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Exotic magnetization plateaus in a quasi-two-dimensional Shastry-Sutherland model
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We find unconventional Mott insulators in a quasi-2D version of the Shastry-Sutherland model in a
magnetic field. In our realization on a four-leg tube geometry, these are stabilized by correlated hopping of
localized magnetic excitations. Using perturbative continuous unitary transformations (pCUTs, plus classical
approximation or exact diagonalization) and the density matrix renormalisation group method (DMRG), we
identify prominent magnetization plateaus at magnetizations M = 1/8, 3/16, 1/4, and 1/2. While the plateau
at M = 1/4 can be understood in a semiclassical fashion in terms of diagonal stripes, the plateau at M = 1/8
displays highly entangled wheels in the transverse direction of the tube. Finally, the M = 3/16 plateau is most
likely to be viewed as a classical 1/8 structure on which additional triplets are fully delocalized around the tube.
The classical approximation of the effective model fails to describe all these plateau structures which benefit
from correlated hopping. We relate our findings to the full 2D system, which is the underlying model for the
frustrated quantum magnet SrCu(BO3)2.
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I. INTRODUCTION

A particularly interesting realization of highly frustrated
quantum magnetism [1] is found in the correlated material
SrCu(BO3)2 [2–11]. The underlying model is widely believed
to be the S = 1/2 Heisenberg antiferromagnet (HAFM) on the
2D Shastry-Sutherland lattice and experiments in ultrastrong
magnetic fields unveil a multitude of intriguing behavior
archetypical for frustrated quantum magnetism. Despite a huge
body of literature [2–23], still various aspects refrain from a
clear theoretical understanding, in particular, the structures and
sequence of Mott insulators realized as magnetization plateaus
in the low part of the magnetization curve, so that the system
stays in the focus of present day research.

The Shastry-Sutherland model [24] can be seen as a set of
mutually orthogonal dimers that are coupled by an interdimer
coupling J ′. Its beauty arises from the exact solution in terms
of a product state of singlets at zero magnetic field and small
enough values of J ′, and the fact that the magnetization process
can be viewed as a subsequent population of the dimers by
triplets. Even though these aspects give important insights
into the magnetization process, the interdimer coupling in the
material is so strong that a treatment by analytical methods
as well as by numerical approaches has remained a challenge.
Here, we combine pCUTs [25,26] and DMRG [27] to treat
the system in an approximation of the 2D structure. While
the DMRG works best in 1D, the uncovering of a spin liquid
phase in the HAFM on a 2D kagome lattice [28] shows that this
method can lead to insightful results also in higher dimensions,
see also Ref. [29]. In contrast to this study, here we do not
restrict ourselves to the ground state at zero magnetic field but
address the aforementioned behavior at finite magnetizations.
This further degree of freedom makes a systematic study of the
full 2D system even more difficult. In consequence, we choose
to study a quasi-2D version of the Shastry-Sutherland model
on a tube geometry that has a finite width of four dimers and

*kai.schmidt@tu-dortmund.de

is periodically coupled in the transverse direction, and which
we refer to as a four-leg tube. Note that in the present paper,
we go one step further than in previous work [11] and do not
only focus on the magnetization curve itself, but also treat
the magnetization structures on the plateaus in high detail and
accuracy. We believe that this can lead to insights for the full
2D case. In particular, we identify a mechanism that leads to
delocalized structures on magnetization plateaus and stabilizes
highly entangled states in these Mott insulators similar to
the recently discovered crystals of bound states [30] in the
2D Shastry-Sutherland model [23]. The scope of this paper
is to discuss this mechanism in detail and propose possible
scenarios for the full 2D system.

II. MODEL

In Fig. 1, we show the geometry of the lattice under
consideration, which we refer to as a four-leg Shastry-
Sutherland tube. On this geometry, we study the spin-1/2
Shastry-Sutherland model in an external magnetic field h,

H = J
∑
〈〈i,j〉〉

�Si · �Sj + J ′ ∑
〈i,j〉

�Si · �Sj − h
∑

i

Sz
i , (1)

with the bonds 〈〈i,j 〉〉 building an array of orthogonal dimers
and the bonds 〈i,j 〉 representing interdimer couplings. The
four-leg Shastry-Sutherland tube has a four-dimer unit cell,
which is shown in Fig. 1.

Here we are not interested in the full phase diagram of
Eq. (1). We restrict ourselves to parameter ratios J ′/J for
which the four-leg Shasty-Sutherland tube is in the exact
product state of singlets for h = 0, since this is expected
to be the relevant coupling regime for SrCu(BO3)2 in two
dimensions [11]. Indeed, the singlet product state of dimers
is, as for the two-dimensional case, an exact eigenstate of the
system being the ground state for J ′/J � 0.68. The latter value
from DMRG is very close to the one of the two-dimensional
Shastry-Sutherland model [22,35] suggesting that the four-
leg tube shares many similarities with its two-dimensional
counterpart.
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FIG. 1. (Color online) Illustration of the four-leg Shastry-
Sutherland tube. Solid red bonds denote interdimer couplings J and
dashed blue lines refers to the intradimer coupling J ′. The tube is
periodically coupled in the vertical direction as indicated by the blue
dashed lines at the upper end. The unit cell is shown as thin black box
covering four dimers.

III. METHODS

In this section, we discuss the pCUTs aiming at the
derivation of an effective low-energy model, which is treated
either by the classical approximation (CA) or by exact
diagonalization (ED), and briefly mention details of our
DMRG approach.

A. pCUT(+CA/ED)

The pCUT method [25,26] has been used successfully for
the two-dimensional Shastry-Sutherland model [19] as well as
for the two-leg Shastry-Sutherland tube [30]. Essentially, the
pCUT transforms Eq. (1) into an effective model conserving
the number of triplons. Triplons with total spin one are the
elementary excitations of coupled-dimer systems and can be
viewed as triplets dressed with a polarization cloud [31]. In
a finite magnetic field, the relevant processes have maximum
values of total Sz. Other channels are only important if bound
states of triplons with different quantum numbers become
relevant at low energies [30]. The general form of the effective
low-energy model is then given by

Heff =
∑
i,δ

toδ b
†
i+δbi +

∑
i,δn

V o
δ1,δ2,δ3

b
†
i+δ3

b
†
i+δ2

bi+δ1
bi . . . ,

(2)
where the sums run over the sites i of the effective square lattice
build by dimers of the Shastry-Sutherland model and o ∈ {v,h}
gives the orientation vertical or horizontal of dimer i. The dots
“. . .” represent terms containing more than four operators,
which we do not consider here. The hardcore boson operator
b
†
i (bi ) corresponds to the creation (annihilation) of a triplet

|t1〉 on dimer i. The amplitudes toδ and V o
δ1,δ2,δ3

are obtained
as high-order series expansions in J ′/J in the thermodynamic
limit. We have calculated order 15 for one-body terms tδ and
order 14 for two-body terms V

δ2,δ3
δ1

. In this work, we use bare
series which are fully converged for J ′/J = 0.3.

In the following, we focus on certain aspects of the effective
model that are specific to the four-leg Shastry-Sutherland tube
and that are different when compared to the two-dimensional

case. For more general properties, we refer to the literature
[19,30].

