
PHYSICAL REVIEW B 90, 104406 (2014)

Propulsion of a domain wall in an antiferromagnet by magnons
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We analyze the dynamics of a domain wall in an easy-axis antiferromagnet driven by circularly polarized
magnons. Magnons pass through a stationary domain wall without reflection and thus exert no force on it.
However, they reverse their spin upon transmission, thereby transferring two quanta of angular momentum to the
domain wall and causing it to precess. A precessing domain wall partially reflects magnons back to the source.
The reflection of spin waves creates a previously identified reactive force. We point out a second mechanism of
propulsion, which we term redshift: magnons passing through a precessing domain wall lower their frequency
by twice the angular velocity of the domain wall; the concomitant reduction of the magnons’ linear momentum
indicates momentum transfer to the domain wall. We solve the equations of motion for spin waves in the
background of a uniformly precessing domain wall with the aid of supersymmetric quantum mechanics and
compute the net force and torque applied by magnons to the domain wall. Redshift is the dominant mechanism
of propulsion at low spin-wave intensities; reflection dominates at higher intensities. We derive a set of coupled
algebraic equations to determine the linear velocity and angular frequency of the domain wall in a steady state.
The theory agrees well with numerical micromagnetic simulations.
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I. INTRODUCTION

The stability of domain walls and other topological defects
makes them attractive candidates for use in technological
applications exemplified by racetrack magnetic memory [1]. A
major practical issue is finding a reliable means for moving do-
main walls. In a ferromagnet, an external magnetic field breaks
the symmetry between domains with different orientations of
magnetization and thereby applies a force to a domain wall. A
spin-polarized electrical current has charge carriers adjusting
their spins toward the local direction of magnetization and
reacts by exerting a torque on a magnetic texture [2–4]. De-
veloping basic models of the dynamics of topological defects
in magnets is a major task for theorists. A classic example
of such an effort is the 1974 paper of Schryer and Walker [5],
who successfully reduced a complex problem of magnetization
dynamics near a domain wall to the evolution of its soft modes
parametrized by two collective coordinates, position of the
domain wall X and azimuthal angle of magnetization �.

In this paper we present a theory of a domain wall propelled
by spin waves in an antiferromagnet. A similar problem in a
ferromagnet was analyzed by several groups [6–8]. In that
case, a magnon traversing a domain wall reverses its spin and
deposits angular momentum 2� on the domain wall. Addition
of angular momentum to the domain wall translates directly
into its shift toward the source of spin waves. The physics
is different in an antiferromagnet in that translational motion
of a wall is induced by transfer of linear momentum from
magnons. Tveten et al. [9] found that circularly polarized spin
waves propel a domain wall away from the source. Like in
a ferromagnet, magnons deposit angular momentum 2� on
a domain wall. However, the addition of angular momentum
does not translate directly into a displacement of the domain
wall but rather causes it to precess. A precessing wall partially
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reflects spin waves back toward the source; Tveten et al. [9]
inferred that the mechanism of propulsion was the reactive
force of the reflected spin waves: upon reflection, a magnon
with wave number k alters its momentum from +�k to −�k

and thus transfers momentum 2�k to the wall, pushing it away
from the source. They argued for a steady state that a domain
wall becomes a perfect reflector of spin waves, thus generating
a maximal reactive force.

Here we point out another mechanism of domain-wall
propulsion by spin waves, which we term redshift to distin-
guish it from the reactive force due to reflection. Magnons
transmitted by a domain wall precessing at an angular velocity
� experience a redshift in frequency by �ω = 2�. As a result,
their momentum is reduced by ��k = ��ω/vg , where vg =
dω/dk is the magnon group velocity. The missing momentum
is transferred to the domain wall, which then accelerates. The
two mechanisms are illustrated in Fig. 1.

The relative importance of the reactive force components
associated with magnon reflection and redshift depends on
properties of a spin wave. Below we present a comprehensive
analysis of this problem. It was facilitated by finding an exact
solution for a spin wave in the background of a uniformly
precessing domain wall, made possible by the use of supersym-
metric quantum mechanics. The reactive force is dominated by
magnon redshift at small amplitudes and by magnon reflection
at large amplitudes. The crossover amplitude is determined by
the wave vector of incoming magnons.

A suitable language for describing slow dynamics of a
domain wall is the method of collective coordinates that has
been developed for magnetic textures in ferromagnets [10]
and in antiferromagnets [11]. The basic idea is to parametrize
a magnetic texture using a set of collective coordinates
{q1,q2, . . .}. The kinetic energy of an antiferromagnet is
expressed as Mij q̇i q̇j /2, where Mij is a mass tensor; the
generalized (conservative) force conjugate to coordinate qi is
obtained by differentiating potential energy, Fi = −∂U/∂qi ;
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FIG. 1. (Color online) Two mechanisms of domain-wall propul-
sion: reflection of spin waves by a precessing wall and redshift of the
transmitted wave by twice the angular frequency of precession. In
both cases, the change in the magnon’s linear momentum generates
a reactive force on the domain wall. Spins on sublattices 1 and 2 are
shown as solid red and faint blue arrows.

the corresponding viscous force is Fv
i = −Dij q̇j , where Dij

is a dissipation tensor. The mass and dissipation tensors are
proportional to each other, Dij = Mij/T ; the relaxation time T

is inversely proportional to Gilbert’s damping constant α. (See
Appendix A for details.) The resulting equations of motion
are in essence Newton’s second law for all the collective coor-
dinates. To keep the problem tractable, one keeps only a small
number of collective coordinates representing soft modes
of the system. In our problem, we focus on the position of
the the domain wall X and its azimuthal angle � representing
the soft modes associated with the symmetries of translation
and spin rotation. Other variables—such as the width of the
domain wall λ—represent hard modes and are assumed to
adjust instantaneously to their equilibrium values [12].

In this paper we follow a somewhat different approach
and focus instead on two conserved quantities related to the
symmetries of translation and spin rotation: linear momentum
P and angular momentum J of the antiferromagnet. These
physical variables have an intimate relation to the collective
coordinates: they are the canonical momenta conjugate to the
position of the domain wall X and azimuthal angle �. Whereas
collective coordinates are convenient when forces acting on a
magnetic texture can be encoded in a potential energy, in this
paper we deal with reactive forces associated with reflection
and transmission of spin waves. Forces of this kind are more
easily computed in the language of conservation laws and
conserved quantities. The two approaches can of course be
combined to achieve greater clarity.

The paper is organized as follows. The model and a
summary of main results are outlined in Sec. II. In Sec. III we
review the field theory of an antiferromagnet with easy-axis
anisotropy and discuss the properties of stationary, moving,
and precessing domain walls. In Sec. IV we obtain exact
solutions for spin waves in the backgrounds of static and
precessing domain walls with the aid of supersymmetric
quantum mechanics [13,14]. In Sec. V we derive the reactive
force and torque exerted on a domain wall by spin waves
and the viscous force and torque due to Gilbert damping.
The resulting equations of motion for a domain wall are
analyzed in Sec. VI. We conclude with a general discussion
in Sec. VII.

II. SUMMARY OF MAIN RESULTS

We consider an easy-axis antiferromagnet in one spatial
dimension. Well below the ordering temperature, its staggered
magnetization has a fixed length and can be encoded by the
unit vector field n(x,t). In the continuum approximation, its
dynamics are governed by kinetic and potential energy, whose
densities are, respectively,

K = ρ|ṅ|2
2

, U = A|n′|2 + K0(ẑ × n)2

2
. (1)

Here A is the exchange constant, K0 > 0 is the strength of
easy-axis anisotropy, and ρ quantifies inertia of staggered
magnetization. Invariance of the Lagrangian density L = K −
U under spatial translations and under rotation of magnetic
moments about the z axis gives rise to conservation of linear
momentum P and angular momentum J .

