = −b/2 and
x20 = b/2.

B. Two cores moving along the y direction

When two cores move in the y direction (as schematically
shown in Fig. 3), the lengths of the AB and BC walls are no
longer the same. Here, the lengths of AB and BC are defined as
2s1 and 2s2, respectively. The distance between the two cores
in the y direction is ry , and the distance between the two cores
along the x axis is fixed at b. We set ∠ABE = θ1, ∠EBC = θ2.
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FIG. 3. Schematic geometry of domain walls in the elliptical disk
when two cores move individually along the +y and −y directions.

We can calculate the magnetostatic energy in the same way as
described in Sec. III A. The result is given by the following:

Um(ry) = 2 × 2λ1s
2
1MsL(cos θ1 − sin θ1)

πμ0

1√
x2 + s2

1

+ 2 × 2λ2s
2
2MsL(cos θ2 − sin θ2)

πμ0

1√
x2 + s2

2

�
√

2M2
s L2

πμ0b
r2
y = μ

4
r2
y = μ

4
(y2 − y1)2. (16)

C. Comparison with micromagnetic simulation

To confirm the validity of the analytical form of the mag-
netostatic energy given by Eqs. (14) and (16), we performed
a micromagnetic simulation. The object oriented micromag-
netic framework (OOMMF) [32] was used for simulations
that numerically integrate the Landau-Lifshitz-Gilbert (LLG)
equation. First, a 2 μm × 1 μm × 30 nm elliptical disk was
discretized into a numerical grid of 5 nm × 5 nm × 30 nm.
The simulation parameters are summarized in Table I. As the
Gilbert damping constant α does not depend on the static state,
α = 1 was used in this simulation to make it run faster. We set
the two vortices to have c1 = −1, c2 = 1, and p1 = p2 = −1.
Vortex cores are moved along the x and y axes by static
magnetic fields, Hy and Hx . We calculated the rx and ry

dependencies of the magnetostatic energy. Figures 4(a) and

(a) (b)59.0
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FIG. 4. (Color online) Micromagnetic simulation calculating the
magnetostatic energy as a function of (a) rx and (b) ry . Solid circles
and lines indicate values estimated by the simulation results and the
fitting curves, respectively.

TABLE II. Fitting parameters.

K0 K1 K2

x 4.44 × 10−16 J −8.67 × 10−10 J/m 4.88 × 10−4 J/m2

y 5.82 × 10−17 J −1.90 × 10−25 J/m 2.95 × 10−4 J/m2

4(b) show the numerically evaluated magnetostatic energy as
a function of rx and ry , respectively. A parabolic relationship
between the magnetostatic energy and the distance between the
two cores is clearly observed in both cases. In order to evaluate
the effective stiffness constant, we fit the curve as quadratic
function; Um(rx(y)) = K0 + K1rx(y) + K2r

2
x(y). The result is

summarized in Table II. We define μsim,x = 4K2(x) = 1.952 ×
10−3 J/m2 and μsim,y = 4K2(y) = 1.180 × 10−3 J/m2, which
correspond to the simulation result of μ in Eqs. (14) and
(16), respectively. In contrast, the value of μ calculated using
Eq. (15) is 1.290 × 10−3 J/m2. The simulated μsim,x and μsim,y

approximately coincide with the analytical μ. Consequently,
we can confirm the validity of the magnetostatic energy in the
relative coordinate.

D. Analytical expression of magnetostatic energy

In the zeroth-order approximation, the magnetostatic en-
ergy of the elliptical disk consisting of two vortices located at
(x1,y1) and (x2,y2) is given by

Um(rx,ry) � Um(rx) + Um(ry)

= μ

4
(xrel − b)2 + μ

4
y2

rel, (17)

where xrel and yrel are the x and y components, respectively, of
the relative position r rel. If the distance between the two cores
does not change during the gyration, the magnetostatic energy
should be described in center-of-mass coordinates, where the
movement of two cores can be interpreted as the movement
of a single core at the barycenter. Note that the magnetostatic
energy of the center-of-mass coordinate is similar to that of
the single vortex state given by

Um = κx

2
x2

cm + κy

2
y2

cm, (18)

where xcm and ycm are the x and y components, respectively, of
the center-of-mass position rcm. In an elliptical disk elongated
along the x axis, the coefficient κy is larger than κx because
of the disk shape anisotropy [33]. Finally, the magnetostatic
energy of two vortex state can be expressed as Eq. (6).

