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Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect
in BaTiO3 single crystals
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An applied stress field σ3 can reversibly change the temperature of an elastocaloric material under adiabatic
conditions, and the temperature change �Tσ3 is usually maximized near phase transitions. Using a thermodynamic
approach, we demonstrate that an elastocaloric strength α = |�Tσ3 |/|σ3| of 0.016 K/MPa can be achieved
benefiting from the full first-order phase transition in BaTiO3 single crystals, which is comparable with typical
elastocaloric materials reported in the literature. The elastocaloric temperature change is found to be giant
(3.2 K) under a stress of 200 MPa with a temperature span of over 50 K, which can be significantly larger than
its electrocaloric counterpart (∼1 K). Moreover, it is found that the elastocaloric strength can be remarkably
enhanced (2.32 K/MPa) as long as the phase transition is triggered even by a modest stress near the sharp
first-order phase transition, which is two orders of magnitude larger than those accomplished by full transition.
Therefore, even a low stress (<30 MPa) can induce a modest elastocaloric effect (1.3 K) comparable with the
electrocaloric counterpart, which is accompanied by a reduction of the working temperature span. In addition, it
is found that the electrocaloric peak under tensile stresses moves towards higher temperatures with its magnitude
slightly enhanced. Hopefully, our study will stimulate further investigations on elastocaloric and stress-mediated
electrocaloric effects in ferroelectrics.
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I. INTRODUCTION

During the last two decades, great efforts have been made to
develop solid-state cooling refrigeration mainly due to concern
about the environmental impact and energy efficiency limit
of the vapor-cycle cooling technologies [1–5]. As a result,
there has been rapid progress in research on caloric (including
magnetocaloric, electrocaloric, elastocaloric, and barocaloric)
effects [1–5]. In recent years, growing attention has also been
focused on searching multicaloric materials [6,7] or designing
hybrid caloric structures [8] since enhanced caloric responses,
refrigerant efficiency, and capacity can be achieved in these
materials [4].

In this context, ferroelectrics can be considered naturally
as multicaloric materials since the total entropy may change
significantly near the structural phase transition induced by
the multistimuli (electric field, stress, pressure, and magnetic
field if the magnetoelectric coupling exists). Therefore, there
is an increasing amount of experimental and theoretical studies
on ferroelectrics in order to investigate the electrocaloric,
elastocaloric, and barocaloric effects, which may become in
the future of great and significant impact [5]. For instance,
intensive studies are focused on BaTiO3 (BTO) single crystals
[9–11], which is a classical ferroelectric material. Due to
the sharp first-order phase transition, a giant electrocaloric
strength defined as |�TE|/�E has been demonstrated by
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several groups with its largest value ever reported of
0.48 K cm/kV under a electric field change �E of 10 kV/cm
[11]. However, the magnitude of electrocaloric temperature
change |�TE| remains modest (∼1 K [9–11]), which directly
limits further practical applications, not to mention the large
voltage required in the experiments. Since the transition
temperature (∼400 K) is well above room temperature [9–11],
it is also of interest to lower the working temperature and bring
it to room temperature. Moreover, barocaloric effect in BTO
single crystals was demonstrated recently to be comparable
with its electrocaloric response near room temperature [12].
Additionally, it was reported that a hydrostatic pressure can be
used to shift the barocaloric peak to room temperature [12].
Note that the study on the elastocaloric effect in BTO single
crystals near the sharp first-order phase transition which may
show novel and interesting properties is still lacking.

It was reported that the multicaloric effects can be induced
either by applications of either single stimulus [6] or several
stimuli simultaneously [7]. Due to the strong couplings
between different degrees of freedom, i.e., magnetoelectric
[6] and ferroelastic couplings [7], the multicaloric effect can
exceed any single caloric effect. On the other hand, one
may consider combining several stimuli in a “step-by-step”
manner according to previous study. For instance, in the case
of BTO single crystals the stress applied first (elastocaloric
effect) may change the phase transition temperature before
the withdrawal of this stimulus, which may act as an effective
tool to tune the later caloric (i.e., electrocaloric) effect [13,14].
It therefore motivates the present study on the elastocaloric
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and stress-mediated electrocaloric effects in ferroelectric BTO
single crystals. Indeed, although the study on the elastocaloric
effect in ferroelectrics has attracted much more attention, it
is still at the early stage compared with the shape memory
alloys [15–19]. Recently, the remarkable elastocaloric effect
in both ferroelectric bulk [7,20] and thin film [21] is predicted
using first-principles calculations and the phenomenological
approach, respectively, which can even compete with that
reported in shape memory alloys [15–19]. It is of specific
interest to revisit the elastocaloric response of BTO single
crystals using phenomenological calculations since this ap-
proach is easy to understand and simple to achieve without
using costly large-scale computing. In addition, it can describe
the ferroelectric behavior accurately especially near the phase
transition.

