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Accuracy and transferability of Gaussian approximation potential models for tungsten
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We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian
approximation potential framework, fitted to a database of first-principles density functional theory calculations.
We investigate the performance of a sequence of models based on databases of increasing coverage in configuration
space and showcase our strategy of choosing representative small unit cells to train models that predict properties
observable only using thousands of atoms. The most comprehensive model is then used to calculate properties
of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation
interaction. All software and raw data are available at www.libatoms.org.
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Tungsten is a hard, refractory metal with the highest melting
point (3695 K) among metals, and its alloys are utilized
in numerous technological applications. The details of the
atomistic processes behind the plastic behavior of tungsten
have been investigated for a long time, and many interatomic
potentials exist in the literature reflecting an evolution, over
the past three decades, in their level of sophistication, starting
with the Finnis-Sinclair (FS) potential [1], embedded atom
model (EAM) [2], various other FS and EAM parametrizations
[3–6], modified embedded atom models (MEAMs) [7–10],
and bond order potentials (BOPs) [11–13]. While some of
these methods have been used to study other transition metals
[14–16], there is renewed interest in modeling tungsten due to
its many high-temperature applications—e.g., it is one of the
candidate materials for plasma facing components in the JET
and ITER fusion projects [17–19].

A recurring problem with empirical potentials, due to
the use of fixed functional forms with only a few adjustable
parameters, is the lack of flexibility: when fitted to repro-
duce a given property, predictions for other properties can
have large errors. Figure 1 shows the basic performance of
the BOP and MEAM, two of the more sophisticated potentials
that reproduce the correct screw dislocation core structure,
and also the simpler FS potential,1 all in comparison with
results of density functional theory (DFT). While the figure
emphasizes fractional accuracy, we show the corresponding
absolute numerical values in Table I. The BOP is poor in
describing the vacancy but is better at surfaces, whereas the
MEAM is the other way around. While this compromise
can sometimes be made with good judgment for specific
applications, many interesting properties, particularly those
that determine the material behavior at larger length scales,
arise from the competition between different atomic-scale
processes, which therefore all need to be described equally
well. For example, dislocation pinning, depinning, and climb
involve both elastic properties and core structure, as well as
the interaction of dislocations with defects. Ways to deal with
this problem include use of multiple levels of accuracy as in
quantum mechanics/molecular mechanics [20] or allowing the
parameters of the potential to vary in time and space [21].

1Rescaled to the DFT lattice constant and bulk modulus.

Here we describe a milestone in a research program aimed at
creating a potential that circumvents the problem of fixed func-
tional forms. The purpose of the present work is twofold. First,
we showcase the power of the nonparametric database-driven
approach by constructing an accurate potential and using it
to compute atomic-scale properties that are inaccessible to
DFT due to computational expense. Second, while there has
been vigorous activity recently in developing such models,
most of the attention has been focused on the interpola-
tion method and the neighborhood descriptors (e.g., neural
networks [22–24], Shepherd interpolation [25,26], invari-
ant polynomials [27–29], and Gaussian processes [30–34]);
rather less prominence was given to the question of how
to construct suitable databases that ultimately determine the
range of validity of the potential. Our second goal is therefore
to study what kinds of configurations need to be in a database
so that given material properties are well reproduced. A larger
database costs more to create and the resulting potential is
slower, but can be expected to be more widely applicable, thus
providing a tunable trade-off between transferability, accuracy,
and computational cost.

In our Gaussian approximation potential (GAP) framework
[30,31], the only uncontrolled approximation is the one
essential to the idea of interatomic potentials: the total energy
is written as a sum of atomic energies,

E =
∑

i

ε(q̂i), (1)

with ε a universal function of the atomic neighborhood
structure inside a finite cutoff radius as represented by the
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FIG. 1. (Color online) Fractional error in elastic constants and
defect energies calculated with various interatomic potentials, as
compared to the target DFT values.
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TABLE I. Elastic constants and defect energies calculated with
various interatomic potentials, and corresponding target DFT values.