IV. RESULTS AND DISCUSSION

A. Solution of the Thiele equation

Equation (3) is solved to obtain the rotational amplitude
of each core by assuming that two cores rotate around each
equilibrium position [see Eq. (1)]. The detailed calculation is
described in the Appendix. The results are as follows:

(i) If p1 = +p2, then

Xcm = X1 + X2

2
= uxR1(ωr = ω1) + p1uyR2(ωr = ω1),
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Ycm = Y1 + Y2

2
= p1uxR3(ωr = ω1) + uyR4(ωr = ω1),

Xrel = X2 − X1 = p1hxR5(ωr = ω2) + hyR6(ωr = ω2),

Yrel = Y2 − Y1 = hxR7(ωr = ω2) + p1hyR8(ωr = ω2). (19)

(ii) If p1 = −p2, then

Xcm = X1 + X2

2
= uxR9(ωr = ω3) + p1hxR10(ωr = ω3),

Ycm = Y1 + Y2

2
= uyR11(ωr = ω4) + p1hyR12(ωr = ω4),

(20)
Xrel = X2 − X1 =p1uyR13(ωr = ω4) + hyR14(ωr = ω4),

Yrel = Y2 − Y1 = p1uxR15(ωr = ω3) + hxR16(ωr = ω3),

where Xcm(Ycm) and Xrel(Yrel) correspond to the center-
of-mass and relative coordinates of the rotation amplitude
Xj (Yj ), respectively. Rk(ωr) consists of a linear combination
of the dispersion function and the Lorentzian function with
eigenfrequency ωr. The detailed expressions of Rk(ωr) are
shown in Eqs. (A18)–(A25) and (A38)–(A45). The resonant
frequencies as functions of stiffness constants in Eq. (6) are
given by

ω1 =
√

κxκy

G2
0 + α2D2

, ω2 =
√

μ2

G2
0 + α2D2

, (21)

ω3 =
√

μκx

G2
0 + α2D2

, ω4 =
√

μκy

G2
0 + α2D2

. (22)

These resonant frequencies are equivalent to the eigenfrequen-
cies proposed by Buchanan et al. [22] although the definition
of stiffness constants is different from our analytical model.
It is noted that the assumption of harmonic potential given
by Eq. (6) enables us to obtain Eqs. (19) and (20), i.e., the
dynamic susceptibilities in response to an rf field and an rf
spin current.

B. Eigenmodes and eigenfrequencies

1. p1 = + p2 (two cores with the same polarity)

It can be seen from Eq. (19) that the contribution of the
rf spin current, ux(y) only exists in the expressions for Xcm

and Ycm, whereas that of the rf field hx(y) only exists in the
expressions for Xrel and Yrel. The result suggests that the rf
spin current excites the center-of-mass motion of the cores
whereas the rf field excites the relative motion of cores. The
polarity p1(=p2) determines direction of rotation: cores rotate
clockwise when p1 = −1, and counterclockwise when p1 =
+1. At the eigenfrequency, temporal variations of the core
displacement calculated from Eqs. (2) and (19) are shown in
Figs. 5(a)–5(d). Schematics of these motions are depicted at
the top of these figures. The polarities of the vortex pairs are
set at p1 = p2 = +1. Numerical conditions are described in
Table I and [34].

The trajectories excited by the rf spin currents along the x

and y axes are shown in Figs. 5(a) and 5(b), respectively. It is
clearly shown in Figs. 5(a) and 5(b) that rf spin current excites
the center-of-mass motion of the cores. Namely, cores gyrate
with in-phase (i) mode along both the x and y axes. We define
this eigenmode as the (i,i) mode according to Buchanan et al.

