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An effective medium theory for resonant and nonresonant metamaterials for flexural waves in thin plates is
presented. The theory provides closed-form expressions for the effective mass density, rigidity, and Poisson’s
ratio of arrangements of isotropic scatterers in thin plates, valid for low frequencies and moderate filling fractions.
It is found that the effective Young’s modulus and Poisson’s ratio are induced by a combination of the monopolar
and quadrupolar scattering coefficient, as it happens for bulk elastic waves, while the effective mass density
is induced by the monopolar coefficient, contrarily as it happens for bulk elastic waves, where the effective
mass density is induced by the dipolar coefficient. It is shown that resonant positive or negative effective elastic
parameters are possible, being therefore the monopolar resonance responsible for creating an effective medium
with negative mass density. Several examples are given for both nonresonant and resonant effective parameters
and the results are numerically verified by multiple scattering theory and finite element analysis.
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I. INTRODUCTION

In the last few years, the field of metamaterials has received
increasing attention, due to the extraordinary properties of
these structures to control the propagation characteristics of
electromagnetic [1,2], acoustic [3,4], or elastic [5,6] waves.
Consisting essentially in periodic arrangements of wave in-
teracting units or scatterers, these advanced structures behave
as materials with extraordinary constitutive parameters, such
as negative permittivity [7], anisotropic mass density [8], or
negative elastic modulus [9]. The wide variety of phenomena
and applications found for these structures has motivated the
research in this field not only for bulk waves, but also for
confined [10,11] or surface waves [12,13].

More specifically, the control of the propagation of flexural
waves in thin elastic plates has been widely studied. For
instance, cloaking devices [14–16], flat lenses based on
negative refraction [17,18], gradient index flat and circular
lenses [19–21], and omnidirectional absorbers [22,23] for
flexural waves have been recently proposed and experimentally
verified. Also, the dispersion relation of plates with periodic
arrangements of rigid pins [24,25], holes [26], attached
pillars [27–29], or pointlike spring-mass resonators [30–32]
attached to them has been investigated by several groups, as
well as the resonant properties of complex inclusions [33].

In the aforementioned works, the properties of the complex
structure are mainly determined by band-structure calculation
since an effective medium theory for the description of these
new metamaterials, specially relating the different resonant
parameters with the corresponding symmetry of the field, has
not been given so far, as has been done for acoustic or bulk
elastic waves.

In this work, we present a theory for elastic metamaterials
for flexural waves based on the scattering properties of
arrangements of scatterers or resonators. This homogenization
method has been previously employed for either electromag-
netic [34,35], acoustic [3], and elastic waves [36,37], and the
resonant effective parameters have been properly assigned to
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different symmetries of the fields; in this work, we obtain
similar relationships for flexural waves, but with important
differences given that these waves are not described by the
Helmholtz equation but by the biharmonic equation [38,39].

Thus, the presented theory obtains the effective parameters
as a function of the filling fraction of the inclusions, their
physical properties, and the frequency. The theory is valid for
low- and mid-filling fractions, being necessary the inclusion
of the multiple scattering terms in order to cover the full
range of inclusions’ radii, however, it still provides a good
description of the effective materials’ properties for both
frequency-dependent and nondependent structures.

The paper is organized as follows: After this Introduction,
in Sec. II the general procedure for obtaining the effective
parameters from the scattering properties of clusters of
inclusions or resonators is explained. Following, Sec. III
describes the scattering properties of a circular inclusion in a
thin plate, and the low-frequency behavior of these scattering
properties is analyzed by means of the so-called T matrix. This
low-frequency behavior is used in Sec. IV to obtain closed-
form expressions for the effective parameters of arrangements
of scatterers and resonators in thin plates. The theory is nu-
merically validated in Sec. V, where two-dimensional multiple
scattering simulations and three-dimensional finite element
calculations are performed. Finally, results are summarized in
Sec. VI. The Appendix A contains some mathematical details
about the analytical derivations.

II. HOMOGENIZATION FROM THE
SCATTERING PROPERTIES

This section shows the general procedure to obtain the
effective properties of a given collection of scatterers when
interacting with a field which satisfies Helmholtz equation. As
mentioned in the previous section, this method has been widely
employed for the homogenization at low-filling fractions
of electromagnetic, elastic, and acoustic metamaterials. The
objective of this section is to present it in such a way that its
application to flexural waves be straightforward.

Figure 1 shows the schematic view of a general homoge-
nization procedure based on multiple scattering: An incident
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FIG. 1. (Color online) Schematic view of the homogenization
process based on the effective T -matrix formalism. An incident field
ψ0 arrives to a circular cluster of N scatterers. It is expected that in the
low frequency the cluster behaves like an effective circular scatterer
of radius Reff and parameters ρeff, Deff , and νeff . The parameters
are obtained by comparing the low-frequency limit of the scattering
properties, defined by means of the cluster and effective T matrices.

field ψ0 impinges a circular cluster of scatterers, and it excites
a scattered field ψsc = Tclsψ0, being Tcls the T matrix of
the cluster, which is a function of the frequency and the
physical properties of the scatterers. We expect that, in the
low-frequency limit, this cluster behaves like an effective
circular scatterer of radius Reff and some effective parameters
which will depend on the nature of the wave under study. In
this work, as will be shown later, the parameters describing any
scatterer will be the effective mass density ρeff , the effective
Poisson’s ratio νeff , and the effective rigidity Deff .

The homogenization procedure consists in obtaining these
effective parameters from the low-frequency behavior of the
T matrix of the cluster since it is expected to be identical to
the T matrix of the effective scatterer Teff computed by means
of the effective parameters to be obtained. Thus, the effective
parameters are obtained from [40]

lim
ω→0

Tcls = lim
ω→0

Teff . (1)

The left-hand side of the above equation is a known
quantity since we decide the nature, size, and position of
the scatterers, while the right-hand side of the equation
contains the parameters to be determined, therefore the above
equation provides a solution for the effective parameters of the
medium.

In general, in either two and three dimensions, both the
incident field and the scattered field are expanded in multipolar
fields, for instance, in two dimensions we have that the fields

are in general given by

ψ0 =
∑

q

Aqψ
0
q (kbr)eiqθ , (2a)

ψsc =
∑

q

Bqψ
sc
q (kbr)eiqθ , (2b)

being r and θ the polar coordinates and q an integer
number representing the mode’s symmetry. Here, kb is the
background’s wave number and ψ0

q and ψsc
q are usually Bessel

and Hankel (or related) functions representing the incident
and scattered fields, respectively. The T matrix relates the Bq

coefficients with the Aq , that is,

Bq =
∑

s

TqsAs. (3)

In the case of a circular homogeneous scatterer, the T matrix
becomes diagonal, then Tqs = Tqδqs . The T matrix of a cluster
of scatterers is not diagonal in general since it is obvious that
the structure is not invariant under rotations, but in the low-
frequency limit this T matrix becomes diagonal [40] since in
this limit it is behaving like a homogeneous scatterer (actually
this is only true for isotropic arrangements of scatterers, the
anisotropic case is different and beyond the scope of this work).