DFT GAP BOP MEAM FS

C11 (GPa) 517 518 522 544 514
C12 (GPa) 198 198 205 208 200
C44 (GPa) 142 143 160 160 157

Vacancy energy (eV) 3.27 3.29 4.30 3.49 3.61
100 surface (eV/Å2) 0.251 0.252 0.221 0.167 0.179
110 surface (eV/Å2) 0.204 0.204 0.160 0.144 0.158
111 surface (eV/Å2) 0.222 0.222 0.180 0.184 0.202
112 surface (eV/Å2) 0.216 0.216 0.182 0.168 0.187

descriptor vector q̂i for atom i (defined below). This function
is fitted to a database of DFT calculations using Gaussian
process regression [35,36] so, in general, it is given by a linear
combination of basis functions,

ε(q̂) =
∑

j

αjK(q̂j ,q̂) ≡ k(q̂)T α, (2)

where the sum over j includes (some or all of) the configu-
rations in the database, the vector of coefficients α is given
by linear algebra expressions (see below and in [30]), and the
meaning of the covariance kernel K is that of a similarity
measure between different neighbor environments.

The expression for the coefficients αj —normally simple in
Gaussian process regression—is more complicated in our case
because the quantum mechanical input data we can calculate
are not a set of values of the atomic energy function that we
are trying to fit. Rather, the total energy of a configuration is
a sum of many atomic energy function values, and the forces
and stresses, which are also available analytically through the
Hellmann-Feynman theorem, are sums of partial derivatives
of the atomic energy function. The detailed derivation of the
formulas shown below is in [38–40]. Let us collect all the input
data values (total energies and force and stress components)
into the vector y with D components in total and denote by y′
the N unknown atomic energy values corresponding to all the
atoms that appear in all the input configurations. We construct a
linear operator L that describes the relationship between them
through y = LT y′. For data values that represent total energies,
the corresponding rows of L have just 0’s and 1’s as their
elements, but for forces and stresses, the entries are differential
operators such as ∂/∂xi corresponding to the force on atom
i with Cartesian x coordinate xi . Writing Kij ≡ K(q̂i ,q̂j ) for
the element of the covariance matrix KNN corresponding to
atoms i and j , the covariance matrix of size D × D of the
observed data is

KDD = LT KNNL, (3)

where the differential operators in L act on the covariance
function K that defines KNN . In our applications, N can exceed
100 000, and therefore working with N × N matrices would
be computationally very expensive. Because many atomic
environments in our data set are highly similar to one another,
it is plausible that many fewer than N atoms could be chosen
to efficiently represent the range of neighbor environments.
We choose M representative atoms from the full set of N

TABLE II. DFT parameters used to generate training data and
GAP model parameters.

DFT code CASTEP [37] (version 6.01)
Exchange-correlation functional PBE
Pseudopotential Ultrasoft (valence 5s25p65d46s2)
Plane-wave energy cutoff 600 eV

Maximum k-point spacing 0.015 Å
−1

Electronic smearing scheme Gaussian
Smearing width 0.1 eV

Atomic environment kernel SOAP

fcut(r) =
⎧⎨
⎩

1, 0 < r � (rcut − r�),
1
2

(
1 + cos

(
π r−rcut+r�

r�

))
, (rcut − r�) < r � rcut,

0, rcut < r.

φn(r) = exp
[ − (r − rcutn/nmax)2/2σ 2

atom

]
Snn′ = ∫ rcut

0 dr r2φn(r)φn′ (r), S = UT U

gn(r) = ∑
n′ (U−1)nn′φn′ (r)

rcut 5.0 Å

r� 1.0 Å

σ (energy)
ν 0.0001 eV/atom

σ (force)
ν 0.01 eV/Å

σ (virial)
ν 0.01 eV/atom

σw 1.0 eV

σatom 0.5 Å

ξ 4

nmax 14

lmax 14

GAP software version df1c4d9

atoms that appear in all the input configurations (typically with
M � N ), and denote the square covariance matrix between
the M representative atoms by KMM and the rectangular
covariance matrix between the M representative atoms and
all the N atoms by KMN (with KNM = KT