[22]. Note that the first and second parameters of (i,i) indicate
that the cores gyrate with an in-phase mode along the x and y

axes, respectively. As shown by Xcm and Ycm in Eq. (19), the
eigenfrequency of the (i,i) mode is given by ω1.

On the contrary, as shown in Figs. 5(c) and 5(d), the x and
y components of the rf magnetic field excite a relative motion
of the cores. Namely, the cores gyrate with an out-of-phase (o)
mode along both the x and y axes. We define this eigenmode
as the (o,o) mode. As shown by Xrel and Yrel in Eq. (19),
the eigenfrequency of the (o,o) mode is given by ω2. Note
that Figs. 5(a) and 5(b) depict the same rotational mode with
different initial phases [and so do Figs. 5(c) and 5(d)]. Thus, it
is found that the source of excitation (rf field or rf spin current)
decides which eigenmode [(i,i) or (o,o)] will be excited when
two cores have the same polarity (p1 = +p2).

2. p1 = − p2 (two cores with the opposite polarity)

We consider the contributions from ux , uy , hx , and hy ,
separately. As shown in Eq. (20), ux only exists in the
expressions for Xcm and Yrel. This means that ux can excite
center-of-mass motion in the x direction and relative motion
in the y direction simultaneously. At the eigenfrequency,
temporal variations of the core displacement are calculated
using Eqs. (2) and (20), and are shown in Fig. 5(e). A schematic
of the core motion is depicted at the top of Fig. 5(e). The
polarities of the vortex pairs are set at p1 = −1 and p2 = +1.
One finds that the two cores gyrate in the same phase along
the x axis, whereas they gyrate with a phase difference of π

along the y axis. The former indicates that cores gyrate with
an in-phase (i) mode along the x axis, while the latter indicates
that cores gyrate with an out-of-phase (o) mode along the y

axis. We define this eigenmode as the (i,o) mode. In the same
way, hx only exists in the expression for Xcm and Yrel. This
means that ux and hx excite the same rotational mode [i.e.,
the (i,o) mode]. Temporal variations of the core displacement
excited by hx are shown in Fig. 5(g). As seen in the expressions
for Xcm and Yrel in Eq. (20), the eigenfrequency of the (i,o)
mode is given by ω3.

We will now consider the excitation for y direction. First,
uy only exists in the expressions for Xrel and Ycm in Eq. (20).
This means that uy can excite relative motion in the x direction
and center-of-mass motion in the y direction simultaneously.
Temporal variations of the core displacement are shown in
Fig. 5(f). One can see that the two cores gyrate with a phase
difference of π along the x axis, while they gyrate in the
same phase along the y axis. The former indicates that cores
gyrate with an out-of-phase (o) mode along the x axis, whereas
the latter indicates that cores gyrate with in-phase (i) mode
along the y axis. We define this eigenmode as the (o,i) mode.
In the same way, hy only exists in the expressions for Xrel

and Ycm in Eq. (20). This means that uy and hy excite the
same rotational mode [the (o,i) mode]. Temporal variation of
the core displacement excited by hy are shown in Fig. 5(h).
As seen in the expressions for Xrel and Ycm in Eq. (20), the
eigenfrequency of the (o,i) mode is given by ω4. Thus, it is
found that the direction of the excitation source (along the x

or y axis) decides which eigenmode [the (i,o) mode or the
(o,i) mode] is excited when the two cores have the opposite
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FIG. 5. (Color online) Depictions of the core motions and eigenfrequencies derived by analytical calculation. First row: Schematics of
the excitation source and core motions. The open and closed circles represent vortex cores with positive and negative polarity, respectively.
“×” marks the center of gyration. Second and third rows: Core displacement along the x and y axes as a function of time. The red
dashed line and the blue solid line correspond to the left (j = 1) and right (j = 2) cores, respectively. Fourth row: Formulas of the
eigenfrequencies.
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polarity (p1 = −p2). These results are totally different from
the p1 = +p2 case.