The dynamics of the antiferromagnet has a “relativistic”
form, with the role of the “speed of light” played by the
maximal group velocity of spin waves s = √

A/ρ. As a result,
spin waves in a uniform ground state have a “relativistic”
dispersion,

ω2 = ω2
0 + s2k2, (2)

with the spin-wave gap ω0 = √
K0/ρ. On a deeper level,

the equations of dynamics are invariant under “Lorentz”
transformations,

t �→ t ′ = t − vx/s2√
1 − v2/s2

, x �→ x ′ = x − vt√
1 − v2/s2

. (3)

It should be kept in mind that t ′ and x ′ are not physical time
and coordinate in a moving frame (which would involve the
speed of light c instead of s) but are rather convenient formal
variables that utilize the “relativistic” nature of magnetization
dynamics in a uniaxial antiferromagnet. We will nonetheless
refer to the pair (t ′,x ′) as a moving reference frame.

For convenience, we use natural units of length, time, and
energy determined by the three coupling constant:

λ0 =
√

A/K0, t0 =
√

ρ/K0, ε0 =
√

AK0, (4)

which have transparent physical meaning. The width of a static
domain wall is λ0. The spin-wave frequency gap ω0 = 1/t0.
The energy of a static domain wall is 2ε0.

The easy-axis antiferromagnet has two ground states
with uniform staggered magnetization, n = ±ẑ. Haldane [15]
obtained domain-wall (topological soliton) solutions between
the two uniform ground states by minimizing the energy
density H = K + U (1) with respect to staggered magne-
tization at fixed values of linear and angular momenta. A
fixed domain wall that is rotating about the z axis with
the angular velocity � has the following profile: n�(t,x) =
(sin θ cos φ, sin θ sin φ, cos θ ), where

cos θ = tanh(x
√

1 − �2),

sin θ = sech(x
√

1 − �2), (5)

φ = �t.
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We can obtain a moving domain-wall solution by “Lorentz”
boosting a zero-velocity solution:

nV,�(t,x) = n�

(
t − V x√
1 − V 2

,
x − V t√
1 − V 2

)
. (6)

The linear and angular momenta of the domain wall are related
to its linear velocity V and angular velocity � as follows:

P = MV√
(1 − V 2)(1 − �2)

, (7a)

J = I�√
1 − �2

, (7b)

where M = 2 and I = 2 are the mass and moment of inertia
of a static domain wall. For slow dynamics, V � 1 and
� � 1, we recover the nonrelativistic relations, P ≈ MV

and J ≈ I�.
The equations of motion for linear momentum P and

angular momentum J in the presence of external force F and
torque τ read

Ṗ = F + Fv, (8a)

J̇ = τ + τ v, (8b)

where Fv and τ v are the viscous force and torque. It is
convenient to work in the frame (3) moving at the instantaneous
velocity of the domain wall V . In this frame, where the domain
wall is fixed in space,

Fv = −MV
√

1 − �2

T
√

1 − V 2
, (9a)

τ v = − I�

T
√

(1 − V 2)(1 − �2)
, (9b)

and T is the relaxation time determined by the dissipation rate
of energy. The equations for a steady state with constant linear
velocity V and angular velocity � are

F = MV
√

1 − �2

T
√

1 − V 2
, (10a)

τ = I�

T
√

(1 − V 2)(1 − �2)
. (10b)

The reactive force and torque exerted by a circularly
polarized spin wave of angular amplitude |δn| = |�| � 1 are

F = |�|2k−[2|r|2k− + (1 − |r|2)(k− − k+)], (11a)

τ = 2|�|2k−(1 − |r|2). (11b)

Here k− and k+ are the wave numbers of the incident (x →
−∞) and transmitted (x → +∞) waves in the wall’s rest
frame moving at the velocity V relative to the laboratory frame
and r is the reflection amplitude.

The wave number and frequency of the incident wave
(ω−,k−) in the wall frame are related to their values in the
laboratory frame (ω,k) as follows:

ω− = ω − V k√
1 − V 2

, k− = k − V ω√
1 − V 2

. (12)
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FIG. 2. (Color online) Precession frequency and linear velocity
of a domain wall as a function of the spin-wave amplitude � for
soft, medium, and hard magnons. Solid line: theory; dots: numerical
micromagnetic simulations. Vertical dotted lines: onset of a structural
instability of the domain wall.
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In the wall frame, the frequency of the transmitted wave ω+ is
redshifted from that of the incident wave ω−:

ω+ = ω− − 2�. (13)

The computation of the force and torque requires the
reflection coefficient |r|2 for spin waves incident upon a
precessing domain wall. We have obtained it with the aid of
supersymmetric quantum mechanics [13,14]. The coefficient
of reflection is

|r|2 = sinh2
[

π
2 (k̃+ − k̃−)

]
sinh2

[
π
2 (k̃+ + k̃−)

] , k̃± = k±√
1 − �2

. (14)

Equations (10) through (14) form a closed set of algebraic
equations that can be solved numerically with minimal effort.
The computed dependence of the domain-wall precession
frequency � and velocity V as a function of the spin-
wave amplitude � is shown in Fig. 2 for three different
wave numbers of the incident wave: k = 0.538, 1.718, and
4.14, which represent soft (k � 1), medium (k ∼ 1), and
hard (k � 1) magnons, respectively. Generally, the primary
mechanism of domain-wall propulsion switches from magnon
redshift at small amplitudes to magnon reflection at large
amplitudes.

The theoretical results have been tested against numerical
simulations conducted with the aid of the micromagnetic
solver OOMMF [16]. We have found good agreement between
theory and simulations. Deviations at larger amplitudes are
due to spurious reflection at the system’s end (soft magnons)
or due to a structural instability of the domain wall (medium
and hard magnons).

III. GROUND STATE AND DOMAIN WALLS

A. Relativistic field theory

We consider an antiferromagnet with two sublattices whose
magnetizations are described by unit-vector fields m1 and
m2. Near equilibrium, the two magnetization fields are almost
antiparallel, m1 ≈ −m2, so it is convenient to describe the dy-
namics in terms of staggered magnetization n = (m1 − m2)/2,
a vector of unit length. Uniform magnetization m = m1 + m2

is suppressed by the antiferromagnetic exchange interaction.
It can be integrated out with the aid of its equation of motion,
Jm = ρṅ × n, where J is the density of angular momentum
on one sublattice (see Appendix A).

The dynamics of staggered magnetization n is governed by
the Lagrangian L = ∫

L dV with density [15]

L = ρ|ṅ|2 − A|n′|2 − K0(ẑ × n)2

2
. (15)

The Lagrangian density (15) has a “relativistic” form with the
“speed of light” s = √

A/ρ [15]. It is invariant under Lorentz
transformations

t �→ t ′ = t − vx/s2√
1 − v2/s2

, x �→ x ′ = x − vt√
1 − v2/s2

. (16)

This symmetry is useful for obtaining moving solutions from
static ones. For example, if n0(x) describes a static magnetic
soliton minimizing the action S = ∫

Ldt then a Lorentz

transformation yields a soliton moving at velocity v,

nv(t,x) = n0

(
x − vt√
1 − v2/s2

)
. (17)

Note that the moving soliton exhibits Lorentz contraction of
its width by a factor

√
1 − v2/s2.