Let us start by discussing the amplitudes tδ of the one-
particle operators, which are also given in Appendix. As for
the two-dimensional case [19], one finds only two types of
terms: a chemical potential ∝b

†
i bi and a one-particle hopping

over the diagonal of the effective dimer square lattice. The
chemical potential for the four-leg Shastry-Sutherland tube is
slightly different on horizontal and vertical dimers. In fact,
the value is lower on vertical dimers. As a consequence,
typical magnetization structures found by pCUT have particles
dominantly on vertical dimers. However, the energy difference
in the chemical potentials between horizontal and vertical
dimers is very small, e.g., 10−9J for J ′/J = 0.3, since it arises
perturbatively only due to a different amplitude in order 10.
This energy scale is therefore difficult to resolve by the DMRG.

Two-particle operators with amplitudes V o
δ1,δ2,δ3

are domi-
nated by repulsive density-density interactions and correlated
hopping terms, i.e., processes where a particle is only allowed
to hop if another particle is present (see also Appendix).
Correlated hopping terms arise in order-two perturbation
theory and represent the dominant kinetic processes in the
effective Hamiltonian. As for the one-particle operators, the
finite extension of the four-leg tube in transverse direction
leads to differences of amplitudes V o

δ1,δ2,δ3
for operators related

by a 90◦ rotation in contrast to the two-dimensional case.
However, we stress that these differences are typically tiny,
since they originate from virtual fluctuations that wind around
the tube and therefore only show up in high orders of the
perturbation. As a consequence, we use in figures and when
appropriate the notation μ ≡ tv

(0,0) ≈ th
(0,0) for the chemical

potential on all dimers and, in the same spirit, Vn for
the repulsive density-density interactions, which have been
introduced in Ref. [19] for the 2D Shastry-Sutherland model
(see also Appendix).

Altogether, the effective model of the four-leg
Shastry-Sutherland tube is very similar to the one for
the two-dimensional case [19]. However, this does not
imply that the solution of the effective model is the same in
both cases. Especially at low magnetizations, unit cells of
magnetization plateaus become large and the finite extension
of the tube can matter.

The derivation of the effective model by pCUTs is only the
first step, since the solution of Eq. (2) is by far not simple.
Here we apply two strategies to tackle the effective model:
(i) a CA along the lines of Ref. [19] and (ii) ED. In the
following, we call these two approaches pCUT(+CA) and
pCUT(+ED).

(i) For the CA one applies a Matsubara-Matsuda transfor-
mation [32] to rewrite Eq. (2) in terms of effective pseudospins
1/2. Then, spin-1/2 operators are replaced by classical vectors
yielding a classical energy, which is minimized for a set
of unit cells. We considered unit cells up to 8×4 dimers.
Physically, this approach works fine as long as quantum
fluctuations are not too strong, i.e., it is exact in the limit
where diagonal density-density interactions dominate over
kinetic processes. This is indeed the case if one only considers
one-particle hopping processes. In contrast, large correlated
hopping processes are not treated well by the CA, which leads
to a breakdown of this approach as shown below.
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(ii) We have used ED to diagonalize the effective model
(2) on finite clusters. This is done with the Lanczos algorithm
[33] allowing us to treat systems with up to 32 dimers and
with up to M = 1/3 using either open or periodic boundary
conditions. Let us stress that the ED of the effective model has
less finite-size effects compared to an ED (or DMRG) of the
original model on the same cluster, since the effective model
has been derived in the thermodynamic limit.

B. pCUTfinite(+ED)

Alternatively, one can also (i) derive the effective low-
energy model by pCUTs directly on finite clusters and then
(ii) solve this cluster-dependent effective model by ED. In
the following, we denote this approach by pCUTfinite(+ED).
This allows a straightforward comparison with DMRG results
obtained on the same cluster.

In contrast to Eq. (2), the amplitudes of the effective model
do depend directly on the absolute location of particles on the
cluster under study

HL
eff =

∑
i,δ

toi,δ b
†
i+δbi +

∑
i,δn

V o
i,δ1,δ2,δ3

b
†
i+δ3

b
†
i+δ2

bi+δ1
bi . . . ,

(3)
where HL

eff refers to the effective model on a cluster of size
L×4. The dependence of the amplitudes toi,δ , V o

i,δ1,δ2,δ3
, etc., on

the variable i corresponds to the present finite-size effects. In
this work, we have calculated all amplitudes of the effective
model including all multiparticle processes up to tenth order
in J ′/J and up to L = 8 (L = 6) for M = 1/8 (M = 1/4). As
for pCUT(+ED), we use bare series that are fully converged
for J ′/J = 0.3.

There can be important differences between
pCUTfinite(+ED) and pCUT(+ED), which we would like to
discuss shortly for the chemical potential ∝b

†
i bi . In contrast to

pCUT(+ED) discussed above, the chemical potential varies
for different dimers on the cluster. In order two, the chemical
potential J − (J ′/J )2 is still the same on all horizontal and
vertical dimers except for the vertical dimers located at the
edge of the cluster. Here one finds J − 1/2(J ′/J )2. The
different order-two amplitude originates from the fact that
a triplet located on a vertical dimer on the left (right) edge
of the cluster cannot perform a virtual fluctuation to the left
(right) in contrast to dimers in the inside as well as horizontal
dimers on the edge which still can fluctuate up and down.
This difference in the chemical potential is large compared
to the one between vertical and horizontal dimers in the
effective model in the thermodynamic limit arising from the
tube geometry. As a consequence, the magnetization profiles
as well as the ground-state energy obtained by pCUT(+ED)
and the ones obtained by pCUTfinite(+ED) and DMRG might
differ.

C. DMRG

In most cases, we treat systems with up to 64 dimers
using open boundary conditions in the longitudinal direction,
and in particular cases we go up to 144 dimers. Typically,
we use 35 sweeps keeping up to m = 1500 density matrix
eigenstates, leading to a discarded weight of the order of 10−8

or better; in some cases that appear more difficult to converge

we apply up to 50 sweeps and m = 2500. The results on
different system sizes are consistent with each other, so that
we refrain from performing a more detailed study varying the
sweeping procedure, etc., as discussed in Refs. [28,29,34]. We
also do not perform a finite-size scaling procedure in terms
of the cylinder circumference as performed, e.g., in Ref. [28]
for kagome systems. Strictly speaking, we therefore cannot
make predictions for the behavior in the true 2D case. Instead,
our strategy here is to focus on systems with four legs and
by carefully comparing energies as well as local observables
to pCUTs identify the mechanisms leading to the interesting
plateaus discussed in this paper. Note that in our previous
study [11], DMRG results for 2D behavior when applying
PBC where discussed. There, we focused on the ground-state
energies at finite magnetic fields, which are much easier to
obtain and so could lead to insights into the 2D behavior. Here,
we go beyond and obtain accurate results for local observables,
however, restricting us to the aforementioned configurations.