C. Comparison with magnetostatically coupled vortices

In the case where p1 = +p2, it is found that the source of the
excitation (rf field or rf spin current) decides which eigenmode
[(i,i) or (o,o)] is excited. As schematically shown in Figs. 5(a)–
5(d), the eigenmode is independent of the direction of hac

and j sp. The rf spin current excites the (i,i) mode, whose
eigenfrequency is ω1, whereas the rf field excites the (o,o)
mode, whose eigenfrequency is ω2.

On the other hand, in the case of p1 = −p2, it is found
that the direction of the excitation source (along the x

or y axis) decides which eigenmode [(i,o) or (o,i)] is
excited. Unlike the case where p1 = +p2, the eigenmode
is independent of the excitation source, i.e., hac and j sp.
Excitation along the x axis (ux and hx) excites the (i,o) mode,
whose eigenfrequency is ω3, while excitation along the y axis
(uy and hy) excites the (o,i) mode, whose eigenfrequency
is ω4.

In each case, either the center-of-mass motion or the
relative motion is excited. We notice that the eigenfrequen-
cies of the center-of-mass motion and the relative motion
are different. The eigenfrequency differences of the core
motions are similar to those of the two-body problem with
springs.

In a previous study, Shibata et al. [13] classified the
eigenmodes of the vortex pairs in two separate disks. They
found that all four eigenmodes [(i,i), (o,o), (i,o), (o,i)]
depended on the combination of polarity and chirality. Note
that, with separate disks, chirality can take two conditions:
c1 = +c2 and c1 = −c2. On the other hand, when looking at
a pair of vortices confined to the same disk, chirality can
take one condition: c1 = −c2. Buchanan et al. [22] found
the (o,o), (i,o), and (o,i) modes by rf field excitation under
the c1 = −c2 condition. The (i,i) mode cannot be excited
by an rf field. In this study we found the (i,i) mode by rf
current excitation in the case of two vortices confined to one
disk.

V. MICROMAGNETIC SIMULATION

A. Eigenmodes and eigenfrequencies

To confirm the validity of the analytical calculations dis-
cussed in Sec. IV, we carried out a micromagnetic simulation.
We used a simulation program based on our originally
developed code in this section. Simulation parameters are
summarized in Table I, except we neglected the nonadi-
abaticity parameter, i.e., β = 0. The simulation cell size
was 4 nm × 4 nm × 30 nm. Figure 6 shows the simulated
result of temporal variations of the core displacement at the
eigenfrequencies for each excitation mode [see Supplemental
Material movies (a)–(h) [35]]. Note that the graphs in Fig. 6
show the core movements in the steady state. Movements
of the cores were consistent with the analytical result de-
scribed in Fig. 5. Analytical calculations showed that the
eigenmode was selected by the source of excitation, not
by the excitation direction, when the two cores have the
same polarity (p1 = +p2). Figures 6(a) and 6(b) show spin

TABLE III. Eigenfrequencies.

Analytical calculation Simulation

f1 169 MHz 120 MHz
f2 239 MHz 204 MHz
f3 132 MHz 96 MHz
f4 307 MHz 264 MHz

current excitations with different excitation directions. The
eigenfrequencies of Figs. 6(a) and 6(b) are both 120 MHz,
indicating that they excite the same eigenmode. Analytical
calculation also showed that the pairs Figs. 6(c) and 6(d), 6(e)
and 6(g), and 6(f) and 6(h) each shared an eigenmode. The
results of the simulation were consistent with the analytical
results.

Table III shows comparison of the eigenfrequencies be-
tween the analytical calculation and the micromagnetic sim-
ulation. One can see that magnitude relationship of f1−f4

is consistent between the analytical calculation and the
micromagnetic simulation.