The metric tensor and its inverse in the (1+1)-dimensional
Minkowski space (x0,x1) ≡ (t,x) are

gαβ =
(

s2 0
0 −1

)
, gαβ =

(
s−2 0
0 −1

)
. (18)

Some relevant physical quantities can be obtained directly
from the stress-energy tensor T αβ = gαγ Tγ

β , where

Tα
β = ∂αn · ∂L

∂(∂βn)
− δβ

αL. (19)

Energy density, energy flux, linear momentum density, and
pressure are, respectively,

s2T 00 = ρ|ṅ|2 + A|n′|2 + K0(ẑ × n)2

2
,

s2T 01 = −A ṅ · n′, T 10 = −ρ ṅ · n′, (20)

T 11 = ρ|ṅ|2 + A|n′|2 − K0(ẑ × n)2

2
.

Axial symmetry of the problem implies conservation of
angular momentum J . The temporal and spatial components
of the associated Nöther current jα ,

j 0 = ρ ẑ · (n × ṅ) = −Jmz, j 1 = −A ẑ · (n × n′), (21)

are the spin density and spin current, respectively [9].
(The minus sign appears because magnetization and angular
momentum of negatively charged electrons point in opposite
directions, M = −γ J.)

To simplify the expressions, we will use natural units of
length, time, and energy,

λ0 =
√

A/K0, t0 =
√

ρ/K0, ε0 =
√

AK0, (22)

which is equivalent to setting ρ = A = K0 = 1.

B. Static domain wall

Minimizing the potential energy with density

U = (n′)2 + (ẑ × n)2

2
(23)

for boundary conditions n(±∞) = ±ẑ yields domain-wall
solutions n(x) = (sin θ cos φ, sin θ sin φ, cos θ ) with

cos θ (x) = tanh (x − X), φ(x) = �. (24)

Collective coordinates X and � represent the two soft modes
of a domain wall, its position and azimuthal angle. The energy
of a domain wall is independent of X and �, reflecting the two
symmetries of the easy-axis antiferromagnet: translations and
spin rotations about ẑ.

By using the method of collective coordinates (Ap-
pendix A 2), we obtain the mass and moment of inertial of
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a static domain wall:

M =
∫

|∂n/∂X|2 dx = 2, (25a)

I =
∫

|∂n/∂�|2 dx = 2. (25b)

The energy of the domain wall can be obtained by integrating
energy density (20):

E =
∫

T 00dx = 2.

C. Uniformly precessing domain wall

Ansatz (24) can be generalized for a uniformly precessing
domain wall, � = �t . To see this, we switch to a spin frame
rotating at angular velocity � = �ẑ. If the rate of change of
magnetization in the rotating frame is ṅ then in the laboratory
frame it becomes ṅ + � × n. The Lagrangian density (15)
changes to

L = |ṅ + � × n|2 − |n′|2 − (ẑ × n)2

2
. (26)

The densities of kinetic and potential energy,

K = |ṅ|2
2

+ ṅ · (� × n), (27a)

U = |n′|2 + (1 − �2)(ẑ × n)2

2
, (27b)

differ from the static case (� = 0) in two ways. First, the
Berry-phase term ṅ · (� × n) encodes the Coriolis force in
the rotating frame [17]. Second, the centrifugal potential |� ×
n|2/2 lowers the easy-axis anisotropy to 1 − �2. The softening
of anisotropy sets an upper limit to a domain wall’s precession
frequency,

�2 < 1. (28)

At higher precession frequencies, the effective anisotropy
changes sign; the switch from easy axis to easy plane destroys
the domain wall.

It is thus convenient to switch to new natural units of length,
time, and energy:

λ� = λ0√
1 − �2

, t� = t0√
1 − �2

, ε� = ε0

√
1 − �2.

(29)

The “speed of light” s = λ0/t0 = λ�/t� is unaffected by
precession. To make it clear that we use units (29), we will
use variables with a tilde, e.g.,

x̃ = x
√

1 − �2, t̃ = t
√

1 − �2, ω̃ = ω√
1 − �2

. (30)

The rescaled densities of kinetic and potential energy are thus

K̃ = |∂n/∂t̃ |2
2

+ (∂n/∂t̃) · (�̃ × n), (31a)

Ũ = |∂n/∂x̃|2 + (ẑ × n)2

2
. (31b)

In the rescaled variables, potential energy density has the
same form as before (23). Therefore, a domain wall static in
the rotating frame has the familiar expression

cos θ = tanh (x̃ − X̃), φ = �. (32)

Returning to the laboratory frame and natural units (22), we
find

cos θ = tanh [(x − X)
√

1 − �2], φ = �(t) = �t. (33)

The energy and angular momentum of a uniformly precess-
ing domain wall are

E =
∫

T 00dx = M√
1 − �2

, (34)

J =
∫

j 0dx = I�√
1 − �2

, (35)

where M = I = 2 are the mass and moment of inertia of a
static domain wall (25).

D. Moving domain wall

Solutions for a domain wall moving at a constant velocity
Ẋ = V can be obtained by exploiting the Lorentz symmetry,
Eq. (17). Viewing the energy at V = 0 (34) as the rest mass, we
readily obtain the energy and linear momentum of a moving
and precessing domain wall:

E = M√
(1 − �2)(1 − V 2)

, (36)

P = MV√
(1 − �2)(1 − V 2)

. (37)

Angular momentum (35) is unchanged by the boost. The
dependence of energy on linear and angular momenta is in
agreement with Haldane [15]:

E2 = 4 + J 2 + P 2. (38)

IV. SPIN WAVES

A. Spin waves in a ground state

The ground states of the easy-axis antiferromagnet are

n0(x) = σ ẑ, (39)

where σ = ±1 is the Néel order parameter. It is convenient to
use a global frame defined by three mutually orthogonal unit
vectors

ê1, ê2, ê3 = ê1 × ê2 = n0. (40)

Weakly excited states can be parametrized as n(x) = n0 +
δn(x) with a small deviation δn orthogonal to n0. Fields

δn1 = δn · ê1, δn2 = δn · ê2 (41)

describe spin waves with linear polarizations. It is convenient
to introduce a complex field

ψ = δn · (ê1 + iê2). (42)
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FIG. 3. Dispersion ω(k) of circularly polarized spin waves (46)
in a uniaxial antiferromagnet in natural units of length and time (22).

After expanding Eq. (15) to the second order in ψ we obtain
the Lagrangian density for spin waves in natural units (22),

Lsw = |ψ̇ |2 − |ψ ′|2 − |ψ |2
2

, (43)

which yields the equation of motion,

ψ̈ = ψ ′′ − ψ. (44)

For a monochromatic wave with frequency ω, Eq. (44) be-
comes an eigenproblem,H0ψ = ω2ψ , with the “Hamiltonian”

H0 = −d2/dx2 + 1. (45)

Its eigenfunctions are plane waves,

ψ(x,t) = � e−iωt+ikx, (46)

with a “relativistic” dispersion

ω2 = 1 + k2. (47)

Equation (46) describes a circularly polarized wave with
the amplitude |δn| = �. If ω < 0, δn precesses from ê1 to ê2.
We will call such waves right-circularly polarized. Waves with
ω > 0 precess from ê2 to ê1 and will be called left-circularly
polarized. The group velocity,

v = dω/dk = k/ω, (48)

determines the direction of propagation: waves with k/ω > 0
are right-moving, waves with k/ω < 0 are left-moving, Fig. 3.

A circularly polarized spin wave (46) in the background of
a Néel ground state (39) has spin density and current

j 0 = −σω|�|2, j 1 = −σk|�|2. (49)

The density of linear momentum and pressure are

T 10 = ωk|�|2, T 11 = k2|�|2. (50)

Note that spin density and current (49) depend on the Néel
ground state (39) through the order parameter σ = ±1,
whereas linear momentum density and pressure (50) do not.

