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Odd-parity topological superconductor with nematic order: Application to CuxBi2Se3
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CuxBi2Se3 was recently proposed as a promising candidate for time-reversal-invariant topological supercon-
ductors. In this work, we argue that the unusual anisotropy of the Knight shift observed by Zheng and co-workers
(unpublished), taken together with specific heat measurements, provides strong support for an unconventional
odd-parity pairing in the two-dimensional Eu representation of the D3d crystal point group, which spontaneously
breaks the threefold rotational symmetry of the crystal, leading to a subsidiary nematic order. We predict that the
spin-orbit interaction associated with hexagonal warping plays a crucial role in pinning the two-component order
parameter and makes the superconducting state generically fully gapped, leading to a topological superconductor.
Experimental signatures of the Eu pairing related to the nematic order are discussed.
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Time-reversal-invariant (T-invariant) topological supercon-
ductors in two and three dimensions are a new class of
unconventional superconductors which exhibit a full supercon-
ducting gap in the bulk and gapless helical quasiparticles on the
boundary [1–3]. Because these quasiparticles do not possess
conserved charge or spin quantum numbers, they cannot be
distinguished from their antiparticles and hence are regarded
as itinerant Majorana fermions.

There is currently intensive effort in finding T-invariant
topological superconductors in real materials [4–9]. Recent
theoretical works [10,11] have established that the key
requirement for topological superconductivity in inversion-
symmetric systems is odd-parity pairing symmetry. Only a
few odd-parity superconductors are known to date. Two prime
examples are Sr2RuO4 and UPt3. However, both materials
seem to have nodes and/or spontaneously break time-reversal
symmetry, and hence do not qualify as T-invariant topological
superconductors.

Recently, the doped topological insulator CuxBi2Se3, which
is superconducting with a maximum Tc of 3.8 K [12], was
proposed as a candidate topological superconductor with
odd-parity pairing [10]. Since then this material has been
intensively studied. Specific heat measurements down to 0.3 K
found a full superconducting gap [13]. The upper critical
field appears to exceed the Pauli limit, which is interpreted
as consistent with triplet pairing [14]. Much interest is sparked
by the observation of a zero-bias conductance peak in a
point-contact spectroscopy experiment on Cu0.3Bi2Se3 [15],
which is attributed to the putative Majorana fermion surface
states from topological superconductivity. However, a later
scanning tunneling spectroscopy measurement on Cu0.2Bi2Se3

found a full gap in the tunneling spectrum at very lower
temperature, without any sign of in-gap states [16]. The
discrepancy between these two surface sensitive experiments
has led to considerable debate and controversy about the nature
of superconductivity in CuxBi2Se3 [17–22]. In view of the
current status, direct probes of the pairing symmetry in the
bulk are much needed.

In a very recent nuclear magnetic resonance (NMR) study of
Cu0.3Bi2Se3, Zheng’s group discovered an unusual anisotropy
in the Knight shift as a small applied field is rotated within
the ab plane [23]. The Knight shift is isotropic above Tc,
and decreases in the superconducting state. Remarkably, the

change in the Knight shift is largest when the field is parallel
to a particular crystal axis. This uniaxial anisotropy does
not conform with the threefold rotational symmetry of the
crystal, and thus provides a direct evidence of spontaneous
crystal symmetry breaking associated with unconventional
superconductivity in CuxBi2Se3.

In this Rapid Communication, we identify the pairing
symmetry of CuxBi2Se3 from the existing NMR and specific
heat measurements, theoretically establish a fully gapped
topological superconductor phase, and predict experimental
signatures for further study. Our main finding is that among
all possible pairing symmetries, only the odd-parity pairing in
the two-dimensional (2D) Eu representation, first introduced
in Ref. [10], is compatible with the rotational symmetry
breaking observed in NMR measurements [23] and the full
superconducting gap found in specific heat measurement [13].
Since this Eu pairing generates a subsidiary nematic order, we
call the resulting state a “nematic superconductor.”

