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Spin-wave edge modes in finite arrays of dipolarly coupled magnetic nanopillars
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The frequency spectrum of spin-wave edge modes localized near the boundaries of a finite array of
dipolarly coupled magnetic nanopillars is calculated theoretically. Two mechanisms of edge mode formation
are revealed: inhomogeneity of the internal static magnetic field existing near the array boundaries and
time-reversal symmetry breaking of the dipole-dipole interaction. The latter mechanism is analogous to the
formation mechanism of a surface Damon-Eschbach mode in continuous in-plane magnetized magnetic films
and is responsible for the nonreciprocity of edge modes in finite-width nanopillar arrays. The number of edge
modes in nanopillar arrays depends on the spatial profile of the internal static magnetic field near the array
boundaries and several edge modes are formed if a substantial field inhomogeneity extends over several rows of
nanopillars.
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I. INTRODUCTION

Spin-wave edge modes localized at the system boundaries
exist in different types of magnetic systems and are often used
in microwave signal processing. A prominent example of a lo-
calized spin-wave edge mode is the so-called Damon-Eshbach
(DE) magnetostatic wave [1] propagating perpendicular to the
direction of a bias magnetic field in an in-plane magnetized
magnetic film. The principal mechanism responsible for the
formation of the DE edge (or surface) spin-wave mode is
the time-reversal symmetry breaking of the dipole-dipole
interaction [1,2].

Another example of the spin-wave edge modes are the
localized modes formed near the edges of nonellipsoidal
magnetic elements [3,4]. The mechanism of formation of
these modes is related to the inhomogeneity of the internal
static magnetic field existing near the edges of magnetized
magnetic elements of a nonellipsoidal shape leading to the
creation of effective potential wells where the edge modes
are localized. Obviously, edge modes can exist not only in
continuous magnetic objects, but also in different types of
artificial magnetic periodic structures, or magnonic crystals,
e.g., in dipolarly coupled arrays of magnetic elements.
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Recently, a new type of topologically protected localized
spin-wave mode has been proposed [5,6]. The existence of this
new type of mode is supported by the topological properties
of the frequency pass bands in the spin-wave spectrum of
an artificial magnonic crystal formed by iron inclusions in a
matrix formed by an yttrium-iron garnet film [5]. Although the
idea of topologically protected spin-wave modes is interesting
and original, the practical realization of the proposed structure
[5,6] is questionable. Therefore, it is important to study the
possibility of formation of edge spin-wave modes in simpler
magnetic periodic structures that can be easily fabricated.

The aim of our current work is the theoretical study of the
existence and properties of collective spin-wave edge modes
that may exist in finite and semi-infinite arrays of magnetic
nanopillars, which can be fabricated by the modern methods
of electron-beam lithography. These arrays are the artificial
magnetic materials (or magnonic crystals) with properties that
can be tailored by changing the geometric and/or the magnetic
parameters of the array elements by varying the type and
sizes of the array lattice, and by applying an external bias
magnetic field [7–10]. Moreover, the magnetic properties of
such arrays can be changed dynamically by applying pulsed
bias magnetic fields of a particular direction, which switch
the array from one stable magnetic configuration to another
[11]. Such tunability of nanopillar arrays and magnonic
crystals make them promising as dynamically reconfigurable
materials for future use in magnonic signal processing devices
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FIG. 1. (Color online) A sketch demonstrating a semi-infinite
array of nanopillars with the edge parallel to the primitive lattice
vector a1: (a) top view, (b) side view. l and n are the integer pillar
indices in the directions parallel and perpendicular to the array’s edge,
respectively.

[12], e.g., logic devices [13], nonvolatile memory [14],
filters, and waveguides [15] operating in the GHz frequency
range.

In this paper we present a mathematical formalism to
calculate the spectrum and spatial profiles of the spin-wave
edge modes in arrays of identical magnetic nanopillars having
a simple primitive cell. Using this formalism we demonstrate
the existence of edge (or surface) modes and elucidate
the physical mechanisms responsible for the formation of
these modes. These mechanisms are twofold: (i) the spatial
inhomogeneity of the internal static magnetic field existing
near the boundaries of the array and (ii) the time-reversal
symmetry breaking of the dipolar interaction between the
nanopillars forming the array. We also demonstrate that the
number of edge modes depends on the spatial profile of
the internal static magnetic field near the array boundaries:
when the field variation extends over several rows of nanopil-
lars, several edge modes are formed.