FIG. 4. (Color online) Domain walls in an antiferromagnet (51)
with different azimuthal angles �. Top to bottom: � = −π/2, 0,
+π/2. Spins on sublattices 1 and 2 are shown as solid red and faint
blue arrows.

B. Spin waves on a static domain wall

A static domain wall is a local minimum of potential energy
with n0(x) interpolating between −ẑ and +ẑ. The Néel order
parameter σ interpolates between −1 and +1. In spherical
coordinates, n0 = (sin θ cos φ, sin θ sin φ, cos θ ),

cos θ = tanh (x − X), sin θ = sech (x − X), φ = �, (51)

where X and � are arbitrary position and angle, Fig. 4. We
will set X = 0 and � = 0 to obtain spin-wave solutions.

Next we consider a small-amplitude spin wave δn in the
background of a static domain wall n0 (51). Again, δn is
transverse to n0 and can be expressed in terms of the complex
field ψ (42), where unit vectors ê1 and ê2 are orthogonal to n0.
A convenient local frame is

ê1 = ∂n0

∂θ
, ê2 = ∂n0

sin θ ∂φ
, ê3 = ê1 × ê2 = n0, (52)

with n0 given by Eq. (51). An expansion of the Lagrangian in
powers of ψ yields the following Lagrangian density for spin
waves:

Lsw = |ψ̇ |2 − |ψ ′|2 − [1 − 2 sech2(x)] |ψ |2
2

. (53)

The equation of motion for spin waves is

ψ̈ = ψ ′′ − [1 − 2 sech2(x)]ψ. (54)

A monochromatic wave ψ(x,t) = ψ(x)e−iωt satisfies the
“Schrödinger equation” H1ψ = ω2ψ with the “Hamiltonian”

H1 = −d2/dx2 + 1 − 2 sech2 x. (55)

Comparison to its counterpart in the uniform ground state (45)
shows that the presence of the domain wall creates a potential
well for spin waves, Udw = −2 sech2 x, Fig. 5. This potential,
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FIG. 5. Solid line: the Pöschl-Teller potential (55). Dashed line:
its SUSY partner (45).

named after Pöschl and Teller [18], has a remarkable property:
waves pass through it without reflection.

1. Supersymmetric solution

The exact solvability of the Pöschl-Teller problem and the
lack of reflection can be traced to a special relation—known
as supersymmetry (SUSY) [13,14]—between its “Hamilto-
nian” (55) and that of a free particle (45). Both “Hamiltonians”
can be factorized in terms of the same operators a and a†:

H0 = aa†, H1 = a†a, (56)

a = d/dx + tanh x, a† = −d/dx + tanh x. (57)

Eigenstates of the free “Hamiltonian” H0 are plane waves,
ψ0(x) = �eikx , with ω2 = 1 + k2. Eigenstates of H1 can be
obtained from those of H0: ψ1(x) = a†ψ0(x). Furthermore,
SUSY partners ψ0 and ψ1 have the same eigenfrequency:

H1ψ1 = a†a(a†ψ0) = a†(aa†ψ0) = a†(ω2ψ0) = ω2ψ1.

This yields a spin wave in the background of a static domain
wall [7,9]:

ψ(x,t) = �
tanh x − ik

−1 − ik
e−iωt+ikx, ω2 = 1 + k2. (58)

Equation (58) describes a circularly polarized spin wave with
amplitude � at x = −∞ and �eiδ at x = +∞. It passes
through the domain wall without reflection and picks up a
phase shift δ = 2 arctan (1/k).

2. Reactive force and torque

To study the effect of the spin wave on the domain
wall, let us consider a left-circularly polarized (ω > 0) spin
wave incoming from the left (k > 0). After recalling that
polarization is defined in the local frame (40) tied to the
staggered magnetization n̂0 (39) and that n̂0 is reversed by
a domain wall, we find that the direction of precession in the
global frame is reversed, too: the wave precesses from x̂ to ŷ on
the left of the domain wall (where n̂0 = −ẑ) and from ŷ to x̂ on
the right (where n̂0 = +ẑ). Spin density and current (49) are

positive on the left (where σ = −1) and negative on the right
(where σ = +1). In contrast, linear momentum density (50)
is positive on both sides of the domain wall.

In the language of quantum mechanics, the spin wave
contains magnons with angular momentum J = +� and linear
momentum P = +�k on the left of the domain wall, J = −�

and P = +�k on the right. Because all magnons pass through
the domain wall and their linear momenta remain unchanged,
the spin wave exerts no force on the domain wall. The reversal
of their angular momenta means that each magnon deposits
spin +2� on the domain wall, thereby exerting a positive torque
on it. The torque can be computed as the net spin current into
the domain wall [9],

τ = j 1(−∞) − j 1(+∞) = 2k|�|2. (59)

Under zero net force and finite torque, the domain wall
retains zero linear momentum and thus zero linear velocity
but acquires a finite angular momentum and angular velocity.

We can estimate the angular frequency of precession
from the balance of the spin-wave and viscous torques,
τ − D��� = 0, in a steady state (see Appendix A 2 for
details). The dissipation coefficient is related to the moment
of inertia by Eq. (A14): D�� = M��/T ≡ I/T . Hence

� = kT |�|2. (60)

This result is confirmed by a more detailed analysis in
Sec. VI A; see Eq. (90).

C. Spin waves on a precessing domain wall

Expanding the Lagrangian for small fluctuations in the
vicinity of the domain-wall solution in the rotating frame yields
the following to the second order in ψ :

L̃sw = |∂ψ/∂t̃ |2 − |∂ψ/∂x̃|2 − (1 − 2 sech2 x̃) |ψ |2
2

− i�̃ tanh x̃ ψ∗∂ψ/∂t̃ . (61)

The factor �̃ tanh x̃ in front of the Berry-phase term
is the projection of the frame angular velocity �̃ = �̃ẑ onto
the local precession axis ê3 = n0. The spin-wave equation
for a monochromatic wave ψ(x̃,t̃) = ψ(x̃) exp (−iω̃t̃) in the
rotating frame is

ω̃2ψ = −∂2ψ/∂x̃2 + (1 − 2 sech2 x̃)ψ

+ 2ω̃�̃ tanh x̃ ψ. (62)

1. Supersymmetric solution

The spin-wave “Hamiltonian” is

H1 = −d2/dx̃2 + 1 − 2 sech2 x̃ + 2ω̃�̃ tanh x̃. (63)

As in the static case, we express it in terms of raising and
lowering operators,

H1 = a†a − (ω̃�̃)2, (64)

where

a = d/dx̃ + tanh x̃ + ω̃�̃, a† = −d/dx̃ + tanh x̃ + ω̃�̃.

(65)
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FIG. 6. Solid line: the spin-wave potential on a rotating domain
wall (63). Dashed line: its SUSY partner (66).