II. LANDAU THEORY OF ELASTOCALORIC EFFECT

An applied stress field σ3 (all tensors appear in Voigt nota-
tion) can reversibly change the temperature of an elastocaloric
material under adiabatic conditions, and the temperature
change �Tσ is usually maximized near phase transitions
[7,15–21]. Note that σ3 here is a uniaxial stress applied along
the polar axis of ferroelectric and denoted as σ for short
in the following parts. In order to obtain �Tσ , one may
consider using the indirect method via the Maxwell relation
( ∂S
∂σ

)E,T = ( ∂u3
∂T

)σ,E [4]:

�Tσ = −
∫ σ

0

T

Cσ

(
∂u3

∂T

)
σ,E

dσ, (1)

where T is the temperature, S is the entropy, u3 is the
strain, E is the electric field, and Cσ is the volumetric
heat capacity under constant stress. The validity of the
indirect method is still under debate especially in the field
of the electrocaloric effect [9,13,22–25]. Indeed, the Maxwell
relations are applicable only for thermodynamically reversible
equilibrium and ergodic systems. However, the first-order
phase transition is always associated with thermodynamically
irreversible hysteretic loss. As a result, Eq. (1) can give only
an approximation of �Tσ provided that the irreversible con-
tribution is relatively small [15]. Interestingly, first-principles
calculations have demonstrated that �Tσ calculated based on
Eq. (1) fails to reproduce the direct measurement results in
bulk ferroelectric PbTiO3 (PTO) [7]. However, �Tσ can be
derived through the use of Landau-type theory irrespective of
the order nature of phase transition. In this case, we argue
that the elastocaloric effect in BTO single crystals may be
evaluated in terms of polarization change rather than strain
change near the first-order phase transition, as expected in
proper ferroelectrics for which the strain variation results
from the polarization change [7]. Such treatment is directly
supported by first-principles calculations showing that indeed
the elastocaloric effect in PTO nearly vanishes to zero in the
paraelectric phase due to the disappearance of polarization [7].
Additonal experimental evidence signals that the barocaloric
effect in PTO is noticeable only near the pressure-free Curie
temperature [26].

To allow direct comparison with recent first-principles
studies [7,20], we concentrate on the condition of a uniaxial
tensile stress σ > 0 applied along the [001] direction of BTO.

Moreover, we focus on the transition from the cubic phase to
the tetragonal one, which is widely studied in electrocaloric
BTO samples in the form of single crystals, thin films, and
ceramics [9–12,14,27–32]. Taking into account the foregoing
mechanical boundary conditions, the Gibbs free energy can be
expressed as [33]

G = α1P
2 + α11P

4 + α111P
6 + α1111P

8

− 1
2S11σ

2 − Q11σP 2, (2)

where S11 is the elastic compliance and Q11 is the elec-
trostrictive coefficient. α1, α11, α111, and α1111 are the di-
electric stiffness coefficients at constant stress, and only α1

is temperature dependent. The higher-order electrostrictive
coupling between stress and polarization has been included
in the stress-dependent Landau potential coefficients α11 and
α111 [33].