B. Distinguishing the peak of the rf spin current
from that of the rf field

In experiments, electrodes are often attached to a ferro-
magnetic disk to study the spin torque effect on a vortex
[10,36]. However, rf electric current simultaneously induces
an rf Oersed field perpendicular to itself. This rf field makes
it difficult to study the spin torque contribution due to the rf
current, because the eigenfrequencies of the rf field excitation
and the rf spin current excitation are the same in a single
vortex state. In a vortex pair, however, the eigenfrequencies of
the rf field excitation and of the rf spin current excitation are
different whenever they are orthogonally applied. It makes it
easy to eliminate the rf field contribution at the eigenfrequency
of the spin current excitation. Figure 7(a) shows the gyration
radius of the cores as a function of frequency when the rf
spin current and the rf field are orthogonally applied at the
same time. Two resonance peaks, one excited by the rf spin
current and one by the rf field, can be seen in every case.
Thus we can distinguish the rf spin current contribution from
that of the rf field at each resonance peak. Note that the
complex amplitudes caused by the rf-spin-current excitation
depend on both α and β, whereas those caused by the rf-field
excitation depend only on α [see Eqs. (A18)–(A25) and
(A38)–(A45)]. As a consequence, the values of α and β can
be individually determined from the two resonance spectra.
Figure 7(b) shows the gyration radius of the left core (j = 1)
as a function of the frequency with various β, when the polarity
is p1 = +p2 and ux + hy is applied. Figure 7(c) shows the
β dependence of the gyration radius at the eigenfrequencies
of the rf spin current excitation (120 MHz) and the rf field
excitation (204 MHz). As β increases, the peak height of the
spin current excitation increases. On the other hand, the peak
height of rf field excitation is independent of β. Thus β can
be estimated using the measurement of magnetic vortex pair
gyration.
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FIG. 6. (Color online) Depictions of the core motions and eigenfrequencies derived from micromagnetic simulation. First row: Schematics
of the excitation source and core motions. The open and closed circles represent vortex cores with positive and negative polarity,
respectively. “×” marks the center of gyration. Second and third rows: Core displacement along the x and y axes as a function of time.
The red dashed line and the blue solid line correspond to the left (j = 1) and right (j = 2) cores, respectively. Fourth row: Observed
eigenfrequencies.
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FIG. 7. (Color online) (a) Gyration radius of the cores as a function of the frequency when the rf spin current and the rf field are orthogonally
applied at the same time. (b) Gyration radius of the left core (j = 1) as a function of the frequency with various β, when the polarity is p1 = +p2

and ux + hy is applied. (c) β dependence of the gyration radius at the eigenfrequency of the rf spin current excitation (red solid line), and that
of the rf field excitation (blue dashed line).

VI. CONCLUSION

The motion of a pair of vortex cores confined to a ferro-
magnetic elliptical disk has been analytically and numerically
investigated. By solving the Thiele equation with simultaneous
application of the rf magnetic field hrf and the rf spin current
j sp, the dynamic susceptibility of exchange-coupled vortices
in response to hrf and j sp was obtained. It was found that
the source of excitation (rf field or rf spin current) decides
which eigenmode [(i,i) or (o,o)] is excited when the two cores
have the same polarity (p1 = +p2), whereas the direction of
the excitation source (along the x or y axis) decides which
eigenmode [(i,o) mode or (o,i) mode] is excited when the
two cores have opposite polarity (p1 = −p2). It is also found
that one can obtain two different eigenfrequencies whenever
the rf field hrf and the rf spin current j sp are orthogonally
applied. This fact can be used to distinguish the rf spin current
contribution from the rf field contribution at each resonance
peak. Our study sheds light on means to examine an intrinsic
material parameter, the nonadiabaticity parameter of STT, β,
from extrinsic effects such as an Oersted field.
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APPENDIX: ANALYTICAL DERIVATION OF ROTATION
AMPLITUDE OF VORTICES

In this section, we solve the Thiele equation to derive the
complex amplitude and the eigenfrequency. Equation (3) can

be expressed in the matrix form as(
α̃ −pj

pj α̃

)(
ẋj

ẏj

)
+

(
κ̃x 0
0 κ̃y

)(
xcm

ycm

)

+ (−1)j
(

μ̃/2 0
0 μ̃/2

)(
xrel − b

yrel

)

= eiωt

(
pjuy + β̃ux + cj l̃hy

pjux + β̃uy − cj l̃hx

)
, (A1)

where we introduce the following reduced parameters to
simplify the notation:

α̃ = αD

G0
, β̃ = βD

G0
, l̃ = l

G0
,

(A2)
κ̃x = κx

G0
, κ̃y = κy

G0
, μ̃ = μ

G0
.