II. MATHEMATICAL MODEL

In the macrospin approximation, the dynamics of a magne-
tization vector M i of the ith magnetic nanopillar in the array
(see Fig. 1) can be described by the Landau-Lifshitz equation
[9,16]:

d M i/dt = γ
(
Be

i × M i

)
, (1)

where γ ≈ 2π × 28 GHz/T is the modulus of the gyromag-
netic ratio and Be

i is the effective magnetic field acting on
each nanopillar. This field consists of an external magnetic
field Bext

i and a mutual demagnetizing field between the ith
and j th magnetic nanopillars:

Be
i = Bext

i − μ0Ms

∑
j

N̂ ij (r i − rj ) · Mj . (2)

Here N̂ ij is the mutual demagnetizing tensor between the
pillars with indices i and j and r i is the position vector of
the ith pillar.

In the case of a sufficiently small precession angle one
can decompose the magnetization vector of a nanopillar into
the static (μi) and dynamic (mi) components: M i = Ms(μi +
mi) where the following conditions hold: |μi | = 1 and μ ·
m = 0. Using this decomposition one can linearize (1) and
split it into two equations, for static and dynamic parts of the
magnetization:

Biμi = Bext
i − μ0Ms

∑
j

N̂ ij · μj , (3)

dmi/dt = μi ×
∑

j

�̂ij · mj , (4)

where

�̂ij = γBiδij Î + γμ0Ms N̂ ij (r i − rj ), (5)

Bi is the modulus of the effective static internal magnetic
field acting on the ith nanopillar, and Î is the identity
matrix.

Here we shall consider a semi-infinite array of identical
nanopillars with an edge that is parallel to one of the high
symmetry directions of the array’s lattice. In this case we can
choose one of the primitive lattice vectors (a1) to be parallel
to the array edge (see Fig. 1) and write the position vector r i

as

r i = r (n,l) = la1 + na2, (6)

where l and n are the integer pillar’s indices in the directions
parallel and perpendicular to the array’s edge, respectively,
and a1, a2 are the primitive lattice vectors along these
directions.

Due to translational symmetry of the array along the a1

direction, the static configuration of the magnetization depends
only on the perpendicular n index, μi = μ(n,l) = μn, Bi =
B(n,l) = Bn, and elementary spin-wave solutions mi(t) can be
found in the form

mi = m(n,l) = mne
ika1l−iωt , (7)

where k and ω are the wave number and the frequency of the
spin-wave mode, respectively. Using these expressions in (4)
one can obtain a one-dimensional equation for the spin-wave
profile mn:

−iωmn = μn ×
∑
n′

�̂k,nn′ · mn′ , (8)

where

�̂k,nn′ = γBnδnn′ Î + γμ0Ms Êk(n − n′), (9)

and

Êk(n) =
∑

l

N̂(la1 + na2) · e−ika1l . (10)

Analogously, the static Eq. (3) can be rewritten as:

Bnμn = Bext − μ0Ms

∑
n′

Ê0(n − n′) · μn′ . (11)

Diagonalization of Eq. (8) yields the dispersion relation for
the collective spin waves edge modes in a nanopillar array
with an edge. Below we consider only the case of a square
array lattice (|a1| = |a2| and a1 · a2 = 0), but the presented
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formalism remains valid for any lattice geometry as long
as the edge is parallel to one of primitive vectors of the
lattice.

III. RESULTS AND DISCUSSION

In our numerical example, instead of a semi-infinite array
with one edge, Fig. 1, we considered a finite-width stripe of
a square nanopillar array with the lattice constant a = 4.1R

having two edges. This stripe had N = 31 nanopillars along
its width, and the nanopillars in the array were circular
cylinders of the radius R and the height h = 5R. The static
part of magnetization of all the nanopillars was aligned along
the same direction parallel to the cylinders’ axes, while the
external magnetic field was absent [8,9]. The parameters of
the array were chosen to guarantee vertical (out of array’s
plane) anisotropy (h > R) of individual nanopillars and
sufficient dipolar interaction between the nanopillars (a < h)
to guarantee formation of collective spin-wave modes in the
array. The particular values of these parameters were chosen
the same as in Ref. [9] to simplify comparison with the results
obtained there.

The results of the numerical calculation of the frequency
spectrum of spin-wave modes in such a stripe array are
presented in Fig. 2(a). For comparison, the spectrum of the bulk
spin-wave modes calculated for an infinite array of nanopillars
with the same geometrical parameters using the formalism
developed by Verba et al. [9] is shown in the same figure by
yellow color. It is clear from Fig. 2(a) that several distinct
edge modes are seen in the spectrum of the stripe above the
spectrum of the bulk modes. The spatial distribution of the
time-averaged amplitude of magnetization 〈mi〉t = √

m∗
i · mi

in the four edge modes (with frequencies separated from the
bulk spectrum) are shown in Fig. 2(b). It is clear that these
modes are strongly localized near the edges of the stripe. The
amplitudes of the edge modes almost vanish at the distance of
several lattice constants from the edge of the array. Therefore
the interaction of modes traveling along the opposite edges of
the stripe is negligible for the stripe with N = 31 rows.