IV. MAGNETIZATION CURVES

In Fig. 2, we present our results for the magnetisation curves
obtained with DMRG [pCUT(+ED)] for finite systems with
up to 64 (32) dimers for various values of J ′/J . One observes
plateaus at M = 1/8, 1/4, and 1/2 with both methods and
for different system sizes. Most remarkably, the plateau at
M = 1/8 is very stable and grows with increasing J ′/J .

In contrast to the 2D case, there is no prominent plateau with
M = 1/3 where triplons form diagonal stripes on alternatively
vertical and horizontal dimers. This is well understood in terms
of the effective pCUT model, since the corresponding 2D stripe
structure is energetically not favored on the four-leg tube, since
one has to pay large repulsive interactions.

Additionally, there are many other plateau structures
that we mostly attribute to finite-size artifacts, since the
associated magnetization profile is not corresponding to any
regular structure and therefore specific for a given cluster.
One exception might be the existence of a plateau around
M = 19/64. Here, DMRG displays a broad magnetization
plateau. Additionally, we observe a very stable plateau at
M = 7/24 within pCUT(+CA) containing similar features in
the magnetization profiles (see Fig. 2). Such a plateau has
likely a conventional structure corresponding to a classical
solution of the effective model, since DMRG as well as
pCUT(+CA) find similar patterns of isolated triplons that
minimize repulsive interactions. Nevertheless, we are not able
to pinpoint convincingly the existence and the precise nature
of a plateau in this magnetization regime, and we therefore do
not focus on this plateau in the following.

This is different for the above given sequence M = 1/8,
1/4, and 1/2 where all our techniques display very regu-
lar structures. The magnetization profile of the plateau at
M = 1/2 is just the known and very well understood one
appearing also in the 2D Shastry-Sutherland model. Here,
the magnetization is dominantly on one sublattice, which is a
consequence of the very large repulsive interaction V1 between
nearest-neighbor dimers. Consequently, we do not focus on
this plateau but we concentrate on the specific magnetizations
M = 1/8 and M = 1/4 for which pCUT and DMRG allow
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FIG. 2. (Color online) Magnetization M/Ms as a function of the
magnetic field h obtained with pCUT(+ED) and DMRG. (a) Results
from pCUT(+CA). Inset shows magnetization profile at M = 7/24.
(b) Results from pCUT(+ED) on a 8×4 with periodic (PBC) and open
(OBC) boundary conditions for J ′/J = 0.3 as well as J ′/J = 0.5 in
the inset. (c) DMRG results for systems with 8×4 and 16×4 dimers
for J ′/J = 0.3. (d) DMRG results for systems with 8×4 dimers for
various values of J ′/J .

FIG. 3. (Color online) Local magnetization of the 1/8 plateau
using DMRG. Upper (lower left) panel corresponds to an open
tube with 64 dimers (32 dimers) and J ′/J = 0.3 (J ′/J = 0.6). The
diameters of circles relate to the local magnetization, which is also
given explicitly as numbers. Positive (negative) values denote a local
magnetization parallel (antiparallel) to the field direction. The lower
right panel gives an illustration of the dominant order-two correlated
hopping processes t ′ and t ′′.

a consistent and interesting interpretation. Afterwards, we
discuss the intermediate regime between M = 1/8 and 1/4.

A. 1/8 plateau

A very robust structure found in DMRG is the one at
M = 1/8. In the following, we analyze first this magnetization
for a rather small value J ′/J = 0.3 where the effective model
derived by pCUT is fully converged. Here, we compare our
findings by DMRG, pCUT(+CA/+ED), and pCUTfinite(+ED)
and we give the physical origin of the observed structure.
Afterwards, we discuss the properties of the 1/8 plateau as a
function of J ′/J .

For the open tube with 64 dimers as shown in Fig. 3 for
J ′/J = 0.3, DMRG finds a regular pattern of four structures
which we name wheels. In a wheel, the magnetization is
uniformly distributed among the four vertical dimers around
the tube so that each dimer contains roughly half of the
magnetization of a single triplet. The total value of Sz in a
wheel is therefore 2. Between wheels there are two rows of
dimers where almost no magnetization is present leading to a
unit cell of 16 dimers. The same kind of structure is also found
for open tubes with 16, 32, and 48 dimers having 1, 2, and
3 wheels. It is therefore very certain that this magnetization
plateau at M = 1/8 is present in the thermodynamic limit. The
energy per site is fully converged when comparing different
clusters and one obtains ε

1/8
0 = −0.31924 J for J ′/J = 0.3.

One should stress that the detected structure of the lo-
cal magnetization is very surprising. Naively, one expects
magnetization plateaus at low magnetizations that correspond
to crystals of single-triplon excitations being stabilized by
repulsive density-density interactions. One such example can
be seen with pCUT(+CA) displayed in Fig. 4 for J ′/J = 0.3.

The classical structure with a unit cell of 24 dimers has
the energy per site ε

1/8
0,cl = −0.31901 J at J ′/J = 0.3, i.e.,

the energy is roughly 2×10−4 J higher compared to the
one found by DMRG. The classical structure results from
minimizing density-density interactions, since it avoids paying
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FIG. 4. (Color online) Illustration of the plateau with M = 1/8
obtained by pCUT(+CA). Thin red (thick dark) lines correspond to
empty (filled) dimers. The most relevant two-particle interactions V ′

3

and V6 are shown as grey/cyan dashed lines with arrows on both sides
pointing to the two involved filled dimers.

all repulsive interactions below order 6 as the corresponding
classical structures for the 2D case [19]. In fact, it is interesting
to realize that the classical 1/8 structure found for the four-leg
tube is similar in spirit to the realized 1/9 plateau in 2D [19].

Next we add quantum fluctuations on top of the classical
solution to show that the energy difference to the DMRG
result cannot be explained this way. Quantum fluctuations are
induced in the effective model by kinetic processes τj like
hopping, correlated hopping, etc. The leading correction to
the classical energy per site is calculated by summing over all
contributions −τ 2

j /�Ej where �Ej is the energy difference
between the energy of the intermediate state after acting with
the kinetic process τj on the classical ground state and the
energy E0,cl of the classical state itself. This approach is fully
controlled if τ 2

j � �Ej for all j . For the rather small value
J ′/J = 0.3 considered here, this is exactly the case, since the
leading perturbative order in J ′/J involved in all �Ej is lower
than the corresponding one in τ 2

j .
If one adds quantum fluctuations on top of the classical

structure, one finds that kinetic processes are never able to
explain the observed energy difference between DMRG and
the CA of the effective model, since the distance between
particles in the classical structures is already so large that
kinetic processes are not able to reduce the energy sufficiently.
Additionally, also the structure made of single dressed triplons
is clearly incompatible with the magnetization profile deduced
by DMRG. In conclusion, the pCUT(+CA) is not able to
reproduce the findings of DMRG even for values of J ′/J
where the effective model is fully converged.