In the low-frequency limit, all the Tq elements go to zero,
although the trend is different for each multipolar order q. For
instance, in the case of electromagnetic or acoustic scatterers,
the dominant terms are the T0 and T1 elements, which go to
zero as ω2, while for elastic waves in solids the dominant
terms are the T0, T1, and T2 elements. It is from the dominant
terms from which we obtain the effective parameters, and the
number of dominant terms is consistent with the number of
parameters to determine. Thus, for electromagnetic waves we
need two dominant terms since we have to obtain the effective
permeability μ and permittivity ε. Similarly, in acoustics we
need to obtain the effective bulk modulus B and mass density
ρ and again we have two dominant terms. Finally, for elastic
waves in solids, we need three parameters, the two Lamé
coefficients λ and μ and the mass density, and we have three
dominant terms in the low-frequency limit.

It can be shown [41,42] that the general structure of the
dominant term of the T matrix of a homogeneous scatterer of
radius Ra is, in two dimensions,

Tq ≈ iπk2
bR

2
a

4
�a

q , (4)

being �a
q a function of the scatterer’s parameters, whose ex-

plicit expression depends on the nature of the field considered.
The expression is valid as well for the effective scatterer;
therefore, in this limit the dominant terms of the effective
T matrix are

(Tq)eff ≈ iπk2
bR

2
eff

4
�eff

q . (5)

Also, it can be shown that the T matrix of the cluster is, as
a first approximation, i.e., neglecting the multiple scattering
terms, the addition of the T matrices of all the scatterers [40].
If all of them are identical and we have N scatterers in the
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cluster, we get

(Tq)cls ≈ N
iπk2

bR
2
a

4
�a

q . (6)

The homogenization procedure implies equating the last
two equations and defining the filling fraction as

f = NR2
a/R

2
eff, (7)

then we get

�eff
q = f �a

q , (8)

from which we can obtain the effective parameters. If instead
of having N identical scatterers we have N1 scatterers of type
1, N2 scatterers of type 2, and so on, and they form an isotropic
medium, we have that

�eff
q =

∑
i

fi�
i
q, (9)

where fi is the partial filling fraction of the scatterer of type i.
It must be pointed out that the filling fraction is defined

here in terms of the effective radius of the cluster Reff , which,
as shown in Ref. [43], is not well defined and its definition
can obviously affect the effective parameters. However, in
this work we define the effective radius of the cluster so that
the filling fraction be identical to that of the corresponding
underlying lattice in which the scatterers are arranged. This
definition was employed and analyzed by Torrent et al. in
Refs. [40,44,45], where it was shown that it is a very consistent
definition for the analysis of both ordered and disordered
systems. For instance, for scatterers arranged in a triangular
lattice, the filling fraction is f = 2π/

√
3R2

a/a
2, so that the

effective radius of the cluster will be given by

Reff =
√√

3N

2π
a. (10)

Equations (8) and (9) do not contain information about the
specific order of the scatterers in the cluster. However, since
we have assumed that the effective medium is isotropic, we are
implicitly limiting the theory to symmetric lattices (triangular
or square), being the difference between these arrangements
the definition of the filling fraction. A deeper influence of
the lattice symmetry as well as the possibility of having
nonsymmetric lattices can be done by the inclusion of the
multiple scattering terms and by assuming that the effective
scatterer is anisotropic, however, this analysis is beyond
the objective of this work (see Refs. [8,44] for an example
of these methods in acoustics).

As an application of the previous method for acoustic
waves, we have for instance that �a

0 = 1 − Bb/Ba , being
Bb and Ba the bulk modulus of the background and the
scatterer, respectively. Using the above equation, we obtain
the well-known expression for the effective bulk modulus of a
composite

1

Beff
= 1 − f

Bb

+ f

Ba

(11)

or, in the most general case,

1

Beff
= 1 − f

Bb

+
∑

i

fi

Bi

. (12)

In the next section, the scattering of flexural waves in thin
plates is described in terms of the T matrix, and the dominant
terms are derived for later use in the extraction of the effective
parameters of an ensemble of scatterers.

III. SCATTERING OF FLEXURAL WAVES
BY A CIRCULAR INCLUSION

The equations describing flexural waves can be found
in many textbooks (see for instance Refs. [38,39]). If the
wavelength of the field is larger than the thickness of the plate,
the wave equation is the fourth-order differential equation

− ∂2

∂x2

(
Db

[
∂2W

∂x2
+ νb

∂2W

∂y2

])

− ∂2

∂y2

(
Db

[
∂2W

∂y2
+ νb

∂2W

∂x2

])

− 2
∂2

∂x∂y

(
Db(1 − νb)

∂2W

∂x∂y

)
= ρh

∂2W

∂t2
, (13)

being ρb, hb, and Db = Ebh
3
b/12(1 − ν2

b ) the mass density,
thickness, and rigidity of the plate, respectively, with Eb

the Young’s modulus and νb the Poisson’s ratio. When
the background’s parameters are constant and we assume
harmonic time dependence of the field W , the above equation
reduces to

(Db∇4 − ρbhbω
2)W (x,y) = 0, (14)

whose solution in polar coordinates is given by a linear
combination of Bessel and modified Bessel functions [46] of
argument kb, such that

k4
b = ρbhb

Db

ω2. (15)

In this work, we are interested in describing scattering
processes by circular inclusions in the low-frequency limit,
defined for wavelengths such that λ > 4a, being a the typical
distance between scatterers. Thus, as long as the thickness
of the plate is smaller than a, the above equation is a good
approximation. We have chosen the thickness of the plate
hb = 0.1a, which ensures that the previous theory is valid
even when the field propagates inside complex scatterers, as
will be discussed in Sec. IV.

For a scattering problem, the incident field is expressed as

W0 =
∑

q

[
AJ

q Jq(kbr) + AI
qIq(kbr)

]
eiqθ , (16)

while the scattered field is given by

Wsc =
∑

q

[
BH

q Hq(kbr) + BK
q Kq(kbr)

]
eiqθ . (17)

If the scatterer is a circular inhomogeneity of radius Ra

we have that, inside the scatterer (r < Ra), since there are no
sources, the field is expressed as

Wi =
∑

q

[
CJ

q Jq(kar) + CI
q Iq(kar)

]
eiqθ . (18)

Boundary conditions are explained, for instance, in
Ref. [46], and they provide a system of four equations which
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solve for the fourth unknowns: two scattering coefficients
BH

q ,BK
q and the two internal coefficients CJ

q ,CI
q . The system

of equations can be expressed as (see the Appendix A for
details)

X0
qAq + X sc

q Bq = Xa
qCq, (19a)