The fully gapped nature of the Eu superconducting state
found here is remarkable, considering that previous works
invariably found nodes in the gap [10,15,24]. Moreover, a
full gap is required for topological superconductivity. While
previous works are based on a rotationally invariant Dirac
fermion model for the bulk band structure of CuxBi2Se3, we
find that crystalline anisotropy plays an indispensable role
in the odd-parity Eu state. We show by general argument
and model study that the spin-orbit interaction associated
with hexagonal warping [25] pins the direction of the two-
component Eu order parameter to a twofold axis of the crystal,
consistent with the Knight-shift anisotropy, and makes the
superconducting state generically fully gapped.

Pairing symmetry. It was recognized at the outset that
strong spin-orbit coupling must be taken into consideration in
discussing the pairing symmetry of CuxBi2Se3 [10]. Indeed,
the importance of spin-orbit coupling becomes manifest in the
Knight-shift measurement of the electron’s spin susceptibility.
If spin-orbit coupling were absent, the Knight shift would
be fully isotropic for spin-singlet as well as triplet pairing,
in the latter case because the triplet d vector would be free
to rotate with the applied magnetic field. In contrast, in the
presence of spin-orbit coupling, the notion of spin-singlet
or triplet pairing is, strictly speaking, not well defined.
Instead, pairing symmetries are classified according to the
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representations of the crystalline symmetry group D3d [10],
which acts simultaneously on spatial coordinates and the
electron’s spin. The consequence is that the spin structure of
the superconducting order parameter is locked to the crystal
axis, generically resulting in an anisotropic spin susceptibility.

Among the the six irreducible representations of D3d (A1g ,
A1u, A2u, A2g , Eu, and Eg), only the Eu and Eg representations
are multidimensional and hence potentially compatible with
the spontaneous rotational symmetry breaking observed in the
Knight-shift measurement. In order to determine which one of
the two is the pairing symmetry of CuxBi2Se3, we first consider
Ginzburg-Landau theory for the Eu and Eg superconducting
states. The D3d point group symmetry dictates that up to the
fourth order, the Landau free energy in both cases must take
the form

F = r(|�1|2 + |�2|2) + u1(|�1|2 + |�2|2)2

+u2

∣∣�2
1 + �2

2

∣∣2
, (1)

where r ∝ (T − Tc). Here � = (�1,�2) is the two-component
order parameter, which transforms as a vector under the
threefold rotation. The same form of the free energy also
applies to other crystal systems [26–28]. Importantly, the
nature of the superconducting state below Tc depends on
the sign of u2. For u2 > 0, a T-breaking chiral state with
a complex order parameter � ∝ ( 1√

2
, i√

2
) arises, which is

isotropic within the ab plane. For u2 < 0, a T-invariant
state with a real order parameter � ∝ (cos θ, sin θ ) arises.
This superconducting state spontaneously breaks the
rotational symmetry, and possesses a subsidiary nematic
order parameter Q:

Q = (|�1|2 − |�2|2, �∗
1 �2 + �∗

2 �1). (2)

The two components of Q transform as x2 − y2 and xy,
respectively. Such a nematic superconductor with uniaxial
anisotropy is consistent with the Knight-shift measurement,
whereas the isotropic chiral state is not.

We now show that the nematic state with Eg pairing and
the one with Eu pairing can be experimentally distinguished
by their qualitatively different gap structures, because of the
difference in the parity of the order parameter: Eg is even
parity and Eu is odd parity. To analyze the gap structure, it is
convenient to express the pair potential �(k) in the band basis.
Since the superconducting gap is much smaller than the Fermi
energy in CuxBi2Se3, it suffices to consider only the bands at
the Fermi energy. Due to the presence of both time-reversal and
inversion symmetry, the energy bands are twofold degenerate
at every k, which we label by a “pseudospin” index α. Because
of spin-orbit coupling, α = 1,2 does not correspond to the
electron’s spin. The pair potential thus reduces to a 2 × 2
matrix over the Fermi surface, the gap function �αα′ (k).