MN ). The expression
for the vector of coefficients in Eq. (2) is then

α = [KMM + KMNL�−1LT KNM ]−1KMNL�−1y, (4)

with

� = σ 2
ν I, (5)

where the parameter σν represents the tolerance (or expected
error) in fitting the input data. It could be a single constant,
but in practice we found it essential to use different tolerance
values corresponding to the different kinds of input data, so
that the � matrix is still diagonal, but has different values
corresponding to total energies, forces, and stresses as they
appear in the data vector y. Although one might initially
expect zero error in ab initio input data, this is not actually
the case due to convergence parameters in the electronic
structure calculation. A further source of error in the fit is
the uncontrolled approximation of Eq. (1), i.e. writing the
total energy as a sum of local atomic energies. The numerical
values we use are shown in Table II. They are based on
convergence tests of the DFT calculation carried out on
example configurations.
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We note the following remarks about the expression in (4).
The quantum mechanically undefined and therefore unknown
atomic energies for the input configurations y′ do not appear.
The number of components in the coefficient vector α is M , so
the sum in Eq. (2) is over the M representative configurations.
The cost of calculating α is dominated by operations which
scale as O(NM2), so it can be significantly reduced by
choosing M to be smaller and accepting a reduced accuracy
of the fit. After the fit is made the coefficient vector α stays
fixed, and the evaluation of the potential is accomplished by
the vector dot product in (2) with most of the work going
towards computing the vector k for each new configuration,
and thus scaling as O(M). The M representative atoms can
be chosen randomly, but we found it beneficial to employ
the k-means clustering algorithm to choose the representative
configurations.

We now turn to the specification of the kernel function. We
use the “smooth overlap of atomic positions” (SOAP) kernel
[31],

Kij = σ 2
w|q̂i · q̂j |ξ , (6)

where the exponent ξ is a positive integer parameter whose role
is to “sharpen” the selectivity of the similarity measure, and
σw is an overall scale factor. Note that for the special choice
of ξ = 1, the Gaussian process regression fit is equivalent to
simple linear regression, and so the potential energy expression
in (2) simplifies to ε(q̂) = (σ 2

w

∑
j αj q̂j ) · q̂, in which the

term in parentheses can be precomputed once and for all.
Unfortunately we found that such a linear fit significantly limits
the attainable accuracy of the potential.

The elements of the descriptor vector q̂ are constructed as
follows. The environment of the ith atom is characterized by
the atomic neighbourhood density, which we define as

ρi(r) =
∑

j

e−|r−rij |2/2σ 2
atomfcut(|rij |)

=
∑

n<nmax
l<lmax|m|�l

ci
nlmgn(|r|)Ylm(r̂), (7)

where rij are the vectors pointing to the neighboring atoms,
σatom is a parameter corresponding to the “size” of the atoms,
fcut is a smooth cutoff function with compact support, and the
expansion on the second line uses spherical harmonics and a
set of orthonormal radial basis functions gn with n, l, and m

the usual integer indices. The elements of the descriptor vector
q̂ are then

qi =
{∑

m

(
ci
nlm

)∗
ci
n′lm

}
nn′l

, q̂i = qi/|qi |. (8)

Values for the all the parameters and other necessary formulas
are given in Table II. The orthonormal radial basis is obtained
from a set of equispaced Gaussians by Cholesky factorization
of their overlap matrix.

The SOAP kernel is special because it is not only invariant
with respect to relabeling of atoms and rotation of either
neighbor environment, but also faithful in the sense that K

takes the value of unity only when the two neighborhoods
are identical. This is because it is directly proportional to the
overlap of the atomic neighborhood densities, integrated over

all three-dimensional rotations R̂ [31],

Kij ∝
∣∣∣∣∣
∫

dR̂

∣∣∣∣
∫

drρi(r)ρj (R̂r)

∣∣∣∣
2
∣∣∣∣∣
ξ

. (9)

The SOAP kernel is therefore also manifestly smooth and
slowly varying in Cartesian space, just as we know the
true Born-Oppenheimer potential energy surface to be, away
from electronic energy level crossings and quantum phase
transitions. The entire GAP framework, including the choice
of descriptor and the kernel, is designed so that its parameters
are easy to set and the final potential is not very sensitive
to the exact values. Some are physically motivated and stem
from either the properties of the quantum mechanical potential
energy surface (rcut, σw, σatom) or the input data (e.g., σν),
while others are convergence parameters and are set by a
trade-off between accuracy and computational cost (nmax, lmax,
M). We include in the Supplemental Information [41] a table
demonstrating convergence of the fitted potential as a function
of nmax, lmax, and rcut. By far the most “arbitrary” part of the
potential is thus the set of configurations chosen to comprise
the training database.