In the following part, we use a phenomenological Landau-
type model which was initially proposed to describe the
electrocaloric effect in relaxor ferroelectric and BTO single
crystals [10,24]. The theoretical predictions of this model were
found to agree well with the experimental results [10,24]. In
addition, this model was recently developed to describe the
barocaloric effect in BTO single crystals [12]. It assumes that
the total entropy S can be divided into two parts, namely, the
dipolar contribution Sdip and the lattice contribution Slatt as
follows [24]:

S = Slatt + Sdip, (3)

where Sdip is due to the entropy contribution of the dipolar
degrees of freedom and is thus a function of the dielectric
polarization P (E,T ), which depends on E at a given T . Slatt

is an electric field independent lattice contribution. Another
assumption is that the dipolar free energy can be written in the
standard Landau form [24]. For the elastocaloric effect here,
both assumptions can be satisfied. To be more specific, this
model may be developed by replacing the electric stimulus
by stress σ , making it applicable to our case. Following the
strategy developed by Pirc et al. [10,24], we can then obtain a
self-consistent equation to derive �Tσ = T2 − T1 such that

T2 = T1exp

{
a1

2Clatt

[
P 2

0 (σ,T ) − P 2
0 (0,T )

]}
, (4)

where a1 ≡ dα1/dT and Clatt is the lattice contribution to
the total heat capacity. P0 is the equilibrium polarization
obtained from the equilibrium condition ∂G/∂P = 0. All the
coefficients we used are listed in Ref. [34].

III. RESULTS AND DISCUSSION

Figure 1(a) summarizes the equilibrium polarization P0

under different σ as a function of T . It is shown that the
Curie temperature Tc(σ ) increases with increasing stress.
Specifically, Tc(σ ) increases from 401 K at 0 MPa to 455 K at
200 MPa. As a result, P0 is consistently enhanced especially at
temperatures above the stress-free Curie temperature Tc(0) ≈
401 K.

The elastocaloric behavior of BTO single crystals is
revealed in Fig. 1(b). It can be seen that �Tσ peaks at
Tc(0), which is consistent with the predictions by first-
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FIG. 1. (Color online) The polarization P0 and (b) adiabatic temperature change �Tσ under different σ as a function of ambient temperature
T . The dependence of (c) P0 and (d) �Tσ on σ at different T .

principles calculations [7,20]. Just above Tc(0), �Tσ drops
sharply due to the dramatic reduction of polarization change
[P (σ,T ) − P (0,T )] as shown in Fig. 1(a). Finally, �Tσ

vanishes due to the disappearance of polarization, which again
agrees with the results obtained by first-principles calculations
[7]. Our finding is also in line with the barocaloric effect
reported in PTO in which the maximum barocaloric response
was observed at the pressure-free Curie temperature of PTO
[26]. The largest �Tσ found here is about 3.2 K at 200 MPa,
while �Tσ can reach 2.3 K at 50 MPa. �Tσ at 200 MPa
found here (3.2 K) is smaller than that (6 K) in PTO [7] but
is larger than that (∼ 1 K) in Ba0.5Sr0.5TiO3 (BST) [20] under
the same stress condition. In addition, it is shown that as σ

increases, the working temperature window Tspan increases
considerably from ∼15 K at 50 MPa to ∼50 K at 200 MPa
[see Fig 1(b)]. In addition, the elastocaloric strength defined
as α = |�Tσ/σ | in BTO (0.016 K/MPa) is already in the
range of the previous results obtained from CuZnAl shape
memory alloys and other ferroelectric bulk materials though
the entropy change �S (3.2 J/kg K) and refrigerant capacity
R � |�S�Tσ | (Ref. [17]) are relatively low (see Table I).

The stress-dependent P0 and �Tσ under different T are
shown in Figs. 1(c) and 1(d). It turns out that P0 increases
as σ increases. It can be seen in Fig. 1(c) that above Tc(0)
there exists a critical stress field σc at which P0 jumps to
roughly 0.15 C/m2 due to the stress-induced first-order phase
transition. As T increases, larger stresses are needed to induce
the discontinuous transition. Consequently, σc increases sig-
nificantly from ∼12 MPa at 405 K to ∼161 MPa at 445 K.
Below Tc(0), the polarization jump does not occur as BTO is
already in its ferroelectric phase. In addition, it is found that
the closer to Tc(0), the larger the change of polarization will be.