Its supersymmetric partner “Hamiltonian” is

H0 = aa† − (ω̃�̃)2 = −d2/dx̃2 + 1 + 2ω̃�̃ tanh x̃. (66)

Potential energies of H0 and H1 are shown in Fig. 6.
Whereas in the static situation the SUSY partner H0 was

the Hamiltonian of a free particle (45), the precession of the
domain wall creates a smoothed step potential 2ω̃�̃ tanh x̃.
This has two important ramifications. First, the wave numbers
on the left and on the right of the domain wall (k̃± for x̃ →
±∞) are no longer the same:

k̃2
± = ω̃2 ∓ 2ω̃�̃ − 1. (67)

Second, because H0 is no longer reflection-free, H1 also
exhibits reflection of spin waves. Furthermore, as we show
in Appendix B, their reflection and transmission amplitudes r

and t have the same absolute values. The reflection amplitude
squared is

|r|2 = sinh2
[

π
2 (k̃+ − k̃−)

]
sinh2

[
π
2 (k̃+ + k̃−)

] . (68)

The transmission amplitude can be found from it with the aid
of the identity

|r|2k̃− + |t |2k̃+ = k̃−. (69)

Note that the wave vectors squared (67) cannot be negative
because of the upper limit (28) on a domain wall’s precession
frequency.

2. Return to the laboratory frame

To use the results in elaborating a theory for propulsion, we
need to return from the rotating frame to the laboratory frame.
First, we return to the natural units of the static frame (22) to
obtain

k2
± = (ω ∓ �)2 − 1. (70)

As we mentioned at the beginning of Sec. IV B 2, the spin
wave is precessing in opposite directions on the two sides of
the domain wall: from x̂ to ŷ on the left of the domain wall and
from ŷ to x̂ on the right. The domain wall rotates from x̂ to ŷ.

Upon returning to the laboratory frame, we find that the wave is
precessing faster on the left, with the frequency ω− = ω + �

and slower on the right, with the frequency ω+ = ω − �. We
can check that k2

± = ω2
± − 1 (70) agrees with the spin-wave

dispersion (47). In the laboratory frame, the incoming wave of
frequency ω− is transmitted through the rotating domain wall
with a redshift:

ω+ = ω− − 2�. (71)

The frequency of the reflected wave is the same as that of the
incoming wave—in the frame where the domain wall has no
translational motion. A nonzero velocity of the domain wall
would create a Doppler shift for the reflected wave.

V. FORCES AND TORQUES

A. Reactive force and torque

The reactive force and torque exerted by spin waves on
a domain wall can be computed from conservation laws of
linear and angular momenta expressed by zero divergence of
the energy-momentum tensor and spin current, ∂βT αβ = 0,
∂αjα = 0. Integrating these identities over x yields

Ṗ = T 11(−∞) − T 11(+∞) ≡ F, (72a)

J̇ = j 1(−∞) − j 1(+∞) ≡ τ. (72b)

The right-hand sides of Eqs. (72) are the reactive force and
torque given by the pressure difference on the two sides of
the domain wall and by the net spin current flowing into it,
respectively.

Equations (72) are most conveniently applied in an inertial
frame moving at the instantaneous velocity the domain wall.
In that frame, the linear and angular momenta of the spin wave
remain unchanged and so Ṗ and J̇ on the left-hand sides are
those of the domain wall alone. In other frames, the motion of
the domain wall alters the configuration of the spin wave; Ṗ

and J̇ incorporate changes in linear and angular momenta of
the spin wave [9].

Using the results from the previous section, we obtain the
reactive force and torque,

F = |�|2k−[2|r|2k− + (1 − |r|2)(k− − k+)], (73a)

τ = 2|�|2k−(1 − |r|2). (73b)

Here |�|2k− is the incoming spin current; |r|2 is the
probability of reflection for a magnon, while 1 − |r|2 the
probability of transmission; 2k− is the momentum lost by a
reflected magnon, and k− − k+ is the same for a transmitted
one. We may thus ascribe the two terms in Eq. (73a) to
reflection and redshift:

Freflection = 2|�|2|r|2k2
−,

(74)
Fredshift = |�|2(1 − |r|2)k−(k− − k+).

The torque is entirely due to transmitted magnons: reflected
ones keep their angular momentum.

The relative contributions of reflection and redshift to the
reactive force are

Freflection

Fredshift
= |r|2

1 − |r|2
2k−

k− − k+
. (75)
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For hard magnons, k±  1, the dominant contribution comes
from redshift. The coefficient of reflection (68) is exponentially
suppressed, |r|2 ∼ e−2πk+ � 1, and

Freflection

Fredshift
∼ 2k−e−2πk+

k− − k+
� 1 (hard magnons). (76)

Reflection can dominate if both magnons are soft, k± � 1. In
this “nonrelativistic” limit, the ratio

Freflection

Fredshift
∼ k− − k+

2k+
(soft magnons) (77)

is also small unless transmitted magnons experience a sub-
stantial redshift, k+ � k−.

From Eq. (76) one might infer that reflection is also impor-
tant if incoming magnons are hard, k−  1, and transmitted
magnons are soft, k+ � 1. However, on account of Eq. (71)
this would require fast precession of the domain wall,

� = (ω− − ω+)/2 ∼ (k− − 1)/2  1. (78)

A domain wall precessing faster than � = 1 disintegrates as in
Eq. (28) because a strong centrifugal force in the rotating frame
turns anisotropy from easy-axis to easy-plane. For this reason,
a situation where incoming magnons are hard and transmitted
magnons are soft never occurs (in the reference frame where
the domain wall has zero linear velocity).

Lastly, we relate the frequency and wave number of
the incoming magnons measured in the laboratory frame
(ω,k) to those in the moving frame (ω−,k−) by the Lorentz
transformation:

ω− = ω − V k√
1 − V 2

, k− = k − V ω√
1 − V 2

. (79)

B. Viscous force and torque

The inclusion of dissipation violates conservation of linear
and angular momenta. Equations (72) acquire additional
contributions in the form of viscous force Fv and torque τ v .
Our task here is to compute them in the inertial frame where the
domain wall is momentarily at rest, as in the previous section.

In the presence of dissipation, the Euler-Lagrange equations
are modified by a viscous friction term [17],

∂α

∂L
∂(∂αn)

− ∂L
∂n

+ ∂R
∂ṅ

= 0, (80)

where R = |ṅ|2/(2T ) is the density of Rayleigh’s dissipation
function (A9) and T is the relaxation time (A15). Equation (80)
is valid in the frame of the antiferromagnet and is not
Lorentz-invariant since there is now a preferred reference
frame. However, we can give it a Lorentz-invariant form if
we recast the viscous term as follows:

∂R
∂ṅ

= ṅ
T

= uα∂αn
T

,

where u = (1,0) is the 2-velocity of the antiferromagnet in
the laboratory frame. Now the Euler-Lagrange equation with
dissipation has a Lorentz-invariant form:

∂α

∂L
∂(∂αn)

− ∂L
∂n

+ uα∂αn
T

= 0. (81)

In a frame moving with velocity v, the modified Euler-
Lagrange equation (81) remains the same, while the 2-velocity
of the antiferromagnet becomes

u =
(

1√
1 − v2

, − v√
1 − v2

)
. (82)

Viscous losses associated with Gilbert damping break con-
servation laws of linear and angular momenta. This violation
is manifested in nonzero divergence of the energy-momentum
tensor and current:

∂βT αβ = −uβ∂αn · ∂βn/T , (83a)

∂αjα = −uα ẑ · (n × ∂αn)/T . (83b)

Integration over x yields the viscous force and torque in a
moving frame:

Fv = D1αuα, (84a)

τ v = −Nαuα, (84b)

where

Dαβ = T −1
∫

∂αn · ∂βn dx, (85)

Nα = T −1
∫

ẑ · (n × ∂αn) dx. (86)

In the laboratory frame, where u = (1,0), we only need
components D10 and N0, which are directly related to linear
and angular momenta: D10 = −P/T , N0 = −J/T . We thus
obtain equations of motion in the laboratory frame:

Ṗ = F − P/T , (87a)

J̇ = τ − F/T , (87b)

which yields the viscous force Fv = −P/T and torque Fv =
−J/T in the laboratory frame.