The main mechanism responsible for the formation of these
edge modes is related to the spatial inhomogeneity of the
static internal magnetic field near the edges of the stripe [see
Fig. 2(c)]. The effect of formation of the edge modes of
this kind is typical for nonellipsoidal magnetic samples and
has been extensively studied previously [3,17]. Moreover, a
similar mechanism of mode localization in a potential well
is responsible for the formation of edge states (also known
as Tamm states) in other systems of quasiparticles (electrons,
photons, phonons, etc.) [18,19]. Since the spatial profile of
a static internal magnetic field is symmetric near both edges
of the stripe, one would expect that the edge modes would
form symmetric pairs, with one edge mode propagating along
the left edge of the stripe array and the other one along the
right edge. The edge modes, indeed, form split pairs localized
near the opposite edges of the stripe. However, the spatial
profiles of the modes in each pair are not completely identical,
and their dispersion relations are also slightly different [see
Figs. 2(a) and 2(b)].

This weak asymmetry of the edge modes propagating
along the opposite edges of the stripe is caused by the
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FIG. 2. (Color online) (a) Frequency spectrum of the collective
spin-wave modes in a finite-width stripe of dipolarly coupled
magnetic nanopillars. The number of nanopilars along the width
direction of the stripe (which is parallel to the lattice vector a2) is
equal to N = 31. Thick black lines correspond to the edge modes,
while thin gray lines correspond to the bulk modes. Yellow region
shows the spectrum of bulk modes in an infinitely wide array of
nanopillars with the same geometric parameters. (b) Distribution of
the time-averaged amplitude of magnetization across the stripe width
for the first four edge modes. Corresponding modes are marked by the
similar symbols in (a). (c) Distribution of the internal static magnetic
field across the stripe width. Parameters of the array: lattice constant
a = 4.1R, pillar aspect ratio h/R = 5.

symmetry-breaking part of the dynamic dipole-dipole inter-
action with respect to the inversion of the direction of the
edge mode propagation (time-reversal symmetry breaking).
In particular, this symmetry breaking is responsible for the
surface (edge) localization of the DE magnetostatic wave in
continuous in-plane magnetized magnetic films [1], and so
the DE wave is localized near only one boundary of a film,
depending on the travel direction of the wave. Otherwise the
boundary conditions at the film edges cannot be satisfied. In
our case of nanopillars with perpendicular shape anisotropy
the formal origin of the symmetry breaking is the following
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FIG. 3. (Color online) A sketch demonstrating formation of edge
modes at the external (solid blue line) and internal (dashed green line)
boundaries of a nanopillar stripe. (a) A stripe of magnetic pillars with
edge pillars experiencing different internal static magnetic field than
the pillars in the bulk. (b) Equivalent effective medium consisting of
three continuous magnetic films with different parameters. Damon-
Eshbach-like edge modes always form at one side (left side in the
figure) of the boundaries (external or internal). This results in the
nonreciprocity of edge mode profiles localized near the opposite
edges of the stripe.

property of the tensor Êk(n) for n �= 0:

Êk(n) �= Ê−k(n). (12)

This property makes the opposite sides of the stripe not
completely equivalent for the edge mode propagation in a
particular direction.

In the case of a finite stripe of nanopillars, the static
internal magnetic field is nonuniform across the stripe width,
thus forming internal boundaries—the rows of nanopillars for
which the value of the effective static magnetic field is different
from the value in the adjacent row [see Fig. 3(a)]. Thus, the first
edge mode in the pair (blue circles in Fig. 2 and Fig. 3), which is
localized near the right edge of the stripe, is formed to the left of
the external stripe boundary. The second mode (green triangles
in Fig. 2 and Fig. 3) is also formed to the left of the boundary,
but, in this case, the boundary is internal. This explains why
the amplitude maximum of the first edge mode is located
at the outermost row of the pillars, while the second mode
has the maximum at the second row [see Fig. 2(b)]. A similar
situation exists in a continuous magnetic film having spatially
nonuniform static magnetization (or internal magnetic field),
see Fig. 3(b). So the internal boundaries are formed near the
film edges, providing conditions for two nonsymmetric edge
modes to exist.

The third and the fourth edge modes in Fig. 2 demonstrate
a similar nonsymmetric behavior, but they are localized at the
nanopillar rows situated deeper inside the stripe. The number
of the formed edge mode pairs depends on the profile of the
internal magnetic field and, in the case when the internal field
reaches its bulk value on the distance of only 1–2 rows of
nanopillars, only one pair of edge modes is formed.