Y 0
qAq + Y sc

q Bq = Y a
qCq, (19b)

where the matrices X i
q and Y i

q , with i = 0,sc,a, are 2×2 ma-
trices given in the Appendix A and the coefficient vectors are
Aq = (AJ

q ,AI
q), Bq = (BH

q ,BK
q ), and Cq = (CJ

q ,CI
q ). Solving

for Ci
q from Eq. (19a) and inserting into Eq. (19b) gives

Y 0
qAq + Y sc

q Bq = Y a
q

(
Xa

q

)−1(
X0

qAq + X sc
q Bq

)
, (20)

from which we can solve for the Bq as a function of Aq :

Bq = −[
Y sc

q − Y a
q

(
Xa

q

)−1
X sc

q

]−1

×[
Y 0

q − Y a
q

(
Xa

q

)−1
X0

q

]
Aq. (21)

The above equation defines the T matrix of the scatterer,
and it gives the scattering coefficients Bq as a function of Aq .
It is a 2×2 matrix and each element of the matrix relates the
excitation of a different mode, that is, in full matrix form we
have (

BH
q

BK
q

)
=

(
T HJ

q T HI
q

T KJ
q T KI

q

)(
AJ

q

AI
q

)
. (22)

If the scatterer is a hole, the clamped free boundary
conditions give simply

Bq = −(
Y sc

q

)−1
Y 0

qAq. (23)

The effective medium defined by a cluster of scatterers will
be described by means of the three parameters appearing in the
wave equation (13), which are the mass density ρeff (actually
the surface mass density ρeffheff), the effective rigidity Deff ,
and the effective Poisson’s ratio νeff . Thus, in principle, we
would expect that the dominant terms of the T matrix be three,
as it happens for bulk elasticity, however, it will be shown that
the case of flexural waves is different.

As shown in Ref. [47], in the low-frequency (wave-number)
limit, the elements of the T matrix of a hole depend on each
multipolar order q, as expected. Thus, the q = 0 element is

T0 ≈ iπ (kbRa)2

4

1

1 − νb

(
νb −1

−2i/π 2iνb/π

)
, (24)

while the q = 1 is

T1 ≈ iπ (kbRa)4

32

1

1 − νb

(
1 + νb −2
−4i/π 2i(1 + νb)/π

)
, (25)

finally, for q � 2 we have

Tq ≈ iπ (kbRa)2q−2

22q−1(q − 1)!(q − 2)!

1 − νb

3 + νb

(
1 1

2i/π 2i/π

)
. (26)

The above expressions show that in the low-frequency limit,
the dominant terms of the T matrix are the q = 0 and the
q = 2, unlike in other waves like acoustic or electromagnetic
where the dominant terms are the q = 0 and the q = 1. Only
in the elastic case we find the q = 2 as a dominant term, but

it also includes the q = 1. However, although in the case of
flexural waves we have found only two dominant terms, and
we still have three effective parameters to obtain, the T matrix
elements are actually 2×2 matrices, which moreover have the
following form:

T0 ≈ iπ (kbRa)2

4

(
�11

0 �12
0

2i/π�12
0 2i/π�11

0

)
(27)

and

T2 ≈ iπ (kbRa)2

4

(
�2 �2

2i/π�2 2i/π�2

)
(28)

with

�11
0 = νb

1 − νb

, (29a)

�12
0 = − 1

1 − νb

, (29b)

�2 = 1

2

1 − νb

3 + νb

, (29c)

which shows that indeed we have only three independent
terms. This structure of the T matrix should be maintained
for a general inhomogeneity since it is from that expression
from which we will obtain the effective parameters. The
demonstration is tedious and long, and some details are given
in the Appendix A, but as expected the dominant terms of the
T matrix of an elastic inhomogeneity have the same behavior
and form, and it is found that

�11
0 = 1

2

ρaha

ρbhb

+ Db

Db(1 − νb) + Da(1 + νa)
− 1, (30)

�12
0 = 1

2

ρaha

ρbhb

− Db

Db(1 − νb) + Da(1 + νa)
, (31)

�2 = 1

2

Db(1 − νb) − Da(1 − νa)

Db(3 + νb) + Da(1 − νa)
. (32)

Notice that we recover the expressions for the holes by
setting Da = 0 and ρa = 0. From the above expressions, it is
now possible to obtain the effective parameters for an ensemble
of scatterers in a thin plate. These parameters are derived in
the next section, first for the low-frequency limit and, later on,
the generalization for a resonant medium.

IV. EFFECTIVE PARAMETERS

The low-frequency limit of the T matrix of an inhomogene-
ity in a thin plate responds to the general behavior explained
before, therefore, application of Eq. (8) is straightforward,
giving (

�11
0

)
eff = f �11

0 , (33a)(
�12

0

)
eff = f �12

0 , (33b)

(�2)eff = f �2. (33c)

From the above equations, we can solve for the ef-
fective parameters as a function of the filling fraction,
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giving

ρeff = [
1 + f

(
�11

0 + �12
0

)]
ρb, (34a)

Deff(1 + νeff) = 1 + νb − f
(
�11

0 − �12
0

)
(1 − νb)

1 + f
(
�11

0 − �12
0

) Db, (34b)

Deff(1 − νeff) = 1 − νb − 2f �2(3 + νb)

1 + 2f �2
Db. (34c)

The above equations show that the effective mass density
is obtained from the monopolar scattering term. When this
term is resonant, as will be shown later, we will have an
effective medium with a dispersive effective mass density,
reaching positive and negative values. This result is remarkably

different from that found for bulk elastic waves or acoustic
waves, where the effective mass density is induced by the
dipolar scattering term. However, it must be pointed out that
for flexural waves, the mass density relates the shear force
with the vertical displacement of the plate, so that the physical
origin of this scattering coefficient is clearly different than for
bulk elastic waves.

It is clear as well that the effective rigidity and Poisson’s ra-
tio are defined from the monopolar and quadrupolar scattering
elements, which also happens for bulk elasticity.

A. Nonresonant effective parameters

The effective parameters for a nonresonant medium are
obtained by inserting the low-frequency parameters �i into
Eqs. (34), from which we obtain the following expressions:

ρeff = (1 − f )ρb + fρa, (35a)

Deff(1 + νeff) = (1 + νb)[Db(1 − νb) + Da(1 + νa)] − f (1 − νb)[Db(1 + νb) − Da(1 + νa)]

Db(1 − νb) + Da(1 + νa) − f [Db(1 + νb) − Da(1 + νa)]
Db, (35b)

Deff(1 − νeff) = (1 − νb)[Db(3 + νb) + Da(1 − νa)] − f (3 + νb)[Db(1 − νb) − Da(1 − νa)]

Db(3 + νb) + Da(1 − νa) − f [Db(1 − νb) − Da(1 − νa)]
Db. (35c)

Notice that the equation for the effective mass density is
identical to that found for bulk elastic waves, however, here it
has been obtained from the monopolar term while in elasticity
it is obtained from the dipolar one.