In the frame moving at the velocity of the domain wall
V , the wall has zero linear velocity, so that D10 = P/T = 0,
D11 = M

√
1 − �2, and N1 = 0. We then obtain

Ṗ = F − MV
√

1 − �2

T
√

1 − V 2
, (88a)

J̇ = τ − J

T
√

1 − V 2
. (88b)

In a steady state,

F = MV
√

1 − �2

T
√

1 − V 2
, (89a)

τ = I�

T
√

(1 − V 2)(1 − �2)
, (89b)

where we have used the expression for angular momentum of
the domain wall (35).

VI. ANALYSIS OF THE DYNAMICS

Equations (89) determine the steady-state dynamics of
a domain wall driven by a circularly polarized spin wave.
Together with the expressions for the reactive force and
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torque (73) and the coefficient of reflection (68), these
equations constitute the core formal results of our theory.
These equations can be readily solved by numerical means.
In certain limits the expressions simplify and we can make
further progress analytically. This is the case in the regimes
where the reactive force is dominated either by reflection or
by redshift.

In this section we discuss the dynamics of a domain wall as a
function of the spin-wave amplitude � at a fixed wave number
k, focusing on the limits of soft and hard spin waves. In both
limits, the primary mechanism of propulsion switches from
redshift at small amplitudes to reflection at large amplitudes.
For simplicity, we work in the limit where the linear and
angular velocities of the domain wall are small in natural
units (22), V � 1 and � � 1. We discuss separately the cases
of soft (k � 1) and hard (k  1) spin waves.

A. Soft magnons

Numerical solutions of the equations of motion (89) for soft
spin waves with wave number k = 0.2 are shown in Fig. 7.
For the relaxation time, we used T = 25. At low amplitudes,
the domain wall precesses slowly, the reflection is weak,
and the primary mechanism of propulsion is redshift. Ne-
glecting the Doppler shift between the laboratory and the
slowly moving domain wall, we set k− = k. The redshift
�k = k− − k+ � k. The reaction force (73a) is

F ≈ |�|2k�k ≈ |�|2ω�ω = 2|�|2ω� ≈ 2|�|2�,

where we have used Eq. (71) and set ω ≈ 1 for soft magnons.
The reaction torque (73b) is τ ≈ 2|�|2k. Substituting these
into the steady-state equations (89) yields, in natural units (22),

� ≈ kT |�|2, V ≈ T �|�|2 ≈ kT 2|�|4. (90)

As the amplitude of the incident spin wave � grows, the
wall precesses faster and the redshift �ω = 2� increases.
When �k becomes comparable to k, the contribution of re-
flection becomes comparable to that of redshift—see Eq. (77).
For large enough � reflection becomes the dominant force. As-
suming perfect reflection, |r|2 = 1, we obtain from Eq. (73a)
that F ≈ 2|�|2k2

−, where k− is the wave number measured in
the wall frame. If the incident spin wave has wave number k

in the laboratory frame, the Lorentz transformation (79) gives
k− ≈ k − V to the first order in V for a soft magnon (k � 1,
ω ≈ 1). In essence, this is a Galilean transformation for linear
momentum of a massive nonrelativistic particle. Equation (89)
then yields, in natural units (22),

V = T (k − V )2|�|2. (91)

This result can also be derived by representing the spin
wave as a stream of “nonrelativistic” magnons with momenta
p = �k and mass m = �/(sλ0) emitted at the rate ν = j 1/� =
Ak|�|2/� and bouncing elastically off the domain wall.
(We assume that magnons have a small mass relative to
that of the domain wall. This assumption is justified for
an antiferromagnet with large classical spins, S  1—see
Appendix C.)

The velocity of the domain wall grows as V ≈ T k2|�|2
for small amplitudes � and saturates at V ∼ k, the group
velocity of magnons, when |�|2  1/(kT ). Generally in
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FIG. 7. (Color online) Theory for soft magnons, k = 0.2 in the
laboratory frame. Top to bottom: wave numbers in the wall frame k±,
reflection coefficient |r|2, angular velocity �, linear velocity V . Inset
of the lower panel: V vs � on a log-log scale. Natural units (22).
Black dots: numerical solution of the equations for steady state (89)
with the reactive force and torque (73). Red solid line: analytical
solution (90) in the redshift-dominated regime. Blue dashed line:
analytical solution (92) in the reflection-dominated regime. Vertical
dashed lines indicate the crossover (93) from the redshift-dominated
regime on the left to the reflection-dominated regime on the right.

reflection-dominated regime |�|2 � 1/(kT ),

V = k u(2kT |�|2), u(ξ ) = 1 + ξ−1 −
√

2ξ−1 + ξ−2.

(92a)

This result is similar to Eq. (12) of Tveten et al. [9] in the
“nonrelativistic” limit, V � 1. See Appendix D for detailed
comparisons. An upper bound for the angular velocity of the
wall can be found directly from Eq. (71):

� = (ω− − ω+)/2 < (ω− − 1)/2 < k2
−/4 < k2/4. (92b)

The crossover from the redshift-dominated regime (90) to
the reflection-dominated one (92) occurs when

|�|2 ∼ k/(4T ). (93)
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B. Hard magnons

Numerical solutions of the equations of motion (89) for
hard spin waves with wave number k = 4 are shown in
Fig. 8. Again, at small wave amplitudes � redshift dominates
(both incident and transmitted magnons are hard in the frame
moving with the wall). As the wave amplitude increases, both
the linear and angular velocities initially grow. The growing
Doppler shift between the laboratory and wall frames softens
the spin wave in the frame of the wall until the wave vector
of the incident wave k− approaches 1 and the transmitted
wave, further redshifted by the precessing wall, becomes soft,
k+ � 1. At that point, reflection starts to dominate. Weakened
transmission translates into a reduced torque and a lower
precession frequency.
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FIG. 8. (Color online) Theory for hard magnons, k = 4 in the
laboratory frame. Top to bottom: wave numbers in the wall frame
k±, reflection coefficient |r|2, angular velocity �, linear velocity V .
Natural units (22) are used. Black dots: numerical solution of the
equations for steady state (89) with the reactive force and torque (73).
Red solid line: analytical solution (95) in the redshift-dominated
regime. Vertical dashed lines: the crossover (96).

In the weak-amplitude regime, where redshift dominates,

F ≈ |�|2k−�k ≈ |�|2ω−�ω = 2|�|2ω−�,

τ ≈ 2|ψ |2k−.

Transforming from the wall frame to the laboratory frame,

ω− ≈ ω − kV, k− ≈ k − ωV,

and setting ω ≈ k for hard magnons yields

�k(1 − V )|�|2 = V/T , (94a)

k(1 − V )|�|2 = �/T, (94b)

which can be solved to obtain

V = u(2k2T 2|�|4), � = kT |�|2(1 − V ), (95)

where u(ξ ) is given in Eq. (92a).
For larger amplitudes, reflection becomes the dominant

mechanism. The crossover occurs around

|�|2 ∼ 1/(kT ). (96)

Waves of large amplitude require a fully “relativistic” treat-
ment of the steady-state equation (89).

C. Comparison to numerical simulations

To check the reliability of our theory, we have conducted
numerical simulations of a domain wall in a one-dimensional
antiferromagnet with the Hamiltonian

H = J

N−1∑
n=1

Sn · Sn+1 − D

N∑
n=1

(
Sz

n

)2
. (97)

We employed the micromagnetic solver OOMMF, which simu-
lates classical dynamics of unit vectors mn = Sn/S [16]. We
used a chain of N = 4 × 104 spins with a lattice constant
a = 0.5 nm. The parameters of the microscopic model and of
the field theory are related as follows:

J = �S

2a
, ρ = �

2

4aJ
, M = μ

a
, A = JS2a, K0 = 2DS2

a
.