We assume the vortex position has the following form:(
x1

y1

)
=

(− b
2 + X1e

iωt

Y1e
iωt

)
,

(
x2

y2

)
=

(
b
2 + X2e

iωt

Y2e
iωt

)
, (A3)

where Xj and Yj are the complex amplitudes. Substituting
Eq. (A3) into Eq. (A1), we obtain(

iωα̃ −iωpj

iωpj iωα̃

)(
Xj

Yj

)
+

(
κ̃x 0
0 κ̃y

)(
Xcm

Ycm

)

+ (−1)j
(

μ̃/2 0
0 μ̃/2

)(
Xrel

Yrel

)
=

(
pjuy + β̃ux + cj l̃hy

pjux + β̃uy − cj l̃hx

)
,

(A4)
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where

(
Xcm

Ycm

)
=

(
(X1 + X2)/2
(Y1 + Y2)/2

)
,

(
Xrel

Yrel

)
=

(
X2 − X1

Y2 − Y1

)
.

(A5)

Equation (A4) leads to the following equations:
(i) If p1 = +p2:(
iωα̃ + κ̃x −iωp1

iωp1 iωα̃ + κ̃y

)(
Xcm

Ycm

)
=

(
p1uy + β̃ux

p1ux + β̃uy

)
, (A6)

(
iωα̃ + μ̃ −iωp1

iωp1 iωα̃ + μ̃

)(
Xrel

Yrel

)
= 2c1 l̃

(−hy

hx

)
. (A7)

(ii) If p1 = −p2:(
iωα̃ + κ̃x 0

0 iωα̃ + κ̃y

)(
Xcm

Ycm

)

+
(

0 iωp1/2
−iωp1/2 0

)(
Xrel

Yrel

)
=

(
β̃ux

β̃uy

)
, (A8)

(
0 −iωp1

iωp1 0

)(
Xcm

Ycm

)

+
(−(iωα̃ + μ̃)/2 0

0 −(iωα̃ + μ̃)/2

)(
Xrel

Yrel

)

=
(

p1uy + c1 l̃hy

p1ux − c1 l̃hx

)
. (A9)

Here, we used c2 = −c1. In the case of p1 = +p2, the center-
of-mass motion only depends on u, and the relative motion
only depends on h, as can be seen in Eqs. (A6) and (A7). On the
other hand, in the case of p1 = −p2, the center-of-mass motion
and the relative motion depend on both u and h, as can be seen
in Eqs. (A8) and (A9). Therefore, we derive the eigenmodes of
the two vortices for the former and the latter cases separately.
In Appendix 1, we show the case of p1 = +p2. In Appendix 2,
we show the case of p1 = −p2.

1. p1 = + p2 (two cores with same polarity)

The inverse matrix of the coefficient matrix on the left-hand
side of Eqs. (A6) and (A7) can be calculated as

(
iωα̃ + κ̃x −iωp1

iωp1 iωα̃ + κ̃y

)−1

=
(
ω2

1 − ω2
) − iωα1

(1 + α̃2)
[(

ω2
1 − ω2

)2 + (ωα1)2
]
(

iωα̃ + κ̃y iωp1

−iωp1 iωα̃ + κ̃x

)
, (A10)

(
iωα̃ + μ̃ −iωp1

iωp1 iωα̃ + μ̃

)−1

=
(
ω2

2 − ω2
) − iωα2

(1 + α̃2)
[(

ω2
2 − ω2

)2 + (ωα2)2
]
(

iωα̃ + μ̃ iωp1

−iωp1 iωα̃ + μ̃

)
, (A11)

where

α1 = α̃(κ̃x + κ̃y)

1 + α̃2
, ω1 =

√
κ̃x κ̃y

1 + α̃2
=

√
κxκy

G2
0 + α2D2

, (A12)