Since the potential interpolates the atomic energy in the
space of neighbor environments, we need good coverage of
relevant environments in the database. We therefore need to
start by deciding what material properties we wish to study
and what are the corresponding neighbor environments. Our
strategy is to define, for each material property, a set of
representative small unit cell configurations that are amenable
to accurate first-principles calculation. In Table III we show
the performance with respect to key material properties
of six models, each fitted to a database that contains the
configurations indicated on the left, in addition to all the
configurations of the preceding one. In particular, as proposed
by Vitek and co-workers [42–44], the structure of 1

2 〈111〉 screw
dislocations in bcc transition metals can be rationalized in
terms of the strictly planar γ surface concept, and therefore
we use γ surfaces in the database to ensure the coverage
of neighbor environments found near the dislocation core.
Where the dislocation structure is very far from correct, the
numerical performance metric on it has been omitted. The
table shows that, broadly speaking, the small representative
unit cells are necessary and also sufficient to obtain each
property accurately, so the GAP model interpolates well but
does not extrapolate to completely new kinds of configurations.
Adding new configurations never compromises the accu-
racy of previously incorporated properties. For information,
Table IV shows the results of the automatic allocation of the
representative atoms in each GAP model to the various types
of configurations.

We also show the performance of the final GAP6

model on Fig. 1 and omit the subscript from now. The
phonon spectrum of the GAP model is shown in Fig. 2
along with that of the DFT and FS potential. There is
clear improvement with respect to the analytical model,
but remaining deficiencies are also apparent. Strategies to
enhance the training database in order to improve the
description of phonons are an important future direction
of study.
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TABLE III. (Color online) Summary of the databases for six GAP models, in order of increasing breadth in the types of configurations
they contain, together with the performance of the corresponding potentials with respect to key properties. The color of the cells indicates a
subjective judgment of performance: unacceptable (red), usable (yellow), good (green). The first five properties can be checked against DFT
directly and so we report errors, but calculation of the last two properties are in large systems, so we report the values, converged with system
size. The configurations are collected using Boltzmann sampling; for more details on the databases leading to the models see the Supplemental
Information [41].
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GAP1 :
2000 × primitive unit cell
with varying lattice vectors

24.70 0.623 0.583 2.855 0.1452 0.0008

GAP2 : GAP1 + 60 × 128-atom unit cell 51.05 0.608 0.146 1.414 0.1522 0.0006

GAP3 : GAP2 +
vacancy in: 400 × 53-atom unit cell,
20 × 127-atom unit cell

63.65 0.716 0.142 0.018 0.0941 0.0004

GAP4 : GAP3 +

(100), (110), (111), (112) surfaces
180 × 12-atom unit cell

(110), (112) γ surfaces
6183 × 12-atom unit cell

86.99 0.581 0.138 0.005 0.0001 0.0002 –0.960 0.108

GAP5 : GAP4 +
vacancy in: (110), (112) γ surface
750 × 47-atom unit cell

93.86 0.865 0.126 0.011 0.0001 0.0002 –0.774 0.154

GAP6 : GAP5 +
1
2

111 dislocation quadrupole
100 × 135-atom unit cell

93.33 0.748 0.129 0.015 0.0001 0.0001 –0.794 0.112

aTime on a single CPU core of Intel Xeon E5-2670 2.6 GHz.
brms error.
cFormation energy error.
drms error of Nye tensor over the 12 atoms nearest the dislocation core; cf. Fig 4.

We now investigate the properties of the 1
2 〈111〉 screw

dislocation further by calculating the Peierls barrier using a
transition-state-searching implementation of the string method
[45,46]. Three different initial transition paths, shown in

TABLE IV. Number of representative atomic environments in
each database of the six GAP models. The rows represent the
successive GAP models and the columns represent the configuration
types in the databases, grouped according to which GAP model
first incorporated them. The allocations shown are based on k-
means clustering. The rightmost column shows the total number of
representative atoms in each GAP model (M).