The dispersion relation for a homogeneous medium given
by (15) shows that the phase velocity is frequency dependent
for flexural waves, however, from the point of view of
refraction in stationary problems, it is more interesting than
the relative phase velocity between the effective medium and
the background, which is given by

ceff/cb = kb/keff = (Deff/ρeff)
1/4/(Db/ρb)1/4, (36)

where it has been used that k4
eff = ρeffheff/Deffω

2 and the fact
that the effective thickness of the medium does not change,
that is, heff = hb.

Special mention deserves the system of holes in an elastic
plate. As said before, the expressions for the holes are obtained
by setting ρa = 0 and Da = 0. It is easy to see that then the the
effective phase velocity ceff related with the phase velocity of
the background cb depends only on the plate’s Poisson’s ratio.
Effectively, in this particular case, Eqs. (35) become

ρeff = (1 − f )ρb, (37a)

Deff(1 + νeff) =
(
1 − ν2

b

)
(1 − f )

(1 − νb) − f (1 + νb)
Db, (37b)

Deff(1 − νeff) = (1 − νb)(3 + νb)(1 − f )

(3 + νb) − f (1 − νb)
Db, (37c)

from which it is clear that the ratio Deff/ρeff depends only on
the filling fraction and the background’s Poisson’s ratio.

Figure 2 shows the effective phase velocity as a function
of the filling fraction computed using Eqs. (35) for different
Poisson’s ratio (continuous lines) compared with the second-
order approximation for the phase velocity given by Eq. (65) of
Ref. [47] (dashed lines). Notice that the two expressions give

the same velocity for low-filling fractions but they split for
filling fractions above 0.2, where the expression given in this
work is more accurate. It must be also remarked that Eqs. (35)
give also an approximated expression for high-filling fractions,
where the multiple scattering terms should be included in the
theory [40,44]. However, as will be shown in the analysis
performed in Sec. V, these expressions can be properly used
for low- and mid-filling fractions, that is, for f � 0.4.

Figure 3 shows the effective mass density ρeff [Fig. 3(a)],
rigidity Deff [Fig. 3(b)], Poisson’s ratio νeff [Fig. 3(c)], and
phase velocity ceff [Fig. 3(d)] as a function of the filling
fraction for circular inclusions of holes, rubber, and lead
in an aluminium plate, with the elastic parameters given in
Table I. The effective mass density follows the well-known

0 0.2 0.4 0.6 0.8
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0.85

0.9

0.95

1

Filling Fraction

c
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f
/
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ν
b
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ν
b
=0.2

ν
b
=0.3

ν
b
=0.4

FIG. 2. (Color online) Continuous lines: effective phase velocity
for circular holes embedded in an elastic plate of different Poisson’s
ratio. Dashed lines: results from an approximated model (see text for
further details).
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FIG. 3. (Color online) Effective mass density (a), rigidity (b),
Poisson’s ratio (c), and phase velocity (d) as a function of the filling
fraction for circular inclusions in aluminium. Results are shown for
holes (blue continuous line), lead inclusions (green dashed line), and
rubber inclusions (red dashed-dotted line).

linear relationship with the filling fraction since it is simply
the volume average, as for bulk elastic waves. The effective
rigidity Deff has a decreasing trend, being indistinguishable
in the case of holes to that of rubber due to the low ratio
between the Young’s modulus of the rubber and the aluminium.
The same phenomenon is observed for the Poisson’s ratio but
not for the phase velocity, where the differences between the
rubber and the holes are more evident.

It must be pointed out that the values of the effective
Poisson’s ratio for the case of holes and the rubber inclusions
reach zero at filling fractions close to 0.6. This is due to
the fact that the scatterers are “very strong” and the multiple
scattering corrections must be added for high-filling fractions,
as explained above. The case of lead inclusions is well behaved
in this sense, however, it does not mean that these multiple

TABLE I. Elastic constants of the materials used for the
simulations.

Parameter/Material Aluminium Lead Rubber

ρ (Kg/dm3) 2.71 11.34 0.96
E (GPa) 70 16 7E-4
ν 0.35 0.44 0.45
D/Db 1 0.64 2.9E-5

scattering terms are not necessary for a proper description. A
full analysis of these multiple scattering terms is beyond the
scope of this work since they are important for strong scatterers
and high-filling fractions only, however, their requirement will
be analyzed in Sec. V.

B. Resonant effective parameters

The effective parameters given by Eqs. (35) are obtained in
the low-frequency limit, which implies that the wave number
in the background, inside the scatterer, and in the effective
medium are negligible. However, as long as the wave number
in the background is small (that is, the wavelength larger than
the typical distance between scatterers), the description of the
system as an effective medium makes sense. It means that
we can allow the wavelength inside the scatterer be short
and then have complex field oscillations while the field in
the background sees an average medium. If this is the case,
we will have a frequency-dependent effective medium. Under
these conditions, the asymptotic expressions for low arguments
of Bessel functions cannot be employed for the quantities
containing the scatterer’s wave number, thus, the quantities
�i have to be obtained directly from the T matrix, similarly as
was done in Refs. [36,37]. Thus, if we assume that Eqs. (27)
and (28) hold as long as kba � 1, being a the typical distance
between scatterers, we can obtain the frequency-dependent �i

parameters as

�11
0 (ω) = − 4i

π (kbRa)2
T 11

0 (ω), (38a)

�12
0 (ω) = − 4i

π (kbRa)2
T 12

0 (ω), (38b)

�2(ω) = − 4i

π (kbRa)2
T 22

2 (ω), (38c)

which inserted into Eqs. (34) give the frequency-dependent
parameters ρeff(ω), Deff(ω), and νeff(ω).

Figure 4 shows the three frequency-dependent �i pa-
rameters as a function of frequency for the case of rubber
inclusions in an aluminium plate of thickness hb = 0.1a since
the holes and the lead inclusions do not present low-frequency
resonances. It can be seen that only the �11

0 and �12
0 elements

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

a/λ

Γ11
0

Γ12
0

Γ2

FIG. 4. (Color online) Real part of the frequency-dependent pa-
rameters �0, �1, and �2 for rubber inclusions in an aluminium matrix.
Only the �0 and �1 parameters present a resonance, while the �2

parameter is nearly constant along all the frequency range.
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present a resonance in a low enough frequency, that is, for
wavelengths in the background such that λ > 4a, where the
medium could be described as an effective medium. A sharp
resonance for the �2 element is found at higher frequencies
near the homogenization limit (λ ≈ 4a), where the description
of the effective medium, as will be seen later, has to be taken
carefully.

The cutoff wavelength λ > 4a is chosen in such a way that
the wavelength in the background is large enough to see an
effective medium, but in the framework of the present theory,
this value ensures that we can use the asymptotic form of
Bessel functions for small arguments. Also, it can be easily
verified that in this frequency range, the wavelength inside the
scatterer is still larger than the plate’s thickness, which ensures
that Eq. (13) is still a good approximation for the description
of flexural waves.