α2 = 2α̃μ̃

1 + α̃2
, ω2 =

√
μ̃2

1 + α̃2
=

√
μ2

G2
0 + α2D2

. (A13)

Using these inverse matrices, Eqs. (A6) and (A7) lead to the following:

Xcm = uxR1(ωr = ω1) + p1uyR2(ωr = ω1), (A14)

Ycm = p1uxR3(ωr = ω1) + uyR4(ωr = ω1), (A15)

Xrel = p1hxR5(ωr = ω2) + hyR6(ωr = ω2), (A16)

Yrel = hxR7(ωr = ω2) + p1hyR8(ωr = ω2), (A17)

where

R1(ωr = ω1) =
[
β̃κ̃y

(
ω2

1 − ω2
) + α1ω

2(1 + α̃β̃)
] + iω

[
(1 + α̃β̃)

(
ω2

1 − ω2
) − α1β̃κ̃y

]
(1 + α̃2)

[(
ω2

1 − ω2
)2 + (ωα1)2

] , (A18)

R2(ωr = ω1) =
[
κ̃y

(
ω2

1 − ω2
) + α1ω

2(α̃ + β̃)
] + iω

[
(α̃ + β̃)

(
ω2

1 − ω2
) − α1κ̃y

]
(1 + α̃2)

[(
ω2

1 − ω2
)2 + (ωα1)2

] , (A19)

R3(ωr = ω1) =
[
κ̃x

(
ω2

1 − ω2
) + α1ω

2(α̃ − β̃)
] + iω

[
(α̃ − β̃)

(
ω2

1 − ω2
) − α1κ̃x

]
(1 + α̃2)

[(
ω2

1 − ω2
)2 + (ωα1)2

] , (A20)

R4(ωr = ω1) =
[
β̃κ̃x

(
ω2

1 − ω2
) + α1ω

2(α̃β̃ − 1)
] + iω

[
(α̃β̃ − 1)

(
ω2

1 − ω2
) − α1β̃κ̃x

]
(1 + α̃2)

[(
ω2

1 − ω2
)2 + (ωα1)2

] , (A21)
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R5(ωr = ω2) = 2c1 l̃
α2ω

2 + iω
(
ω2

2 − ω2
)

(1 + α̃2)
[(

ω2
2 − ω2

)2 + (ωα2)2
] , (A22)

R6(ωr = ω2) = −2c1 l̃

[
μ̃

(
ω2

2 − ω2
) + α2α̃ω2

] + iω
[
α̃
(
ω2

2 − ω2
) − α2μ̃

]
(1 + α̃2)

[(
ω2

2 − ω2
)2 + (ωα2)2

] , (A23)

R7(ωr = ω2) = 2c1 l̃

[
μ̃

(
ω2

2 − ω2
) + α2α̃ω2

] + iω
[
α̃
(
ω2

2 − ω2
) − α2μ̃

]
(1 + α̃2)

[(
ω2

2 − ω2
)2 + (ωα2)2

] , (A24)

R8(ωr = ω2) = 2c1 l̃
α2ω

2 + iω
(
ω2

2 − ω2
)

(1 + α̃2)
[(

ω2
2 − ω2

)2 + (ωα2)2
] . (A25)

These equations consist of the dispersion functions and Lorentzian functions with the eigenfrequencies ω1 or ω2.

2. p1 = − p2 (two cores have the opposite polarity)

Equations (A8) and (A9) can be simply expressed as(
A 0
0 B

)(
Xcm

Ycm

)
+

(
0 C/2

−C/2 0

)(
Xrel

Yrel

)
=

(
E

F

)
, (A26)

(
0 −C

C 0

)(
Xcm

Ycm

)
+

(−G/2 0
0 −G/2

)(
Xrel

Yrel

)
=

(
H

I

)
, (A27)

where

A= iωα̃ + κ̃x, B = iωα̃ + κ̃y, C = iωp1, E = β̃ux, F = β̃uy, G= iωα̃ + μ̃, H =p1uy + c1 l̃hy, I = p1ux − c1 l̃hx.