Therefore it cannot be the (fully converged) effective model
derived by pCUTs, which is problematic, but it has to be
the CA that fails. The CA is not able to treat the correlated
hopping processes well as we show below. This becomes clear
when solving the effective model by ED on finite clusters so
that quantum fluctuations are taken into account exactly. The
corresponding results for J ′/J = 0.3 on clusters with 16 and
32 dimers are shown in Fig. 5. Most notably, the pCUT(+ED)
and pCUTfinite(+ED) are in agreement with DMRG: one finds
a regular pattern of wheels and the ground-state energy per site
−0.31924 J on an open cluster with 16 dimers is identical.
In fact, the local magnetization profile of pCUTfinite(+ED)
and DMRG, which are performed on the same cluster, are
quantitatively the same. For pCUT(+ED), where the ED is
done on the effective model evaluated in the thermodynamic
limit, one observes the same pattern but more magnetization

FIG. 5. (Color online) Local magnetization of the 1/8 plateau on
an open tube with 16 (left) 32 (right) dimers for J ′/J = 0.3 using
DMRG (top), pCUT(+ED) (middle), and pCUTfinite(+ED) (bottom).
The diameters of circles relate to the local magnetization, which is
also given explicitly as numbers. Positive (negative) values denote a
local magnetization parallel (antiparallel) to the field direction. One
observes the realization of one (left) and two (right) quantum wheels.

is found at the edge of the cluster. This is mainly due to the
isotropic chemical potential, which is the same on all dimers
in contrast to the finite-size approaches as explained in the
method section.

What is the physical origin of these wheels? Since the
wheels are (i) already stable for small values of J ′/J and
(ii) not realized in the CA, this structure has to come from
the perturbatively leading kinetic processes in the effective
pCUT model. The latter are correlated hopping terms arising
in order-two perturbation theory, i.e., wheels are two-particle
objects.

Let us consider one pair of particles. In order to profit
from the leading correlated hopping processes t ′ and t ′′ (see
also Appendix and Fig. 3), particles should be either next-
nearest neighbors in a diagonal configuration (t ′) or nearest
neighbors (t ′ and t ′′). The first configuration is by far more
attractive, since one does not need to pay the large nearest-
neighbor repulsion V1 arising in leading order perturbation
theory. In contrast, the repulsive density-density interaction
over the diagonal V2 is a third-order process and therefore
small as long as J ′/J is small. Nevertheless, this interaction is
larger than the ones appearing in the classical structures and a
classical plateau of particles being in a diagonal configuration
does not represent the classical energy minimum.

One therefore has to maximize quantum fluctuations due to
correlated hopping. This is done by taking the four low-energy
states with energy El

1/8 = 2μ + V2 where two particles are
next-nearest neighbors on adjacent rows. Each of the four
states can fluctuate to two states where both particles are
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nearest neighbors with energy Eh
1/8 = 2μ + V1 due to the correlated hopping t ′. In total, this leads to the finite matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

El
1/8 0 0 0 +t ′ +t ′ 0 0

0 El
1/8 0 0 0 0 +t ′ +t ′

0 0 El
1/8 0 0 −t ′ −t ′ 0

0 0 0 El
1/8 −t ′ 0 0 −t ′

+t ′ 0 0 −t ′ Eh
1/8 0 0 0

+t ′ 0 −t ′ 0 0 Eh
1/8 0 0

0 +t ′ −t ′ 0 0 0 Eh
1/8 0

0 +t ′ 0 −t ′ 0 0 0 Eh
1/8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

and the resulting ground-state energy of a single wheel is
obtained analytically as

Ewheel = El
1/8 + Eh

1/8

2
− 1

2

√(
Eh

1/8 − El
1/8

)2 + 16t ′2

= 2μ + V1 + V2

2
− 1

2

√
(V1 − V2)2 + 16t ′2. (5)

The corresponding eigenvector is a highly entangled two-
particle bound state. Both particles are with the same prob-
ability in one of the four low-energy states and the density is
approximately 1/2 on all four vertical dimers inside the wheel
for J ′/J = 0.3 just as observed in the magnetization profile
deduced by DMRG.

If one assumes the interactions between wheels to be zero
(which is almost the case as shown below), then the ground-
state energy per spin of the crystals of wheels is perturbatively

ε
1/8
0,wheel

J
= Ewheel/32 − 3

8

≈ − 5

16
− 1

16

(
J ′

J

)2

− 5

128

(
J ′

J

)3

. (6)

Interestingly, one finds the energy per spin
ε

1/8
0,wheel ≈ −0.31918 J for J ′/J = 0.3 in good agreement

with DMRG. Note that we have checked that all other
quantum fluctuations do not alter this result significantly.
Most importantly, the order-three expansion of ε

1/8
0,wheel

remains correct in the thermodynamic limit for the full crystal
of wheels.

The astonishing agreement between the extrapolated energy
of DMRG and the single-wheel calculation presented above
is only possible if the interaction between wheels of the 1/8
plateau is negligible. This is, indeed, the case. First, the ground-
state energy per spin in DMRG of ν wheels is almost identical
to ν times the single-wheel energy of a 16-dimer cluster, which
demands the interactions between wheels to be close to zero.
Second, assuming the density of particles on verticle dimers
in a wheel to be roughly 1/2, the interactions between two
neighboring wheels to be paid only involve repulsive density-
density interactions in the effective model starting at least in
order-six perturbation theory giving a negligible energy cost.

Altogether, we found quantitative agreement between all
approaches used. The 1/8 plateau consists of almost decoupled
wheels in a 16-dimer unit cell. Each wheel is a two-particle
bound state, which is stabilized by correlated hopping. It is

therefore reasonable that the crystal of wheels becomes more
stable with increasing J ′/J , since the delocalization of the two
particles due to correlated hopping is even enhanced along the
wheels. This is confirmed by DMRG (see also Fig. 3). One
observes well defined wheels in a broad range of parameters
J ′/J and the width of the 1/8 magnetization plateau increases
for large values of J ′/J .

B. 1/4 plateau

Next, we discuss the second prominent plateau of the four-
leg Shastry-Sutherland model, which is the one at M = 1/4.
The DMRG finds consistently a magnetization profile shown in
Fig. 6 for an open cluster with 64 dimers for J ′/J = 0.3, where
the magnetization is almost distributed uniformly among
all horizontal dimers. The corresponding energy per site is
ε

1/4
0 = −0.26281 J for J ′/J = 0.3. If one increases the ratio

J ′/J to 0.6, the overall structure is similar except that the

FIG. 6. (Color online) Local magnetization of the 1/4 plateau
on an open tube with 64 dimers using DMRG. One observes
the superposition of four diagonal stripes. Top (bottom) panel
corresponds to J ′/J = 0.3 (J ′/J = 0.6). The diameters of circles
relate to the local magnetization, which is also given explicitly as
numbers. Positive (negative) values denote a local magnetization
parallel (antiparallel) to the field direction.
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FIG. 7. (Color online) Illustration of the plateau with M = 1/4
obtained by pCUT(+CA). Thin red (thick dark) lines correspond to
empty (filled) dimers. The most relevant two-particle interactions V2,
V4, V ′

3, and V7 are shown as grey/cyan dashed lines with arrows on
both sides pointing to the two involved filled dimers.

magnetization is transferred more prominently from horizontal
to vertical dimers.