Given that the �11
0 and �12

0 elements appear in the
constitutive equations for the effective mass density, rigidity,
and Poisson’s ratio [see Eqs. (34)], the resonance of these
elements will affect all the effective parameters, as will be
seen in the following.

Figure 5(a) shows the effective mass density for the
mentioned system of rubber inclusions. It is clear that the
monopolar resonance produces a resonance in the mass
density, which allows it to have positively and negatively
divergent values. The monopolar resonance also affects the
effective rigidity Deff and Poisson’s ratio νeff , as can be seen
from Eqs. (34) and Figs. 5(b) and 5(c), however, the resonance
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FIG. 5. (Color online) Frequency-dependent effective mass den-
sity (a), rigidity (b), and Poisson’s ratio (c) for the system described
in Fig. 4. The monopolar resonance creates a resonant behavior in the
three parameters, although only for the mass density is divergent.

does not produce any divergent value since the role in which
the �i quantities appear is in the form of �11

0 − �12
0 , which

cancels near the resonance. The resonance of the �2 coefficient
produces a divergent value for both Deff and νeff , however, this
resonance is too sharp and occurs too near the homogenization
limit, where the presented theory could be not valid (this limit
will be further analyzed in Sec. V).

Rubber inclusions in an elastic matrix can therefore produce
a resonant negative mass density, given that the monopolar
resonance appears at low frequencies. However, a good
quadrupolar resonator will be required if double negative
metamaterials are sought.

It must be pointed out that expressions (38) are valid
for any isotropic scatterer, that is, a scatterer with circular
symmetry. Therefore, independently of the complexity of the
scatterer or the resonator, as long as it can be described by
a diagonal T matrix in the low-frequency limit, and that no
other Lamb waves be excited in the scattering process, the
theory can be applied. For instance, the present theory could be
applied to systems of spring-mass resonators, attached pillars,
or spheres, etc.

V. NUMERICAL VALIDATION

The effective medium theory presented in the previous
sections has been derived in the low-frequency limit and
assuming that the multiple scattering terms are negligible.
Therefore, its validity will be limited to some “cutoff”
frequency, corresponding to wavelengths in which the field
will detect the individual scatterers forming the array, and
also it will be limited to some maximum filling fraction in
which the multiple scattering elements will be important. This
section aims not only to verify the presented theory by full
wave multiple scattering simulations, but also gives some
approximated values to these limits. Also, Sec. V C compares
the predicted dispersion relations with the three-dimensional
dispersion relation obtained by the finite element method using
the commercial software COMSOL MULTIPHYSICS.

Multiple scattering theory (MST) allows for the computa-
tion of the total field scattered by arbitrarily located inclusions.
This method is described for instance in Ref. [48] for flexural
waves, and here it is employed to verify the effective medium
theory developed in the previous sections. The verification
method consists on the comparison of the scattering properties
of a large circular cluster of inclusions with those of a scatterer
with the corresponding effective parameters.

Therefore, according to MST, the total scattered field by
a cluster of N inclusions, located at positions r = Rα , with
α = 1,2, . . . ,N , is given by the addition of the scattered field
by each inclusion,

Wsc =
N∑

α=1

Wα
sc, (39)

where

Wα
sc =

∞∑
q=−∞

[
BH

qαHq(kbrα) + BK
qαKq(kbrα)

]
eiqθα (40)

and the Bi
q coefficients are the unknowns to be determined.

Multiple scattering theory solves for these coefficients by
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means of a linear system of equations, and the solution is
obtained as a function of the frequency of the incident field
and the relative position of all the scatterers in the cluster.

In the far field, only the contribution of Hankel functions
will be important since the Kq functions decay exponentially,
thus, employing the asymptotic form of Hankel functions, in
the far field we have that

Wsc ≈ eikbr

√
r

F (θ,kb), (41)

where the far-field amplitude F (θ,kb) is given by

F (θ,kb) = e−iπ/4

√
kb

N∑
α=1

∞∑
q=−∞

BH
qαe−ikbRα cos(θ−�α )eiqθ (42)

being (Rα,�α) the polar coordinates of the α inclusion.
Related with the far-field amplitude, and another quantity

useful to define the scattering properties of the cluster, we find
that the total scattering cross section is given by [46]

σ = 1

2

∫ 2π

0
|F (θ )|2dθ = −2

√
π

kb

ReF (0). (43)

In Sec. V A, the far-field amplitude and the total scattering
cross section are used as reference quantities to check the
validity of the developed theory: first in the nonresonant
case and later in the resonant one. The following numerical
procedure is then followed: A circular cluster of inclusions is
taken and its effective parameters are computed. After that,
for both the cluster of inclusions and the effective scatterer,
the far-field amplitude in the forward (θ = 0) and backward
(θ = π ) directions and the total scattering cross section are
computed and compared for several filling fractions. The
comparison is performed in the frequency range that can
be considered the homogenization region, corresponding to
wavelengths λ > 4a, as was explained before. This numerical
experiment gives an idea of the conditions under which these
quantities are similar, and then it gives an idea of the conditions
under which these systems are indistinguishable, in other
words, when the cluster can be described entirely by its
effective material.

The reference cluster has been taken as a circular cluster
of 151 scatterers arranged in a triangular lattice, as shown
in Fig. 1. This cluster has a radius Reff = 6.581a, being a

the lattice constant of the triangular arrangement, and it was
employed in Refs. [40,44] for acoustic waves, showing that it
was a big enough cluster to avoid the possible influence of the
cluster’s boundary in the effective parameters.

It must be pointed out that, although the effective medium
theory has been developed using only the dominant terms of the
T matrix, i.e., the multipolar orders q = 0 and 2, the multiple
scattering simulations have been performed using a number
of multipoles large enough to ensure convergence, being this
number q = 5 in this work.

In Sec. V B, some full wave simulations are shown to
demonstrate that the field patterns are very similar even in
the near field, that is, around the cluster and inside it. Finally,
as mentioned before, in Sec. V C the theory is validated outside
the framework of the flexural wave approximation, that is, by
full three-dimensional (3D) calculations based on the finite
element method.
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FIG. 6. (Color online) Far-field amplitude in the backward (up-
per panel) and forward (lower panel) directions as a function of
frequency for a circular cluster of 151 holes of radius Ra = 0.1a

embedded in a triangular lattice of lattice constant a (dashed green
line) compared with that of the effective homogeneous scatterer
obtained with the presented homogenization theory.

A. Far-field analysis

This section analyzes the far-field amplitude along two
directions θ = 0, also named the “forward scattered field,”
and θ = π , also named the “backscattered field.” These values
are studied also for the three different types of inclusions
studied, i.e., holes, rubber, and lead inclusions in an aluminium
plate. The study of this quantity is made as a function of
frequency and for three different filling fractions f , being
representative values of low- (f = 0.04), mid- (f = 0.33),
and high- (f = 0.74) filling fractions.