(98)

We set M = 2.5 × 10−14 A m, A = 1.25 × 10−31 J m, and
K = 1.25 × 10−17 J/m. The gyromagnetic ratio was set at γ =
2.211 × 105 m/A s. These coupling constants give natural
units (22)

λ0 = 100 nm, t0 = 28.4 ps, s = 3,520 m/s. (99)

The Gilbert damping constant α = 10−4 gives a relaxation
time (A15) T = 25t0 = 710 ps. Spin waves were excited by
driving the leftmost spin with a strong external magnetic field
precessing at a fixed angle around the z axis. To prevent
reflection of the spin wave from the right end, the Gilbert
damping parameter was made spatially inhomogeneous, in-
creasing gradually near the right end of the chain.

Figure 9 shows snapshots of the nx component of the
staggered magnetization for hard spin waves with k = 2.66
incident from the left. Waves with amplitude � = 0.1 are
sinusoidal, with small damping, on both sides of the domain
wall. No reflection is visible on the left-hand side of the
domain wall (note the lack of interference). Transmitted
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FIG. 9. (Color online) Snapshots of the nx component of the
staggered magnetization in simulations with wave number k = 2.66
and wave amplitudes at the source � = 0.1 (top) and 0.2 (bottom).
Vertical dotted lines delineate the domain wall.

waves are clearly redshifted. On the other hand, waves of a
larger amplitude � = 0.2 generate a strong distortion of the
transmitted wave, indicating some sort of structural instability
of the domain wall.

Precession frequency � and linear velocity V of the domain
wall observed in the simulations as a function of the spin-wave
amplitude � are shown in Fig. 2 along with our theoretical
results. We generally find excellent agreement between the
two at low spin-wave amplitudes and some deviations when
the amplitude increases.

For soft spin waves (k = 0.538), the deviation is due to
multiple reflections from the domain wall and the left end. In
the reflection-dominated regime (|�| �

√
k/(4T ) = 0.073),

the reflected spin wave bounces off the left end of the chain
and exerts additional force and torque on the domain wall.
For medium and hard spin waves (k = 1.718 and 4.14),
deviations occur already in the redshift-dominated regime,
where reflection is insignificant. These deviations appear to
be caused by the structural instability of the domain wall that
sets in at large force and torque. The nature of this instability
is not clear and deserves a separate investigation.

VII. DISCUSSION

We have presented a theory of domain-wall propulsion
by circularly polarized spin waves in an easy-axis antifer-
romagnet. A spin wave incident upon a static domain wall
(precession frequency � = 0, velocity V = 0) exerts no force
on the wall thanks to the perfect transmission of magnons.
However, the inversion of spin carried by transmitted magnons
creates a reaction torque, causing the domain wall to precess
(� �= 0). The precession creates two effects responsible for
the propulsion of the domain wall.

The first mechanism, identified previously by Tveten
et al. [9], is the reflection of spin waves by a precessing
domain wall; the reversal of magnon momenta generates a
reaction force on the domain wall. We have been able to
quantify this effect for the first time by finding an exact
solution for a small-amplitude spin wave in the background of a
rotating domain wall. We have also identified a second, hitherto
unknown mechanism of propulsion, which we termed redshift:
the frequency of magnons transmitted through a precessing
domain wall is reduced by 2�; their momenta are reduced as
well, resulting in a reaction force on the wall.

We have obtained closed-form expressions for the net force
and torque on the domain wall in its rest frame. The wave
number and frequency of the incident wave in the wall frame
are related to their values in the laboratory frame by the Lorentz
transformation, a symmetry of the antiferromagnet in the
continuum limit on length scale larger than the lattice constant.
The force and torque balance equations, obtained from the
conservation of linear and angular momentum, incorporate the
effects of dissipation due to Gilbert damping. The resulting
algebraic equations for the velocity of the wall V and its
precession frequency � can be readily solved numerically and
admit simple approximate solutions in the limits where the
propulsion is dominated either by redshift or by reflection.

Tveten et al. [9] showed that translational motion of a
domain wall can be also induced by linearly polarized spin
waves. But a driving-mechanism is different from circularly
polarized cases. Because right- and left-circularly polarized
magnons are equally populated in linearly polarized spin
waves, a reactive torque on a domain wall vanishes. As a result,
the domain wall does not precess � = 0 and a reactive force
also vanishes. Instead of a reactive force rooted in conservation
of linear momentum, a viscous force due to damping of spin
waves drives a domain wall toward the source of spin waves.
For small Gilbert damping, α � 1, circularly polarized spin
waves induce order-of-magnitude faster motion of a domain
wall than linearly polarized ones.
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APPENDIX A: LAGRANGIAN DYNAMICS
OF MAGNETIZATION

1. Ferromagnet

We begin by reviewing Lagrangian dynamics of magneti-
zation. In a ferromagnet well below the ordering temperature,
the magnetization length M is fixed and its orientation is
represented by the unit-vector field m(r). Its dynamics is
governed by the Landau-Lifshitz equation,

ṁ = γ h × m + αm × ṁ, (A1)

where γ is the gyromagnetic ratio, h = −M−1δU/δm is
an effective magnetic field obtained from the potential en-
ergy functional U [m(r)], and α � 1 is Gilbert’s damping
constant [19]. Equation (A1) can be obtained from the
Lagrangian [20]

L = J
∫

a(m) · ṁ dV − U, ∇m × a = m. (A2)

The first term represents the Berry phase of precessing spins
and contains the vector potential a(m) of a magnetic monopole.
J = M/γ is the density of angular momentum. In the
Lagrangian formalism, viscous losses are represented by the
Rayleigh dissipation function [17]

R = αJ
2

∫
|ṁ|2 dV. (A3)

2. Néel antiferromagnet

In a simple antiferromagnet in the absence of an ex-
ternal magnetic field, sublattice magnetizations m1(r) and
m2(r) are nearly antiparallel. Staggered magnetization n =
(m1 − m2)/2 greatly exceeds the uniform one m = m1 + m2.
Constraints |m1|2 = |m2|2 = 1 become

|n|2 = 1, m · n = 0. (A4)

The Lagrangian is

L = J
∫

[a1(m1) · ṁ1 + a2(m2) · ṁ2] dV − U [m1,m2],

(A5)
where J is the density of angular momentum on one
sublattice. It is convenient to choose different gauges for the
vector potentials of the two sublattices: a1(m) = a(m) and
a2(m) = a(−m). In the absence of uniform magnetization, the
sublattice magnetizations are exactly antiparallel, m1 = −m2,
and their Berry phases cancel each other out in this gauge.
The lowest nonvanishing kinetic contribution to L arises from
expanding the Berry-phase terms in Eq. (A5) to the first
order in m. Potential energy is also expanded to the lowest
order in m, U [m,n] = U [n] + ∫

(|m|2/2χ )dV , where χ > 0
is proportional to magnetic susceptibility. This results in an
effective Lagrangian

L[m,n] =
∫

[J ṅ · (n × m) − |m|2/2χ ] dV − U [n]. (A6)

With no ṁ terms in the Lagrangian, uniform magnetization
is not a dynamical field but is rather a slave that follows the
dynamics of staggered magnetization:

m = J χ ṅ × n. (A7)

Upon eliminating m, we obtain an effective Lagrangian for
staggered magnetization,

L[n] = ρ

2

∫
|ṅ|2 dV − U [n], (A8)

where ρ = J 2χ quantifies inertia of staggered magnetization.
The Rayleigh dissipation function of an antiferromagnet is

R = αJ
∫

|ṅ|2 dV. (A9)

We neglect the contribution of uniform magnetization m to
dissipation, which is proportional to |n̈|2 from Eq. (A7), by
focusing on slow dynamics. An extra factor of 2, compared to
Eq. (A3), reflects the number of sublattices.