(A28)

Equations (A26) and (A27) lead to

Xcm = CI + EG

AG + C2
, Ycm = FG − CH

BG + C2
, Xrel = −2

BH + CF

BG + C2
, Yrel = 2

CE − AI

AG + C2
. (A29)

The denominators in Eq. (A29) can be calculated as

1

AG + C2
=

(
ω2

3 − ω2
) − iωα3

(1 + α̃2)
[(

ω2
3 − ω2

)2 + (ωα3)2
] , (A30)

1

BG + C2
=

(
ω2

4 − ω2
) − iωα4

(1 + α̃2)
[(

ω2
4 − ω2

)2 + (ωα4)2
] , (A31)

where

α3 = α̃(μ̃ + κ̃x)

1 + α̃2
, ω3 =

√
μ̃κ̃x

1 + α̃2
=

√
μκx

G2
0 + α2D2

, (A32)

α4 = α̃(μ̃ + κ̃y)

1 + α̃2
, ω4 =

√
μ̃κ̃y

1 + α̃2
=

√
μκy

G2
0 + α2D2

. (A33)

Using Eqs. (A30) and (A31), Eqs. (A29) leads to the following:

Xcm = uxR9(ωr = ω3) + p1hxR10(ωr = ω3), (A34)

Ycm = uyR11(ωr = ω4) + p1hyR12(ωr = ω4), (A35)

Xrel = p1uyR13(ωr = ω4) + hyR14(ωr = ω4), (A36)

Yrel = p1uxR15(ωr = ω3) + hxR16(ωr = ω3), (A37)
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where

R9(ωr = ω3) =
[
β̃μ̃

(
ω2

3 − ω2
) + α3ω

2(1 + α̃β̃)
] + iω

[
(1 + α̃β̃)

(
ω2

3 − ω2
) − α3β̃μ̃

]
(1 + α̃2)

[(
ω2

3 − ω2
)2 + (ωα3)2

] , (A38)

R10(ωr = ω3) = −c1 l̃
α3ω

2 + iω
(
ω2

3 − ω2
)

(1 + α̃2)
[(

ω2
3 − ω2

)2 + (ωα3)2
] , (A39)

R11(ωr = ω4) =
[
β̃μ̃

(
ω2

4 − ω2
) + α4ω

2(α̃β̃ − 1)
] + iω

[
(α̃β̃ − 1)

(
ω2

4 − ω2
) − α4β̃μ̃

]
(1 + α̃2)

[(
ω2

4 − ω2
)2 + (ωα4)2

] , (A40)

R12(ωr = ω4) = −c1 l̃
α4ω

2 + iω
(
ω2

4 − ω2
)

(1 + α̃2)
[(

ω2
4 − ω2

)2 + (ωα4)2
] , (A41)

R13(ωr = ω4) = −2

[
κ̃y

(
ω2

4 − ω2
) + α4ω

2(α̃ + β̃)
] + iω

[
(α̃ + β̃)

(
ω2

4 − ω2
) − α4κ̃y

]
(1 + α̃2)

[(
ω2

4 − ω2
)2 + (ωα4)2

] , (A42)

R14(ωr = ω4) = −2c1 l̃

[
κ̃y

(
ω2

4 − ω2
) + α4α̃ω2

] + iω
[
α̃
(
ω2

4 − ω2
) − α4κ̃y

]
(1 + α̃2)

[(
ω2

4 − ω2
)2 + (ωα4)2

] , (A43)

R15(ωr = ω3) = −2

[
κ̃x

(
ω2

3 − ω2
) + α3ω

2(α̃ − β̃)
] + iω

[
(α̃ − β̃)

(
ω2

3 − ω2
) − α3κ̃x

]
(1 + α̃2)

[(
ω2

3 − ω2
)2 + (ωα3)2

] , (A44)

R16(ωr = ω3) = 2c1 l̃

[
κ̃x

(
ω2

3 − ω2
) + α3α̃ω2

] + iω
[
α̃
(
ω2

3 − ω2
) − α3κ̃x

]
(1 + α̃2)

[(
ω2

3 − ω2
)2 + (ωα3)2

] . (A45)
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