Figure 6 shows the backscattered (upper panel) and the
forward (lower panel) scattered fields for the mentioned
cluster of holes when the radius of them is Ra = 0.1a,
corresponding to a filling fraction of f = 0.04, compared
with the corresponding effective scatterer whose parameters
are given by Eqs. (37), being ρeff = 0.96ρb, Deff = 0.92Db,
and νeff = 0.32. It is shown how small deviations appear in the
backscattered field for wavelengths such that a/λ > 0.1, while
the forward field patterns are identical in the full frequency
region that we could consider the “homogenization region,”
corresponding to wavelengths such that a/λ < 0.25. It is clear
that in the very-low-frequency limit, the two quantities are
identical.

Similarly, Figs. 7 and 8 show the same quantities but for
radius of holes of Ra = 0.3a (f = 0.33) and Ra = 0.45a

(f = 0.74), respectively, with effective parameters ρeff =
0.67ρb, Deff = 0.48Db, and νeff = 0.14 for the former and
ρeff = 0.27ρb, Deff = 0.15Db, and νeff = −0.03 for the latter.
The negative value for the Poisson ratio in the last case suggests
that the theory is not valid for strong scatterers at high-filling
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FIG. 7. (Color online) Same system of Fig. 6 but being the radius
of the holes Ra = 0.3a.

fraction, as can be deduced from these figures. It is clear that
in the two situations, the patterns are very similar, however,
for the high-filling fraction cluster the differences are higher as
we reach the homogenization limit. To better visualize these
differences, Fig. 9 shows the relative total scattering cross
section, defined as

σrel =
∣∣∣∣σcls − σhomo

σhomo

∣∣∣∣ , (44)
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FIG. 8. (Color online) Same system of Fig. 6 but being the radius
of the holes Ra = 0.45a.
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FIG. 9. (Color online) Relative total scattering cross section of
the cluster of holes and the corresponding effective parameters. Re-
sults are shown for three filling fractions f = 0.04 (blue continuous
line), f = 0.33 (green dashed line), and 0.74 (red dashed-dotted line).
As can be seen, the differences are higher for higher-filling fractions
and frequency, but always smaller than 0.1.

as a function of frequency and for the three different filling
fractions studied. It is clear that even in the high-filling-fraction
situation, the relative differences are never higher than 0.1,
which shows that the effective medium approximation is good
enough for most applications, although the multiple scattering
corrections could be needed if more precision is required, as
was done for the design of gradient index lenses or black holes
in Refs. [49–51].

A similar analysis has been done for the case of lead
inclusions in an aluminium plate, and Fig. 10 shows the
results for the higher-filling fraction, corresponding to a radius
of inclusions Ra = 0.45a, being the corresponding effective
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FIG. 10. (Color online) Same system of Fig. 6 but with lead
inclusions in the aluminium matrix, being the radius of the inclusions
Ra = 0.4a. Even being a situation of high-filling fraction, the far-field
amplitude in the back and forward directions is very similar.
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FIG. 11. (Color online) Relative total scattering cross section
of the cluster of lead inclusions and the corresponding effective
parameters. Results are shown for three filling fractions f = 0.04
(blue continuous line), f = 0.33 (green dashed line), and 0.74 (red
dashed-dotted line). As can be seen, the differences are higher for
higher-filling fractions and frequency, showing that for the high-filling
fraction the differences are very important for a/λ > 0.1.

parameters, given by Eqs. (34), ρeff = 3.34ρb, Deff = 0.39Db,
and νeff = 0.32. The same conclusions as before can be
applied, although the relative differences are higher, as can be
seen from Fig. 11, which suggest that the multiple scattering
corrections could be more important here. However, the
relative difference is still smaller than 0.1 in almost all the
frequency range.

When the scatterers are rubber inclusions, the comparison
is made with two homogeneous effective scatterers, one
employing the frequency-independent theory, whose effective
parameters are given by Eqs. (35) and the other one as
given by the frequency-dependent theory using Eqs. (38). In
the following lines, the homogeneous scatterer obtained by
means of the frequency-independent theory will be referred
as the “homogeneous scatterer,” while that obtained with the
frequency-dependent theory will be referred as the “metama-
terial.”

Figure 12 shows the comparison of the backscattered field
(upper panel) and the forward field (lower panel) for the
cluster of rubber inclusions, the homogeneous scatterer, and
the metamaterial. The radius of the inclusions is Ra = 0.3a,
thus, the effective parameters are the same as those shown in
Fig. 5. Both plots show that the metamaterial and the cluster
have more similar scattering properties than the homogeneous
scatterer, which shows that the cluster of scatterers is better
described by the frequency-dependent theory. However, we
can also see that the multiple scattering corrections appear
more necessary for frequencies near the homogenization limit
a/λ > 0.2a, where the differences are more evident.

Notice that both the metamaterial and the cluster present
a resonance near a/λ = 0.14, as can be expected from Fig. 5
and it is due to the monopolar term. Additionally, there is a
resonance in the cluster that is not predicted by the model,
and it is given by the dipolar term. However, the effect of this
resonance is due to the presence of multiple scattering terms,
which should be included in an improved version of the theory,
but this is beyond the scope of this work.

Finally, Fig. 13 shows the relative total scattering cross
section for three filling fractions, as in the previous sections.
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FIG. 12. (Color online) Far-field amplitude in the back (upper
panel) and forward (lower panel) directions for a cluster of 151
rubber inclusions in an aluminium plate (red dashed lines), for a
homogeneous scatterer with frequency-independent parameters (blue
continuous line), and with a metamaterial with frequency-dependent
parameters (green dotted line). The radius of the inclusions is Ra =
0.3a, being the effective parameters of the cluster those depicted in
Fig. 5. It is seen how the frequency-dependent theory predicts better
the behavior of the cluster, although some corrections must be added
near the homogenization limit.

It is seen that there is a perfect agreement for the low-filling-
fraction case f = 0.04, while we see that the differences are
higher for f = 0.33 and 0.74.
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FIG. 13. (Color online) Relative total scattering cross section for
different filling fractions for the cluster of rubber inclusions in an
aluminium plate compared with that of the frequency-dependent
effective scatterer. It is seen how the differences are important for
high frequencies and filling fractions, being therefore necessary
the inclusion of the multiple scattering corrections. However, the
behavior of the cluster is properly predicted for low-filling fraction
and even near the resonance for the filling fraction f = 0.33.
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FIG. 14. (Color online) (a) Multiple scattering simulation of a
plane wave interacting with circular cluster of holes in aluminium.
(b) Scattering of the same wave by a single scatterer with the
corresponding effective parameters. (c), (d) Field profiles along
the y axis for x = 0 and along the x axis for y = 0, respectively,
for the cluster (blue dots) and the effective scatterer (green line).

Therefore, the presented results suggest that setting the
homogenization limit as wavelengths λ > 4a is a good approx-
imation for almost all the filling fractions in the nonresonant
case, although for high-filling fractions this limit should be
carefully analyzed, and the multiple scattering corrections
might be necessary.