In the collective-coordinate approach [10,11], details of
a magnetic texture are encoded by a set of generalized
coordinates q ≡ {q1,q2, . . .}. The change of n with time
comes through the time evolution of collective coordinates:
ṅ = q̇i∂n/∂qi . We may therefore express the kinetic energy
of staggered magnetization as the kinetic energy of collective
coordinates:

1

2

∫
|ṅ|2 dV = 1

2
Mij q̇i q̇j , (A10)

where the mass tensor is

Mij = ρ

∫
∂n
∂qi

· ∂n
∂qj

dV . (A11)

In a similar way, the Rayleigh dissipation function of
staggered magnetization (A9) is represented as

αJ
∫

|ṅ|2 dV = 1

2
Dij q̇i q̇j , (A12)

where

Dij = 2αJ
∫

∂n
∂qi

· ∂n
∂qj

dV . (A13)

Clearly, the two tensors are proportional to each other:

Dij = Mij/T . (A14)

The proportionality constant

T = ρ

2αJ (A15)

is a relaxation time.

APPENDIX B: REFLECTION AND
TRANSMISSION AMPLITUDES

We discuss the reflection and transmission amplitudes for
the SUSY partner Hamiltonians

H0 = −d2/dx2 + 1 + 2ω� tanh x, (B1)

H1 = −d2/dx2 + 1 − 2 sech2 x + 2ω� tanh x, (B2)

where

a = d/dx + tanh x + ω�, a† = −d/dx + tanh x + ω�.

(B3)
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Far away from the origin,

ψ0(x) ∼
{

eik−x + r0e
−ik−x, x → −∞,

t0e
ik+x, x → +∞,

(B4)

which defines the reflection and transmission amplitudes r0

and t0 of H0. The wave numbers k− and k+ are not the same
because of the potential step:

k2
± = ω2 ∓ 2ω� − 1. (B5)

The partner eigenfunction ψ1 can be obtained by the
application of the raising operator, ψ1 = a†ψ0. It has the
following asymptotic form for x → −∞:

ψ1(x) ∼ (−1+ ω� − ik−)eik−x+(−1 + ω� + ik−)r0e
−ik−x.

Hence the reflection amplitude

r1 = r0
−1 + ω� − ik−
−1 + ω� + ik−

. (B6)

Clearly, |r1| = |r0|, so we will refer to both of these as simply
|r|.

Along the same lines, we obtain

t1 = t0
+1 + ω� − ik+
−1 + ω� + ik−

. (B7)

It can be checked, with the aid of Eq. (B5), that again |t1| =
|t0| = |t |.

The reflection amplitude for the tanh x potential is
known [21,22]:

|r|2 = sinh2
[

π
2 (k+ − k−)

]
sinh2

[
π
2 (k+ + k−)

] . (B8)

The transmission amplitude is related to the reflection ampli-
tude in the usual way [21],

|r|2k− + |t |2k+ = k−. (B9)

APPENDIX C: MASS OF A MAGNON VERSUS
MASS OF A DOMAIN WALL

Here we compute the ratio of the magnon mass m to the
domain-wall mass M , or equivalently, the ratio of their rest
energies.

The energy density (19) of a circularly polarized spin wave
ψ(x,t) = �e−iωt+ikx (46) in the background of a Néel ground
state (39) is

s2T 00 = ρω2|�|2. (C1)

The number density of magnons is given by the absolute value
of the spin density j 0 (49) divided by the spin of each magnon
�. The energy of one magnon is

E = s2T 00

|j 0/�| = ρω2|�|2
ρ|ω||�|2/�

= �|ω|, (C2)

which satisfies a “relativistic” energy-momentum relation

E2 = p2s2 + (��)2, (C3)

where p = �k is the momentum of a magnon and � =√
K0/ρ = 1/t0 is the frequency gap. The rest energy of a

magnon is ms2 = ��. The rest energy of the wall (51) is
Ms2 = 2

√
AK0. Their ratio is

M

m
= Ms2

ms2
= 2

√
AK0

��
= 2J

√
Aχ

�
.

A one-dimensional antiferromagnet with the Hamiltonian

H = J

N−1∑
n=1

Sn · Sn+1 − D

N∑
n=1

(
Sz

n

)2
(C4)

has the following continuum parameters: scalar density of
spin angular momentum J = �S/2a, exchange constant A =
JS2a, and susceptibility χ = a/JS2, where a is the lattice
constant and S is the length of a spin at each site. Then the
ratio becomes

M/m = S. (C5)

The domain wall is much heavier than a magnon, M  m, in
the classical limit S  1.

We note that a rescaled mass ratio 2m/�M = (J
√

Aχ )−1

is the coupling constant g = 2/�S in Haldane’s Lagrangian
density [15]

L = |ṅ|2 − s2|n′|2 − �2(ẑ × n)2

2gs
. (C6)

APPENDIX D: REACTIVE FORCE FROM
MAGNON REFLECTION

An intuitive way to derive the spin-wave force on the
domain wall is to picture the spin wave as a flux of magnons,
particles carrying angular momentum �, momentum �k, and
energy �ω. Their velocity

v = d(�ω)/d(�k) = s2k/ω (D1)

equals the group velocity of spin waves. With the spin
current (49), the rate at which magnons are emitted by the
source is

ν = j 1/� = �
−1A|�|2k. (D2)

The rate ν ′ at which magnons hit the domain wall is reduced
if the wall is moving:

ν ′ = ν(1 − V/v) = �
−1A|�|2(k − ωV/s2). (D3)

Consider an elastic collision of a magnon with a domain
wall. In the reference frame moving with the wall, the
magnon’s initial momentum and energy are

�k− = �(k − ωV/s2)√
1 − V 2/s2

, �ω− = �(ω − kV )√
1 − V 2/s2

.

After the collision, it is reversed to −�k−, assuming that the
mass of the domain wall M greatly exceeds the mass m of the
magnon. The final momentum of the magnon in the laboratory
frame is

�k′ = −�k− + ω−V/s2√
1 − V 2/s2

= 2�ωV/s2 − �k(1 + V 2/s2)

1 − V 2s2
.

Momentum transferred to the wall in the collision is

�p = �k − �k′ = 2�(k − ωV/s2)

1 − V 2/s2
. (D4)
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The time-averaged force is

F̄ = ν ′�p = 2A|�|2(k − ωV/s2)2

1 − V 2/s2
= 2A|�|2k2

−. (D5)

This expression agrees with our Eq. (73a) for perfect reflection,
|r|2 = 1. The result of Tveten et al. [9] is F̄ = 2A|�|2k(k −
ωV ), which is different from ours (D5).

Alternatively, we may obtain the force in the frame of
the wall and use the convenient fact that the force is the
same in both frames in (1+1)-dimensional relativity (in 3+1

dimensions, it is the longitudinal component of the force that
remains the same in both frames [23]). In the wall frame,
magnons are emitted and collide with the wall at the same
rate

ν = j 1/� = �
−1A|�|2k−.

Momentum transfer in an elastic collision with a stationary
wall is �p = 2�k−, which yields the average force

F̄ = ν�p = 2A|�|2k2
−, (D6)

in agreement with our previous result (D5).
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