As for the 1/8 plateau, the DMRG result is not explained
within pCUT(+CA), which is shown in Fig. 7. One finds a
classical structure with a 24-dimer unit cell where single par-
ticles are far apart in order to minimize repulsive interactions.
Its energy per spin is ε

1/4
0,cl = −0.26222 J at J ′/J = 0.3 and

therefore roughly 6×10−4 J higher in energy compared to
DMRG. In contrast to the classical 1/8 structure, the one at
1/4 involves two density-density interactions of type V2 per
unit cell and quantum fluctuations induced by the dominant
order-two correlated hopping t ′ can overcome half of this
energy difference. Nevertheless, there remain discrepancies
with respect to energy and with respect to the magnetization
profile that cannot be resolved. Consequently, there must a
different structure behind the observed 1/4 plateau.

In the following, we show that the 1/4 plateau corresponds
to a diagonal stripe, which winds around the tube as illustrated
in Fig. 8, i.e., the translational symmetry is broken in the
thermodynamic limit and a single stripe is realized that is
dressed by quantum fluctuations. We call such a structure
semiclassical, since its energy represents a local minimum
within pCUT(+CA), which becomes the true ground state
when adding leading quantum fluctuations inside the effective
pCUT model. The particles are placed on vertical dimers in the
thermodynamic limit, since the chemical potential is slightly

FIG. 8. (Color online) Illustration of one semiclassical stripe on
vertical dimers relevant for M = 1/4. Thin red (thick dark) lines
correspond to empty (filled) dimers. The most relevant two-particle
interactions V2 and V5 are shown as grey/cyan dashed lines with
arrows on both sides pointing to the two involved filled dimers.
Each particle of the stripe can fluctuate by the dominant order-two
correlated hopping process t ′ to the closest horizontal dimers above
and below the stripe, which is sketched for the particle in the second
row.

lower compared to horizontal dimers. Such a diagonal stripe
costs dominantly one interaction V2 for each particle and its
classical energy per spin −0.26175 J is higher than ε

1/4
0,cl.

Interestingly, quantum fluctuations induced by correlated
hopping lower the classical energy of the diagonal stripe
significantly such that this structure is indeed realized in the
four-leg Shastry-Sutherland model. Each particle on a vertical
dimer of a stripe can use the dominant order-two correlated
hopping process t ′ to fluctuate to the horizontal dimers below
and above the stripe. Again, in the intermediate state, one has
to pay the interaction V1 for particles being nearest neighbors.
Summing over these fluctuation channels in order t ′2/�E, as
for the 1/8 plateau, one gets an energy reduction per spin of
approximately −8t ′2/32V1 = −(J ′/J )3/32, since there are 8
fluctuation channels in the 32-spin unit cell. This results in a
semiclassical energy per spin:

ε
1/4
0,stripe

J
≈ −1

4
− 1

8

(
J ′

J

)2

− 15

256

(
J ′

J

)3

, (7)

which gives −0.26283 J for J ′/J = 0.3 in very good agree-
ment with DMRG.

Up to now, we have considered the symmetry-broken state
in the thermodynamic limit. On a finite open cluster, there
are four equivalent diagonal stripes and the ground state is a
symmetric superposition of the four states. As a consequence,
the densities on all dimers of the stripes have to be the same.
This is exactly what we find using the pCUT(+ED) approach
on clusters with 16 and 32 dimers as displayed in the middle
panel of Fig. 9 for J ′/J = 0.3.

FIG. 9. (Color online) Local magnetization of the 1/4 plateau on
an open tube with 16 (left) 32 (right) dimers for J ′/J = 0.3 using
DMRG (top), pCUT(+ED) (middle), and pCUTfinite(+ED) (bottom).
The diameter of circles relates to the local magnetization which is
also given explicitly as numbers. Positive (negative) values denote a
local magnetization parallel (antiparallel) to the field direction.
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As mentioned above, DMRG finds a similar magnetization
profile up to the fact that the role of vertical and horizontal
dimers is interchanged (see also upper panel of Fig. 9). Exactly
the same kind of pattern is also deduced with pCUTfinite(+ED)
as shown in the lower panel of Fig. 9. The reason of this
discrepancy between the finite-size calculations of the full
Shastry-Sutherland model [DMRG/pCUTfinite(+ED)] and the
finite-size ED of the effective model derived by pCUT in the
thermodynamic limit lies in the different chemical potentials
as discussed already in the method section.

In the pCUT(+ED), the chemical potential of a particle on
a vertical dimer is slightly lower than the one for a particle on
a horizontal dimer. Therefore particles are placed on vertical
dimers. In contrast, although the same effect is present for
pCUTfinite(+ED) in the bulk of the finite cluster, the chemical
potential for particles on horizontal dimers is lower on the edge
of the cluster compared to the corresponding one on vertical
dimers. Since this energy difference is very large, it is natural to
place particles on horizontal dimers when treating the four-leg
Shastry-Sutherland tube on finite clusters.

Altogether, we find very strong evidences for a M = 1/4
magnetization plateau, which corresponds to a semiclassical
diagonal stripe winding around the tube. As for the plateau
at M = 1/8, correlated hopping is essential to stabilize this
structure.

C. Intermediate regime

The magnetization plateaus at M = 1/8 and 1/4 are robust
features for the four-leg Shastry-Sutherland tube and we
were able to find a consistent description between DMRG,
pCUTfinite(+ED), and pCUT(+ED). One may expect addi-
tional structures in between these two plateaus as well as
between 1/4 and 1/2.

For the last case, although we find some signatures for
possible plateaus, it is difficult to identify obviously regular
patterns within DMRG. Furthermore, we did not succeed
in obtaining data from pCUT(+ED) for the cluster with 32
dimers in this regime. Consequently, we refrain from making
predictions and leave this region of the magnetization curve
for future studies.

For the regime 1/8 < M < 1/4, it is also very difficult for
the techniques applied by us to fully resolve the magnetization
curve. Nevertheless, we would like to argue (i) against the
stability of three-particle wheels but (ii) in favor of a plateau
with M = 3/16, which again benefits from correlated hopping.

Since wheels of the 1/8 plateau contain two particles and
the diagonal stripe of the 1/4 plateau has four particles in
a unit cell, one might wonder whether one can construct
a magnetization profile with three particles in a unit cell.
The first idea is to create the analog of a wheel, i.e., a
highly entangled superposition of states where three particles
build stripes in three subsequent rows as sketched in the
upper panel of Fig. 10. Indeed, there are several low-energy
configurations of three particles on vertical dimers such that
(i) only interactions V2 have to be paid and (ii) the dominant
order-two correlated hopping can act. If a crystal of such
three-particle wheels should be realized in the thermodynamic
limit, then the interactions between neighboring wheels must
be very small. This implies three empty rows in order to

FIG. 10. (Color online) The upper panel illustrates a crystal of
three-particle wheels having M = 1/8. Wheels are highlighted by
black boxes. The lower panel shows a plateau with M = 3/16
consisting of a classical M = 1/8 diamond structure, which is doped
by a third particle in each unit cell which delocalize around the tube by
correlated hopping. Thin red (thick dark) lines correspond to empty
(filled) dimers. Delocalized particles are sketched as thick dark lines
of half length.

avoid paying the dominant repulsions V1 and V3. As a
consequence, the interaction between wheels is essentially
zero. One can then use pCUT(+ED) on a single 12-dimer
cluster to get the energy per spin −0.31912 J for J ′/J = 0.3 in
the thermodynamic limit for this structure with M = 1/8. This
crystal of three-particle wheels is therefore not realized in the
four-leg Shastry-Sutherland tube, since its energy is larger than
the corresponding one of two-particle wheels discussed above.
Physically, the relatively large energy of three-particle wheels
compared to two-particle wheels comes mainly from larger en-
ergy costs due to strong repulsive density-density interactions
between the three particles inside the entangled wheel. Indeed,
there is a large particle density on nearest-neighbor vertical
dimers such that one has to pay the large interaction V3.