Accordingly, the elastocaloric response in Fig. 1(d) shows that
�Tσ increases as σ increases irrespective of T . Moreover,
Fig. 1(d) clearly indicates that the largest �Tσ occurs at
Tc(0), which is consistent with the findings in Fig. 1(b). In
addition, the elastocaloric effect predicted here has the poten-
tial to compete with the measured electrocaloric counterpart
(∼1 K [9–11]) depending on the maximum value of mechani-
cal stress applied in the practical situation. This result clearly
demonstrates that applied stress may be an effective tool to
directly induce the large caloric response for cooling/heating
applications especially in ferroelectrics [7,20,21].

Obviously, in real situations, the high stress used in
theoretical calculations warrants further consideration. For
instance, for compressive stress (σ < 0), single crystal BTO
usually bears an upper bound |σ | of less than 30 MPa, while a
polycrystalline sample can hold an order of magnitude higher
stress (i.e., ∼300 MPa) [36,37]. As a result, the elastocaloric
effect observed by experiment should be significantly smaller
than the predicted one produced by the ultrahigh stress [7,20].
In order to achieve large elastocaloric responses, it may
be helpful to reconsider the critical elastocaloric behavior
near Tc(0). It should be noted that all the elastocaloric data
shown in Table I are accomplished by full transition of
samples and bounded by �Tσ = T

Cσ
�S. In our case, a high

stress of 200 MPa can be used for the full transition [see
Figs. 1(c) and 1(d)]. At low stresses, the elastocaloric strength
α = |�Tσ/σ | is controlled by the slope in the σ − T phase
diagram (Clausius-Clapeyron relation) and the sharpness of
the transition as shown later. Detailed discussion about this
issue in the magnetocaloric effect can be found elsewhere [38].
In addition, only a single domain model is considered in the
phenomenological theory here and first-principles calculations

104107-3



YANG LIU et al. PHYSICAL REVIEW B 90, 104107 (2014)

TABLE I. Comparison of elastocaloric properties of BTO single crystals developed in this work with those in the literature.

Tc(0) Tspan σ |�Tσ | �Tσ /σ |�S| |�S�Tσ |
Material (K) (K) (MPa) (K) (K/MPa) (J/kg K) (J/kg) Reference

NiTi 242 — 600 17 0.023 — — [16]
FePd 230 50 100 2 0.020 — — [18]
TiNiCu 318 — 330 6 0.018 — — [17]
CuZnAl 234 130 275 6 0.022 17.9 107 [19]
BST 250 50 1000 9 0.009 ∼16 144 [20]
PTO 750 ∼30 1000 20 0.020 ∼9.6 192 [7]
BTO 401 50 200 3.2 0.016 ∼3.2 10.2 This work

[7,20], which just gives the static or quasistatic solutions.
In the practical conditions, it will be of interest to include
other domain structures, i.e., 90◦ domain switching [36] in
future studies. In this regard, stress relaxation taking place in
the region of deformation related to twin boundary motions
[39,40] should also be taken into account.

The elastocaloric properties especially at the temperatures
approaching Tc(0) are depicted in Figs. 2(a) and 2(b). It can be
seen that the critical driving stress σc drops remarkably from
∼30 MPa at 410 K to ∼0.5 MPa at 402 K. Interestingly, the
corresponding elastocaloric temperature change �Tσc

remains
nearly unchanged from 1.32 K at 30 MPa to 1.29 K at 0.5 MPa,
which is still comparable with its electrocaloric counterpart
in BTO single crystals [9–11]. This finding is of importance
since the driving stress can be tuned to be much smaller as
long as T is close to Tc(0). Note that here the transition

FIG. 2. (Color online) (a) The critical driving stress σc and
corresponding elastocaloric response �Tσc

as a function of T .
(b) The critical elastocaloric strength αc as a function of T (402–
410 K). The result obtained in BTO under full transition at 401 K is
also added.

has just been opened by the critical stress field σc and the
corresponding temperature change |�Tσc

| of about 1.3 K is
caused directly by the discontinuous polarization jump near
the transition point [see Figs. 1(a) and 1(c)]. In this case, the
elastocaloric strength has to be redefined as αc = |�Tσc