Similar to the DE mode existing in continuous magnetic
films, the edge spin-wave modes in a nanopillar stripe, formed
near a certain boundary (either external or internal), are
nonreciprocal. Due to the rotational symmetry of the problem,
the reversal of the direction of a mode propagation moves the
mode traveling near the right edge of the stripe to the left
edge and vice versa [note that Êk(n) = Ê−k(−n)]. Also, it is
important to note that the frequency splitting in each pair of the
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FIG. 4. (Color online) (a) Frequency spectrum of spin-wave
modes in a finite-width stripe of magnetic nanopillars with spatially
uniform profile of the internal static magnetic field. The black line
shows the edge mode, while the gray lines show the bulk modes.
(b) Distribution of time-averaged amplitude of magnetization across
the stripe width for the edge modes (star and circle symbols denote the
edge modes propagating in opposite directions). The array parameters
are the same as in Fig. 2, but h/R = 20.

edge modes vanishes at the Brillouin zone boundaries (points
where k = 0 and k = π/a) as the nondiagonal components
of the tensor Êk , responsible for the nonequality in (12), are
also vanishing at these points. For the same reasons both the
edge modes frequency splitting and their nonreciprocity exist
only in the nanopillar arrays where the magnetizations of the
nanopillar elements have an out-of-plane component that leads
to the appearance of the nondiagonal components of the tensor
Êk in the final eigenvalue problem (8).

To study in detail the effects caused exclusively by the
symmetry-breaking part of the dipole-dipole interaction we
investigated the spin-wave spectrum in an array where the
internal static magnetic field was artificially made completely
spatially uniform and equal to the internal static magnetic field
in an infinite array of nanopillars having the same parameters
[see Fig. 4(a)]. The calculations in this artificial uniform field
case were performed for the same parameters of the nanopillar
array, but using a substantially larger height of the nanopillars
h = 20R to increase the dipole-dipole interaction between the
nanopillars. In this case only one edge mode is formed, and this
mode is localized near either the left or the right outer edge of
the array, depending on the direction of the mode propagation
[Fig. 4(b)], similar to the DE wave in continuous films.

If the pillars are significantly higher than the width of the
array stripe, the problem of the spin-wave dispersion in a stripe
is similar to the problem of a magnetostatic wave dispersion
in a continuous ferromagnetic film. In this limiting case we
can assume the pillars to be infinitely long [16], and the
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FIG. 5. (Color online) Dispersion of the spin-wave edge modes
in two finite-width stripes (with N = 10 and N = 31 nanopillars
along the stripe width) of infinitely high nanopillars (black dots). For
comparison, the dispersion of the Damon-Eshbach mode propagating
in a continuous magnetic film with equivalent parameters is shown
(yellow lines).

dispersion of the edge spin-wave mode can be approximated
by the magnetostatic DE dispersion in an effective continuous
magnetic film [1,2]:

ω =
√

ω0
(
ω0 + ωeff

M

) +
(
ωeff

M

)2

4
(1 − e−2kd ), (13)

where ω0 is the FMR frequency in an infinite array of
pillars [9], ωeff

M = (πR2/a2)ωM characterizes the effective
static magnetization of the array [9], and d = (N − 1)a is
the thickness of the effective magnetic film.

The results of calculations of the spin-wave dispersion
for two finite-width stripe arrays with different number of
nanopillars (N = 31 and N = 10) along the stripe width are
presented in Fig. 5. The dispersion of the edge modes of
the array coincides with the dispersion of the DE wave of
the effective magnetic film in the region ka � 1, where the
continuous media approximation holds. Also, in contrast to the

previous cases, the dispersion of the edge mode is dependent
on the width of the stripe due the long-range character of the
dipole-dipole interaction.

IV. CONCLUSIONS

In conclusion, we presented a theoretical formalism that
allows one to calculate the collective spin-wave edge modes
in semi-infinite and finite arrays of dipolarly coupled mag-
netic nanopillars. Using this formalism we demonstrated the
existence of collective spin-wave edge modes in finite-width
stripe arrays of periodically arranged magnetic nanopillars.
The edge spin-wave modes are localized at both the outer
geometric boundaries of the stripe and at the inner boundaries
created due to the spatial inhomogeneity of the static magnetic
field near the stripe edges. For arrays of nanopillars having
the out-of-plane component of static magnetization the edge
modes exhibit nonreciprocal behavior, and their profiles are
different for different directions of the wave propagation.
The nonreciprocity occurs because of the symmetry-breaking
part of dynamic dipole-dipole interaction with respect to
the inversion of the propagation direction (t symmetry). The
number of the distinct edge modes is determined by the spatial
profile of the internal static magnetic field in the stripe, and,
for typical nanopillar array parameters, several edge modes
with frequencies well separated from the bulk spectrum are
formed.
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