Next, we discuss a crystal with magnetization M = 3/16,
which is a promising candidate for the intermediate regime
between 1/8 and 1/4, at least for not too large values of J ′/J .
The corresponding structure benefits again from correlated
hopping, but at the same time it displays features of a classical
plateau (see lower panel of Fig. 10). One builds a classical
M = 1/8 structure having a unit cell of 16 dimers such that
one pays only V5 interactions. This classical structure is
the analog of the M = 1/8 plateau with a diamond unit cell
discussed for the 2D Shastry-Sutherland model [19]. Now
the third particle is doped inside each unit cell so that it
can fully delocalize on two vertical dimers of the same row
resulting in a structure with M = 3/16. For small values of
J ′/J , there are (i) very small energy costs between classical
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particles having no doped particles in between, (ii) the
doped particle completely delocalizes around the tube due to
correlated hopping building a single-particle wheel, and (iii)
each classical particle has one fluctuation channel benefitting
from the dominant order-two correlated hopping process as
illustrated in the lower panel of Fig. 10.

One can estimate the energy per spin of such a 3/16 plateau
for small values of J ′/J . We therefore take the two low-energy

states with an energy El
3/16 = 3μ + 2V2 where three particles

are located in diagonal stripes oriented from left down to
right up in the lower part of the tube or from left up to right
down in the upper part of the tube. Furthermore, there are six
high-energy states. Two states (four states) with an energy
Eh1

3/16 = 3μ + V1 + V5 (Eh2
3/16 = 3μ + V1 + V2 + V4) where

the inner (outer) particle(s) hops due to the correlated hopping
process t ′. In total, one finds the finite matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

El
3/16 0 t ′ t ′ +t ′ +t ′ 0 0

0 El
3/16 t ′ t ′ 0 0 +t ′ +t ′

t ′ t ′ Eh1
3/16 0 0 0 0 0

t ′ t ′ 0 Eh1
3/16 0 0 0 0

+t ′ 0 0 0 Eh2
3/16 0 0 0

+t ′ 0 0 0 0 Eh2
3/16 0 0

0 +t ′ 0 0 0 0 Eh2
3/16 0

0 +t ′ 0 0 0 0 0 Eh2
3/16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

and one obtains the ground-state energy per spin perturbatively
as

ε
3/16
0

J
≈ − 9

32
− 3

32

(
J ′

J

)2

− 7

128

(
J ′

J

)3

. (9)

As for the other plateaus with M = 1/8 and 1/4, we observe
strong binding effects due to correlated hopping. Setting
J ′/J = 0.3, one obtains ε

3/16
0 = −0.29116 J .

Let us investigate whether this plateau with M = 3/16 is
realized in the magnetization curve by comparing it to the
plateaus at M = 1/8 and 1/4. In the limit of small J ′/J ,
this can be done via the order-three series of the ground-state
energy per spin, which we have given for all three plateaus.
If one defines the magnetizations Mn(h) = εn

0 − nh with
n ∈ {1/8,3/16,1/4} as a function of the magnetic field h,
then crossings between two structures signal first-order phase
transitions. In the present case, one finds that the transition
between 1/8 and 3/16 takes place at 1/2 − (1/2)(J ′/J )2 −
(1/4)(J ′/J )3, while the one between 3/16 and 1/4 happens
at 1/2 − (1/2)(J ′/J )2 − (1/16)(J ′/J )3. Here, we have set
J = 1. Consequently, the plateau at M = 3/16 is always
realized in the limit of small J ′/J with a width (3/64)(J ′/J )3

assuming no other phase not considered here is favored.
Since this M = 3/16 structure has the same 16-dimer unit

cell as the two-particle wheel with M = 1/8 and the diagonal
stripe with M = 1/4, one can also compare these plateaus
on the same cluster to see which magnetization is present
in the magnetization curve. The DMRG on open clusters
of 32 and 64 dimers does not observe this plateau. The
reason is again the very large chemical potential on vertical
dimers at the edge of the clusters which makes this structure
energetically disfavored. This is different for pCUT(+ED),
which realizes this M = 3/16 structure for J ′/J = 0.3 on the
32-dimer cluster with open and periodic boundary conditions
(see Figs. 2 and 11). One finds exactly the same ground-state
energy per spin −0.29116 J for pCUT(+ED) on the periodic
32-dimer cluster strongly confirming the above considerations.

We also performed DMRG on the same 32-dimer cluster
using periodic boundary conditions. The corresponding local
magnetization is shown in Fig. 11. The DMRG converges
to a homogenous solution with an energy −0.29115 J only
slightly higher than the one given above. Nevertheless, the
periodic boundary conditions applied here make it more
difficult to converge. Indeed, we find that the values of the local
magnetizations can vary by up to 3×10−3 on equivalent sites,

FIG. 11. (Color online) Local magnetization of the 3/16 plateau
on a tube with 32 dimers for J ′/J = 0.3 using pCUT(+ED) (bottom)
and DMRG (topl) with periodic boundary conditions. The diameter of
circles relates to the local magnetization, which is also given explicitly
as numbers. Positive (negative) values denote a local magnetization
parallel (antiparallel) to the field direction.
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which is considerably larger than similarly estimated errors
when applying open boundary conditions in the longitudinal
direction. Interestingly, the structure looks very similar to the
one found by pCUT(+ED) except that the role of vertical
and horizontal dimers is interchanged. The DMRG result on
this cluster looks like a state where effectively four particles
build a classical 1/8 plateau with a diamond unit cell on
horizontal dimers while the remaining two particles delocalize
via correlated hopping horizontally. From the considerations
above, it is reasonable that such a state has also a very low
energy for this cluster, which is slightly above the true ground
state. We expect that the energy difference between these two
states increases with increasing system size, since particles
delocalizing horizontally in the same row have to pay repulsive
interactions. As a consequence, it might be easier for the
DMRG to resolve this structure, in which the vertical dimers
are polarized, on larger systems.

Interestingly, the plateau at M = 3/16 is not present within
pCUT(+ED) for a larger ratio J ′/J = 0.5. Physically, we
suspect that this structure, which combines elements of a
classical plateau and a highly entangled one-particle wheel,
does not benefit as much from correlated hopping with
increasing J ′/J as the two-particle wheel with M = 1/8
(see Fig. 2).