The frequency-dependent theory is accurate for low- and
mid-filling fractions, although in this last case is not valid for
the full frequency range. The multiple scattering corrections
are necessary in this case for a better description of this system
since it is a stronger scattering medium.

B. Near-field calculations

In this section, the field patterns in the near field are shown
to validate the theory. Figure 14(a) shows the field pattern
computed by means of multiple scattering of the cluster of
holes with radius Ra = 0.3a. A plane wave of wavelength
λ = 6a comes from the left and impinges the cluster, produc-
ing the multiple scattering process illustrated. Figure 14(b)
shows the same wave arriving at the corresponding effective
homogeneous scatterer. Notice that the field distributions are
very similar in the two figures, which shows that the cluster and
the effective scatterer behave in the same way. Figures 14(c)
and 14(d) show a cut along the y axis for x = 0 and along
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FIG. 15. (Color online) (a) Multiple scattering simulation of a
plane wave interacting with circular cluster of lead inclusions in
aluminium. (b) Scattering of the same wave by a single scatterer
with the corresponding effective parameters. (c) and (d) Field profiles
along the y axis for x = 0 and along the x axis for y = 0, respectively,
for the cluster (blue dots) and the effective scatterer (green line).

the x axis for y = 0, respectively, where it is possible to see
better that the field distributions are very similar not only in
the near field, but also inside the cluster and the effective
scatterer. Notice that there are some discontinuities in the
fields computed for the cluster at the positions of the holes.
The vertical dashed lines in Figs. 14(c) and 14(d) show the
effective radius of the cluster.

Figure 15 shows the same situation but for a cluster of lead
inclusions of the same radius as the holes. The agreement is
also obvious here. Finally, Fig. 16 shows the cluster of rubber
inclusions, of the same radius as before. The corresponding
wavelength is λ = 7.89a (a/λ = 0.127), where a negative
mass density is expected according to Fig. 5. We see from
Fig. 15(a) that there is no propagation inside the cluster
since the effective wave number is complex and the field
is exponentially decaying inside the cluster. In this case,
the effective parameters could not be obtained by means of
Eqs. (35) since they would give us positive parameters and
we would observe propagation inside the effective inclusion.
Instead, by means of Eqs. (34) and (38), the corresponding
effective parameters are ρeff = −5.4ρb,Deff = 1.13Db, and
νeff = 0.64, which give us a negative mass density and, as
we see from Fig. 15(b), the field patterns are identical for both
the cluster and the effective medium. Figures 15(c) and 15(d)
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FIG. 16. (Color online) (a) Multiple scattering simulation of a
plane wave interacting with circular cluster of rubber inclusions in
aluminium. (b) Scattering of the same wave by a single scatterer
with the corresponding frequency-dependent effective parameters.
(c), (d) Field profiles along the y axis for x = 0 and along the x axis
for y = 0, respectively, for the cluster (blue dots) and the effective
scatterer (green line).

show the corresponding cuts along the main axis, where we
see how the field distributions are very similar both inside
and outside the cluster. It is remarkable that the exponential
trend of the field inside the cluster is perfectly reproduced
by the effective medium theory. There are some peaks in the
field distribution of the cluster given to the resonance of the
scatterers, which can also be observed in Fig. 15(a).

C. 3D dispersion relations

The previous calculations show the validity of the method
within the framework of the flexural wave approximation, valid
for wavelengths much larger than the plate’s thickness. In this
section, we verify that the method is valid within the frequency
range of interest by comparing the low-frequency dispersion
relation of the three-dimensional plate, computed by the
finite element method (FEM), with the expected dispersion
relation obtained with the presented theory. The mentioned
calculations have been performed for the two isotropic lattices,
the square and the triangular ones, and for two inclusions’ radii
Ra = 0.3a and 0.45a. It must be remarked that depending on
the lattice, the same radius of the inclusion gives different
filling fractions. Notice that the vertical axis of the dispersion
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FIG. 17. (Color online) Red dots: three-dimensional band struc-
ture of a square array of holes of radius Ra = 0.3a (upper panel)
and Ra = 0.45a (lower panel) in an aluminium plate of thickness
hb = 0.1a computed by FEM. Blue line: linear dispersion relation
obtained with the effective medium theory of this work.

relations is the background’s wave number, related with the
frequency by means of Eq. (15).

Figure 17 shows the dispersion relation of an aluminium
plate of thickness hb = 0.1a with a square arrangement of
holes computed by FEM (red dots) compared with the linear
dispersion relation predicted by the model (blue line). Results
are shown for a radius of the holes of Ra = 0.3a (upper panel)
and Ra = 0.45a (lower panel) and for the two symmetry
directions of the lattice. It is obvious that the dispersion
relations are very similar for the two filling fractions. As
expected, the medium is isotropic in the low-frequency limit.
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FIG. 18. (Color online) Red dots: three-dimensional band struc-
ture of a triangular array of lead inclusions of radius Ra = 0.3a

(upper panel) and Ra = 0.45a (lower panel) in an aluminium plate of
thickness hb = 0.1a computed by FEM. Blue line: linear dispersion
relation obtained with the effective medium theory of this work.
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FIG. 19. (Color online) Red dots: three-dimensional band struc-
ture of a triangular array of rubber inclusions of radius Ra = 0.3a

(upper panel) and Ra = 0.45a (lower panel) in an aluminium plate of
thickness hb = 0.1a computed by FEM. Blue line: linear dispersion
relation obtained with the effective medium theory of this work.

Figure 18 shows the same situation but for a triangular
lattice of lead inclusions, with the same radii of inclusions.
Again, there is a good agreement between the full band
structure computed by FEM and the presented theory.

Finally, Fig. 19 shows the comparison of the dispersion
curves for the triangular lattice of rubber inclusions and
same radii as before. In this case, the dispersion relation
of the effective medium has been obtained by means of
the frequency-dependent theory. It is clear that in the very-
low-frequency limit, the slopes are identical for both filling
fractions, and that in both situations there is an opening of
the band gap. However, two disagreements are found in these
curves. First, more resonances appear in the dispersion relation
that are not predicted by the model; second, the position of
the resonance is better predicted for the high-filling-fraction
lattice. These disagreements have different origin, as explained
in the following.

The existence of the additional resonances was predicted
in the previous sections, by means of the far-field amplitude,
and it is due to the existence of multiple scattering terms that
should be included in the theory. Notice, however, that these
resonances are very sharp, and they are likely to disappear in
a hypothetical experiment due to losses in real materials.

The disagreement in the position of the peak in the
low-filling fraction is given to the accuracy of the flexural
wave approximation. Effectively, this approximation is valid
for wavelengths larger than the plate’s thickness, and for the
radius of inclusions of Ra = 0.45a the resonance appears
around kba ≈ 0.5, which inside rubber gives a wave number
of kaa ≈ 6.7, with a wavelength λ ≈ a ≈ 10hb, so that the
wavelength inside rubber is nearly 10 times the thickness of
the plate, which makes the flexural wave approximation still
valid. However, for the radius of Ra = 0.3a, this resonance
appears around kba ≈ 0.7, being the wave number in rubber

kaa ≈ 10, with a wavelength λ ≈ 0.6a ≈ 6hb, which is still
a wavelength larger than the plate’s thickness but that could
suggest that higher-order plates theory may be needed for
these frequencies for a better description, although a good
approximation is found here.