Database Total

1 2 3 4 5 6 M

GAP1 2000 2000
GAP2 814 3186 4000
GAP3 366 1378 4256 6000
GAP4 187 617 1890 6306 9000
GAP5 158 492 1604 5331 2415 10000
GAP6 140 450 1500 4874 2211 825 10000

Fig. 3, are used to explore the existence of the metastable
state corresponding to a “hard” core structure [15,47–49].
We find that the hard core is not even locally stable in
tungsten—starting geometry optimization from there results
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FIG. 2. (Color online) Phonon spectrum of bcc tungsten calcu-
lated using GAP and FS potentials, and some reference DFT values.
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“soft” lattice site

“hard” lattice site

Path A
Path B
Path C

FIG. 3. (Color online) Representation of the three different initial
transition paths for the Peierls barrier calculation. Path A corresponds
to the linear interpolation directly from the initial to the final state,
whereas paths B and C are the two distinct linear interpolations
that include a potential metastable state (corresponding to the hard
structure of the dislocation core) at reaction coordinate r = 0.5.

in the dislocation line migrating to a neighboring lattice
site, corresponding to the “soft” core configuration. All three
initial transition paths converge to the same minimum energy
pathway (MEP), shown in Fig. 4, with no hard core transition
state. For large enough systems, the MEP is independent
of the boundary conditions: the “quadrupole” calculations
contained two oppositely directed dislocations in periodic
boundary conditions, while the “cylinder” configurations had a
single dislocation with fixed far-field boundary conditions. For
comparison we also plot the MEP of the Finnis-Sinclair model,
and show the corresponding core structures using Nye tensor
maps [50,51]. For the smallest periodic 135-atom model, we
computed the energies at five points along the MEP using
DFT to verify that the GAP model is indeed accurate for these
configurations.
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[Å

−1
]

(s
cr

ew
co

m
p.

)

Reaction coordinate, r

GAP, quadrupole (135 at.)
GAP, quadrupole (459 at.)

GAP, quadrupole (1215 at.)
GAP, cylinder (33633 at.)

FS, cylinder (33633 at.)
DFT, quadrupole (135 at.)

FIG. 4. (Color online) Top: The structure of the screw dislocation
along the minimum energy path as it glides. Bottom: Peierls barrier
evaluated using GAP and FS potentials, along with single-point
checks with DFT in the 135-atom quadrupole arrangement.
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FIG. 5. (Color online) Dislocation-vacancy binding energy eval-
uated using GAP and FS potentials. The top panels show the
interpolated binding energy using a heat map; the graphs below are
slices of the same along the dotted lines shown in the top panels.

Due to the intrinsic smoothness of the potential, it can be
expected to perform well for configurations which contain
multiple defect structures as long as the local deformation
around each defect with respect to the corresponding configu-
rations in the database is small. So we finally turn to an example
of the kinds of atomistic properties that are needed to make
the connection to materials modeling on higher length scales,
but are inaccessible to direct DFT calculations due to system
size limitations imposed by the associated computational cost.
Figure 5 shows the energy of a vacancy in the vicinity of a
screw dislocation calculated in a system of over 100 000 atoms
using cylindrical fixed boundary conditions 230 Å away from
the core and with periodic boundary conditions applied along
the dislocation line with a periodicity corresponding to three
Burgers vectors. The Finnis-Sinclair potential underestimates
this interaction by a factor of 2.

Although the potential developed in this work does not
yet constitute a comprehensive description of tungsten under
all conditions, we have shown that the strategy of building
a database of representative small unit cell configurations
is viable, and will be continued with the incorporation of
other crystal phases, edge dislocations, interstitials, etc. In
addition to developing ever more comprehensive databases and
computing specific atomic scale properties with first-principles
accuracy on which higher-length-scale models can be built, our
long-term goal is to discover whether, in the context of a given
material, an all-encompassing database could be assembled
that contains a sufficient variety of neighbor environments to
be valid for any configuration encountered under conditions
of physically realistic temperatures and pressures. If that turns
out to be possible, it will herald a truly new era of precision
for atomistic simulations in materials science.
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