V. IMPLICATIONS FOR 2D

In this section, we discuss how our findings for the quasi-
2D Shastry-Sutherland tube relate to the physics of the two-
dimensional Shastry-Sutherland model, which is believed to be
a good microscopic model for the frustrated quantum magnet
SrCu(BO3)2. To this end, we focus on the dominant plateaus
at M = 1/8 and 1/4, since the plateau at M = 3/16 is only
present for small J ′/J in the tube while the origin of the
M = 1/2 is anyway not debated.

A. M = 1/8

Let us start with the interesting plateau at M = 1/8 of
the four-leg Shastry-Sutherland tube consisting of highly
entangled wheels oriented transverse to the tube direction.
Each 16-dimer unit cell contains one wheel where two particles
are essentially delocalized over the inner four vertical dimers.

This plateau is certainly specific to the tube geometry.
Indeed, due to the finite transverse extension, a finite number
of triplons in one wheel is sufficient to construct a structure at
finite density. It becomes then preferable for the four-leg tube
to fully delocalize the two triplons in such a wheel in order to
benefit maximally from correlated hopping.

Now imagine we increase the number of legs Nlegs of the
tube up to infinity, which corresponds to the two-dimensional
case. If one creates the same kind of state as above, i.e., we
take a rectangular unit cell of size 4×Nlegs, which contains two
delocalized triplons, one obtains a magnetization 2/(4Nlegs)
which decreases gradually with Nlegs. For Nlegs = 6, one then
expects a similar plateau at M = 1/12, for Nlegs = 8 one has a
plateau at M = 1/16, and so on. However, in the limit Nlegs →
∞, this kind of state corresponds to a zero-density state and is
thus irrelevant for the two-dimensional system.

FIG. 12. (Color online) Local magnetization of the 1/8 plateau
on a four-leg system with 64 dimers for J ′/J = 0.3 using open
boundary conditions in both directions obtained by DMRG. The
diameters of circles relate to the local magnetization, which is also
given explicitly as numbers. Positive (negative) values denote a local
magnetization parallel (antiparallel) to the field direction.

Nevertheless, we would like to stress that although the
wheels are specific to the tube geometry, the mechanism,
which stabilizes the wheels, is very likely relevant for the
2D Shastry-Sutherland model. Indeed, the recently discovered
crystals of bound states for the 2D problem [23] have exactly
the same quantum numbers as our crystal of wheels, i.e., in
both systems two-particle bound states with Sz

tot = 2 are found.
It is therefore tempting to interpret the pinwheel structures in
2D as two particles gaining kinetic energy due to correlated
hopping processes. Furthermore, we observe similar pinwheel
structures also in the four-leg system when applying open
boundary conditions to the both directions (see Fig. 12). While
we leave a detailed study of this case to future studies, this
finding again indicates that the our physical picture obtained
for the four-leg Shastry-Surtherland tube is likely of relevance
for the full 2D case.

B. M = 1/4

For M = 1/4, we find that correlated hopping stabilizes a
semiclassical structure consisting of a diagonal stripe which
wraps around the tube. This structure does not correspond
to the classical solution. Quantum fluctuations induced by
correlated hopping are essential to lower the energy of this
structure.

Interestingly, such diagonal stripes have been proposed for
the M = 1/4 plateau of the two-dimensional model as well as
for the experimental compound SrCu(BO3)2 [10,11,18,23], but
no microscopic mechanism was yet deduced for this structure,
e.g., no plateau at M = 1/4 has been found in Ref. [19], where
the classical limit of the effective two-dimensional model has
been investigated in detail. Our microscopic results for the
four-leg Shastry-Sutherland tube indicate that this discrepancy
is due to neglecting quantum fluctuations induced by correlated
hopping. Furthermore, we expect that the energy per site of
the M = 1/4 plateau on the tube should be very close to
the one of the corresponding two-dimensional structure. The
reason is that the two-dimensional structure fits perfectly on
the four-leg tube geometry and virtual fluctuations feeling the
finite transverse extension of the tube are clearly of subleading
order.

VI. CONCLUSIONS

In this work, we have studied the magnetization pro-
cess of a four-leg Shastry-Sutherland tube by DMRG,
pCUT(+CA/+ED), and pCUTfinite(+ED). Most importantly,
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we have identified unconventional magnetization plateaus at
M = 1/8 and 1/4, which do not correspond to classical
structures of frozen triplons. In all cases, quantum fluctuations
induced by correlated hopping processes of triplons are
essential. We stress that both plateaus are stable in a broad
range of parameters.

The nature of the two plateaus is strikingly different.
The plateau at M = 1/4 is understood semiclassically by a
diagonal stripe of triplons wrapping around the tube. It is
this structure that benefits most from correlated hopping. In
contrast, the low-magnetization plateau at M = 1/8 consists of
highly entangled transverse wheels where each wheel contains
a two-triplon bound state, which fully delocalizes around the
tube.

The intermediate regimes between M = 1/8 and 1/4
as well as the one between M = 1/4 and 1/2 are very
demanding to pinpoint. Here, one is facing the problem that
different structures with already large unit cells may build
superstructures with even larger unit cells, which are very
hard to treat by any theoretical method. We think it might be
an interesting option to use DMRG or other variational tools
directly on the effective model derived by pCUT in order to
tackle this question at least in the limit of small J ′/J where
the effective model is fully converged. At the same time, this
may shed light on the appearance of pair superfluids at very
low magnetizations or supersolid phases in the intermediate

regimes. Indeed, correlated hopping is known to be able to
stabilize such phases [14,36–38].

Our work shows that correlated hopping processes, or more
generally quantum fluctuations, are important also for the
two-dimensional case. This aspect is very likely the reason
between the discrepancies of the pCUT(+CA) approach
used in Ref. [19] finding magnetization plateaus of single
triplons and the recently discovered sequence of magnetization
plateaus of two-particle bound states [23]. The possibility of
delocalized two-particle bound states arising from correlated
hopping processes in an effective hardcore boson model has
been already discussed very early in Ref. [14]. It is therefore
not the effective model derived by pCUT that fails for the
crystal of bound states, but it is clear that the CA is not
able to treat correlated hopping processes well as we have
seen impressively for the Shastry-Sutherland four-leg tube.
Altogether, our study of the four-leg Shastry-Sutherland tube
has revealed fascinating magnetization plateaus which, once
again, shows the rich physics of highly frustrated quantum
magnets in a magnetic field.
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APPENDIX

In this Appendix, we give the series expansions of the most relevant amplitudes of the effective pCUT model. One-body
operators (two-body operators) are calculated up to order 15 (14) in the parameter x ≡ J ′/J . Note that we have set J = 1 in all
expressions.