VI. SUMMARY

In summary, an effective medium description for the
propagation of flexural waves in thin elastic plates with
isotropic arrangements of inclusions or resonators has been
presented. The theory is based on the scattering properties of
these inclusions, which are compared with those of an effective
scatterer and, from the low-frequency limit of the expressions
found for the scattering coefficients, closed-form expressions
for the effective elastic parameters of the arrangement are
obtained.

The theory is valid not only in the quasistatic limit, but
also for frequency-dependent effective parameters, a situation
that happens in the case of having a long wavelength in the
background but not inside the scatterers.

For the resonant medium, it is found that the negative mass
density is obtained from a monopolar resonance, unlike acous-
tic or bulk elastic waves where this extraordinary behavior is
due to a dipolar resonance. Additionally, the resonant behavior
of both the rigidity and the Poisson’s ratio is given to both the
monopolar and the quadrupolar resonance, being the latter the
most important contribution.

It has been found that, surprisingly, the dipolar term plays no
role in the effective parameters in the present approximation,
valid for low- and mid-filling fractions, however, it is expected
that by including the full multiple scattering terms in the
equations, the role of the dipolar term can be clarified, but
always as a multiple scattering correction. The challenge
for this type of metamaterial is finding a good quadrupolar
resonator in order to obtain doubly negative metamaterials.

Multiple scattering theory was used to numerically verify
the presented theory by the comparison of the scattering
properties of a cluster of inclusions with those of the corre-
sponding effective homogeneous scatterer. This comparison
was performed for different filling fractions and in the
frequency range corresponding to the homogenization limit,
defined as wavelengths such that λ > 4a. It has been found
that the theory is valid for low- and mid-filling fractions
in practically all the homogenization region, although the
multiple scattering corrections must be added for high-filling
fractions and for strong resonant scatterers.

Finally, the dispersion relation of the three-dimensional
plate, computed by the finite element method using the
commercial software COMSOL MULTIPHYSICS, is obtained for
several lattices, filling fractions, and materials, and compared
at low frequencies with that predicted by the present method,
showing a very good agreement between the two calculations.

This work opens the door for the efficient design of simple,
doubly, and triply resonant metamaterials for flexural waves
in thin plates, and can be the basis for its generalization to
all types of Lamb waves, with promising applications in the
control of vibrations in all scales.
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APPENDIX: CLOSED-FORM EXPRESSION
FOR THE T MATRIX

The expressions for the X i
q and Y i

q matrices are required to
obtain the T matrix of a circular inhomogeneity, and they are
obtained after applying boundary conditions at r = Ra , being

X0 =
(

Jq(kbRa) Iq(kbRa)

kbJ
′
q(kbRa) kbI

′
q(kbRa)

)
, (A1a)

Y0 =
(

SJ
q (kbRa) SI

q (kbRa)

T J
q (kbRa) T I

q (kbRa)

)
, (A1b)

Xa =
(

Jq(kaRa) Iq(kaRa)

kaJ
′
q(kaRa) kaI

′
q(kaRa)

)
, (A2a)

Ya =
(

SJ
q (kaRa) SI

q (kaRa)

T J
q (kaRa) T I

q (kaRa)

)
, (A2b)

Xsc =
(

Hq(kbRa) Kq(kbRa)

kbH
′
q(kbRa) kbK

′
q(kbRa)

)
, (A3a)

Ysc =
(

SH
q (kbRa) SK

q (kbRa)

T H
q (kbRa) T K

q (kbRa)

)
, (A3b)

where

SX
q (kr) = D[q2(1 − ν) ∓ k2r2]Xq(kr)

−D(1 − ν)krX′
q(kr), (A4a)

T X
q (kr) = Dq2(1 − ν)Xq(kr)

−D[q2(1 − ν) ± k2r2]krX′
q(kr), (A4b)

where the upper sign applies when X is Jq, Hq and the lower
sign when X is Iq, Kq .

The T matrix is defined by means of Eq. (21) as

Tq = −[
Y sc

q − Y a
q

(
Xa

q

)−1
X sc

q

]−1

× [
Y 0

q − Y a
q

(
Xa

q

)−1
X0

q

]
. (A5)

The low-frequency terms of the above expression can be
obtained after some manipulation. First, the inclusion’s terms
can be developed, being

Y a
q

(
Xa

q

)−1 = 1

�

(
a11 a12

a21 a22

)
, (A6)

where, with x = kaRa ,

a11 = ka

[
I ′
q(x)SJ

q (x) − J ′
q(x)SI

q (x)
]
, (A7a)

a12 = Jq(x)SI
q (x) − Iq(x)SJ

q (x), (A7b)

a21 = ka

[
I ′
q(x)T J

q (x) − J ′
q(x)T I

q (x)
]
, (A7c)

a21 = Jq(x)T I
q (x) − Iq(x)T J

q (x), (A7d)

� = ka

[
Jq(x)I ′

q(x) − J ′
q(x)Iq(x)

]
. (A7e)

Then, we have

Y sc
q − Y a

q

(
Xa

q

)−1
X sc

q

=
(

SH
q (kbRa) − Hq(kbRa)a11/� − kbH

′
q(kbRa)a12/� SK

q (kbRa) − Kq(kbRa)a11/� − kbK
′
q(kbRa)a12/�

T H
q (kbRa) − Hq(kbRa)a21/� − kbH

′
q(kbRa)a22/� T K

q (kbRa) − Kq(kbRa)a21/� − kbK
′
q(kbRa)a22/�

)
(A8)

and

Y 0
q − Y a

q

(
Xa

q

)−1
X0

q

=
(

SJ
q (kbRa) − Jq(kbRa)a11/� − kbJ

′
q(kbRa)a12/� SI

q (kbRa) − Iq(kbRa)a11/� − kbI
′
q(kbRa)a12/�

T J
q (kbRa) − Jq(kbRa)a21/� − kbJ

′
q(kbRa)a22/� T I

q (kbRa) − Iq(kbRa)a21/� − kbI
′
q(kbRa)a22/�

)
. (A9)

The above expressions are now suitable for their analysis in the low-frequency limit since essentially they contain linear
combinations of Bessel, Hankel, and modified Bessel functions. The details are tough, but the results given by Eqs. (29) have
been verified both analytically and with the help of a symbolic math computer software. Then, it has been found that, in the
low-frequency limit, the dominant terms of the T matrix are the q = 0 and the 2 since they go to zero as k2

b , while the q = 1
goes as k2

b . The other elements go as k
2q−2
b .
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