/σc| as
we concentrated on elastocaloric response under a low stress.
It is shown in Fig. 2(b) that as T decreases towards Tc(0),
the elastocaloric strength defined as αc first increases slowly
from 0.043 K/MPa at 410 K to 0.16 K/MPa at 404 K and
then experiences a steep jump to 2.32 K/MPa at 402 K. Note
that α experiences a sharp drop as T [starting from Tc(0)]
decreases further (not shown here), which indicates that α ∝
1/|T − Tc(0)| is also maximized at Tc(0). This phenomenon
is very similar with the behavior of the electrocaloric strength
near Tc(0) [9–11,27]. Note that the giant elastocaloric strength
of 2.32 K/MPa found here is two orders of magnitude higher
than that (0.016 K/MPa) under full transition induced by a
large stress (see Table I). However, just like its electrocaloric
counterpart [9–11,27], the giant elastocaloric strength benefits
from the sharp first-order phase transition but in turn suffers
by the strong temperature dependence of �Tσ near Tc(0). As
a consequence, the narrow Tspan (<9 K) limits the potential
cooling applications of BTO in elastocaloric and electrocaloric
devices. From this regard, martensite shape-memory alloys
show better performance.

Understanding the stress-mediated electrocaloric effect in
BTO single crystals is of particular interest as it may give
a hand in tuning the electrocaloric effect. For instance, it
was reported that applying compressive stresses on BTO
ultrathin films can lead to the enhancement of the electrocaloric
response due to the tuning of the depolarizing field [14]. In
our work, we used the foregoing model [10,24] to study the
effect of tensile stress on the electrocaloric effect in BTO
single crystals, which is shown in Fig. 3. It can be seen that
the largest electrocaloric temperature changes �TE induced
by two typical electric fields of 8 and 12 kV/cm at 0 MPa are
0.97 and 1.03 K, respectively. These results are consistent with
the direct measurement data, i.e., 0.80 and 0.90 K (Ref. [21])
or 1.10 and 1.20 K (Ref. [23]), respectively. On the contrary,
the calculated values here differ from those obtained by an
indirect approach where the �TE peak value is about 4.8 K
(E = 10 kV/cm) [11]. In addition, it is shown that the peak of
�TE moves remarkably towards higher temperatures, which is
essentially attributed to the shift of Tc(σ ) [Fig. 1(a)]. Moreover,
the magnitude of the �TE peak increases slightly from 0.97 K
at 0 MPa to 1.08 K at 200 MPa.
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FIG. 3. (Color online) Electrocaloric effect under different me-
chanical conditions.

The stress-mediated electrocaloric behavior described
above can be understood qualitatively as follows. �TE can
be estimated using �TE

∼= − ∫ E

0
T
CE

( ∂P0
∂T

)E,σ dE, where CE is
the volumetric heat capacity under constant E. In our case,
the term | ∂P0

∂T
|E,σ , which is the pyroelectric coefficient, is

slightly reduced when a tensile stress is applied. Note that
a higher | ∂P0

∂T
|E,σ does not necessarily guarantee a larger

magnitude of the electrocaloric effect [25,28], because the
ambient temperature, heat capacity, and electric field change
also contribute to the above integration. In BTO single crystals,
it is found that the enhancement in the term of T

CE
|E,σ,T is

dominant over compensating the reduction stemming from the
term | ∂P0

∂T
|E,σ . As a result, a slight increase in �TE is observed

as σ increases.

IV. CONCLUSIONS

In summary, using a thermodynamic model, we demon-
strate that a giant elastocaloric strength of 2.32 K/MPa
can be achieved near zero-field Curie temperature in BTO
single crystals. The giant elastocaloric strength found here
benefits from the sharp first-order phase transition but in
counterpart the elastocaloric response suffers from the strong
temperature dependence. It is found that the tensile stress
can shift the electrocaloric peak to higher temperatures and
simultaneously increase the magnitude of the electrocaloric
peak slightly. Our findings clearly show that the elastocaloric
effect in BTO single crystals has great potential to compete
with its electrocaloric counterpart depending on the stress
applied in practice. Hopefully, our study will stimulate further
experimental and theoretical investigations on the elastocaloric
effect and stress-mediated electrocaloric effects especially
in ferroelectrics. In particular, the elastocaloric effect under
compressive stresses taking into account ferroelastic domain
switching [36] is highly desirable.
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