1. One-body operators

In the following we show the series expansions for the chemical potential on vertical and horizontal dimers as well as the
hopping over the diagonal:

tv
(0,0) = 1 − x2 − 1

2
x3 − 1

8
x4 + 5

32
x5 + 3

128
x6 − 1699

4608
x7 − 35107

55296
x8 − 259061

663552
x9 + 974687

6635520
x10 + 1151870527

4777574400
x11

− 23323367629

38220595200
x12 − 40392669400271

22932357120000
x13 − 102289876433461163

57789539942400000
x14 − 8204339820020446111

48543213551616000000
x15,

th
(0,0) = 1 − x2 − 1

2
x3 − 1

8
x4 + 5

32
x5 + 3

128
x6 − 1699

4608
x7 − 35107

55296
x8 − 259061

663552
x9 + 194755

1327104
x10 + 1153266463

4777574400
x11

+ 116030601329

191102976000
x12 + 40140647360519

22932357120000
x13 + 20172410628174247

11557907988480000
x14 + 12277459855094982833

59708642710323200000
x15,

tv
(1,1) = − 1

96
x6 − 11

576
x7 − 83

4608
x8 − 2447

663552
x9 − 10487557

79626240
x10 − 303150173

9555148800
x11 − 6754465217

76441190400
x12

− 14930736446759

137594142720000
x13 − 212436546502069

4280706662400000
x14 + 1767219308670276631

97086427103232000000
x15,

th
(1,1) = − 1

96
x6 − 11

576
x7 − 83

4608
x8 − 2447

663552
x9 − 10487557

79626240
x10 − 303150173

9555148800
x11 − 6759171137

76441190400
x12

− 149631502102793

137594142720000
x13 − 1133557569961

22649241600000
x14 + 1750239587860726951

97086427103232000000
x15

with tv
(1,1) = tv

(−1,1) and th
(1,1) = th

(−1,1). In the main body of the paper, we often use μ for the chemical potential on all dimers,
which reflects the fact that tv

(0,0) and th
(0,0) only differ in order 10.
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2. Two-body density-density interactions

The type of density-density interactions called V1 in the main body of the text is given by

V v
(1,0),(0,0),(1,0) = 1

2
x + 1

2
x2 − 1

8
x3 − 9

16
x4 − 3

64
x5 + 809

768
x6 + 2173

3072
x7 − 70543

24576
x8 − 37816411

5308416
x9

− 2055058321

637009920
x10 + 12212246377

76441190400
x11 + 329845478498011

9172942848000
x12

+ 52342527662776237

1100753141760000
x13 + 19409208366246467731

924632639078400000
x14,

V v
(0,1),(0,0),(0,1) = 1

2
x + 1

2
x2 − 1

8
x3 − 9

16
x4 − 3

64
x5 + 809

768
x6 + 2173

3072
x7 − 211309

73728
x8 − 37640899

5308416
x9

− 396983309

127401984
x10 + 341825781751

25480396800
x11 + 62793791370601

3057647616000
x12

+ 544988441572090729

1100753141760000
x13 + 30729593506190988097

924632639078400000
x14.

The type of density-density interactions called V3 in the main body of the text read

V v
(2,0),(0,0),(2,0) = 1

2
x2 + 3

4
x3 − 1

8
x4 − 49

64
x5 − 289

768
x6 + 4019

9216
x7 + 77609

110592
x8 + 243991

1327104
x9

− 73855279

79626240
x10 − 1584489421

1061683200
x11 − 1756843

119439360
x12

+ 100261859756351

45864714240000
x13 + 183832105244723489

115579079884800000
x14,

V h
(0,2),(0,0),(0,2) = 1

2
x2 + 3

4
x3 − 5

16
x4 − 11

64
x5 + 73

768
x6 − 1729

3072
x7 + 47567

36864
x8 − 386201

1327104
x9

− 157817

81920
x10 + 25294352587

9555148800
x11 − 5584694533789

1146617856000
x12

+ 46040943841567

27518828544000
x13 + 155882295114023201

19263179980800000
x14.

The type of density-density interactions called V2 in the main body of the text read

V v
(1,1),(0,0),(1,1) = 1

4
x3 + 3

8
x4 + 23

64
x5 − 41

128
x6 − 337

192
x7 − 283327

221184
x8 + 23684687

5308416
x9

+ 1362906325

127401984
x10 − 12212246377

76441190400
x11 − 329845478498011

9172942848000
x12

− 52342527662776237

1100753141760000
x13 + 19409208366246467731

924632639078400000
x14,

V h
(1,1),(0,0),(1,1) = 1

4
x3 + 3

8
x4 + 23

64
x5 − 39

128
x6 − 971

576
x7 − 262199

221184
x8 + 23806187

5308416
x9

+ 6742797373

637009920
x10 − 15167380493

76441190400
x11 − 326101716505943

9172942848000
x12

− 51636671081928193

1100753141760000
x13 + 9661058826847003663

924632639078400000
x14.

The type of density-density interactions called V4 in the main body of the text read

V v
(2,1),(0,0),(2,1) = 1

8
x4 + 17

64
x5 + 77

768
x6 − 3571

9216
x7 − 59017

110592
x8 + 1339739

2654208
x9 + 323608631

159252480
x10

+ 51274985519

38220595200
x11 − 3458863679681

1146617856000
x12 − 3387691098242909

550376570880000
x13

+ 180169037145982051

231158159769600000
x14,
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V v
(1,2),(0,0),(1,2) = 1

8
x4 + 17

64
x5 − 17

384
x6 − 6349

9216
x7 − 17633

36864
x8 + 4476433

2654208
x9 + 567596647

159252480
x10

− 11178106469

38220595200
x11 − 18177464069

1887436800
x12 − 4776276471478103

550376570880000
x13

+ 8711588250104481127

462316319539200000
x14.

All other density-density interactions appear in at least order 6 or higher.

3. Correlated hopping

The type of correlated hopping called t ′ in the main body of the text is given by

V h
(1,0),(1,0),(0,1) = −1

4
x2 − 5

16
x3 + 9

64
x4 + 89

128
x5 + 3731

6144
x6 − 42367

49152
x7 − 9616315

3538944
x8

− 24411431

28311552
x9 + 77453067637

10192158720
x10 + 1109080209497

81537269760
x11

− 832683372515471

146767085568000
x12 − 102609109563591289

1956894474240000
x13 − 23343475477851433

46965467381760000
x14,

V v
(0,1),(0,1),(1,0) = −1

4
x2 − 5

16
x3 + 9

64
x4 + 89

128
x5 + 3731

6144
x6 − 42367

49152
x7 − 9647035

3538944
x8

− 8536973

9437184
x9 + 76437263413

10192158720
x10 + 611075103877

45298483200
x11

− 830592692720663

146767085568000
x12 + 8302601110042189391

17612050268160000
x13 − 668866209122606693

986274815016960000
x14.

The type of correlated hopping called t ′′ in the main body of the text is given by

V h
(1,0),(1,0),(2,0) = 1

4
x2 + 3

8
x3 + 1

8
x4 − 13

32
x5 − 61

64
x6 − 591

1024
x7 + 107867

73728
x8 + 6013199

1769472
x9

− 6901591

14155776
x10 − 24515591279

1698693120
x11 − 16279526208581

611529523200
x12

− 96063688771843

24461180928000
x13 + 3942846918014280953

61642175938560000
x14,

V v
(0,1),(0,1),(0,2) = 1

4
x2 + 3

8
x3 + 1

8
x4 − 13

32
x5 − 61

64
x6 − 591

1024
x7 + 107227

73728
x8 + 5931755

1769472
x9

− 14923729

23592960
x10 − 374548151797

25480396800
x11 − 16400221354633

611529523200
x12

− 1291801992179591

366917713920000
x13 − 6066194272818874343

154105439846400000
x14.
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