Depending on the parity of the order parameter, the gap
function of a T-invariant superconductor takes two different
forms:

�e(k) = �(k) · I, where �(k) = �(−k), (3)

�o(k) = �d(k) · �σ , where �d(k) = −�d(−k). (4)

The even-parity gap function �e(k) is a real scalar, while the
odd-parity gap function �o(k) is parametrized by a real vector

field �d(k), the d vector. The superconducting gaps δ(k) in the
two cases are given by |�(k)| and | �d(k)|, respectively.

The scalar nature of the even-parity gap function (3) dictates
that the T-invariant Eg state of CuxBi2Se3 must have line
nodes. To see this, let us recall that for any non-s-wave pairing,
the gap function integrated over the Fermi surface must be
zero: ∫

k∈FS
dk �(k) = 0. (5)

As shown by angle-resolved photoemission spectroscopy
experiments [18,29], CuxBi2Se3 has a connected Fermi surface
enclosing k = 0. It then follows from Eq. (5) that �(k) must
change sign somewhere on such a Fermi surface, resulting in
unavoidable line nodes. As an explicit example, the Eg gap
function �(k) ∝ kzkx,kzky considered in Ref. [24] has lines
of nodes on the kz = 0 and kx,ky = 0 planes. The existence of
line nodes conflicts with the specific heat measurement [13].
This seems sufficient to rule out the Eg pairing in CuxBi2Se3.
In contrast, we will show below that the Eu states generically
have a full superconducting gap.

Superconducting gap. For the sake of concreteness, we first
derive the superconducting gap of the Eu state within a two-
orbital model for CuxBi2Se3. Later, we will show that the
presence or absence of nodes is a robust property that depends
only on symmetry, not microscopic details.

The band structure of CuxBi2Se3 at low energy is described
by a k · p Hamiltonian at �, which to first order in k takes the
following form [10]:

H0 =
∑

k

c
†
k[v(kxsy − kysx)σz + vzkzσy + mσx − μ]ck,

where c† = (c†1↑,c
†
1↓,c

†
2↑,c

†
2↓) consists of two orbitals hereafter

denoted as 1 and 2, in addition to the electron’s spin. Here σ and
s are two sets of Pauli matrices associated with orbital and spin,
respectively. It is worth pointing out that spin-orbit coupling
in time-reversal and inversion-symmetric systems necessarily
involves more than one orbital, as shown in the two-orbital
Hamiltonian here. The physical origin of H0 is elucidated in
Ref. [30]. The chemical potential μ lies in the conduction band
due to Cu doping.

In this two-orbital model, the Eu pairing arises when
electrons in the two orbitals within a unit cell pair up to form a
spin triplet, with zero total spin along an in-plane direction n =
(nx,ny). The corresponding pair potential, Vn = nxVx + nyVy ,
is a superposition of two independent basis functions given in
Ref. [10] (therein called “�4 pairing”):

Vx = i�0(c†1↑c
†
2↑ − c

†
1↓c

†
2↓),

(6)
Vy = �0(c†1↑c

†
2↑ + c

†
1↓c

†
2↓).

Vn is T-invariant and rotational symmetry breaking. n should
be regarded as a nematic director (a headless vector), because
the superconducting order parameters Vn and V−n only differ
by sign and correspond to the same physical state.

We can directly obtain the superconducting gap δn(k)
by diagonalizing the BCS mean-field Hamiltonian Hsc =
H0 + Vn. Alternatively, we can derive the gap function �(k) by
rewriting Vn, defined by (6) in spin and orbital basis, in terms of
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band eigenstates of H0 at the Fermi energy, as done in Ref. [24].
To leading order in �0/μ, the two approaches yield identical
results for the superconducting gap on the Fermi surface:
δn(k) = �

√
k̃2
z + (k̃ · n)2, where � = �0

√
1 − m2/μ2. Here

we have introduced a rescaled momentum k̃ to parametrize the
Fermi surface:

k̃ = (vkx,vky,vzkz)/
√

μ2 − m2. (7)

k̃ maps the ellipsoidal Fermi surface of the Hamiltonian H0

to a unit sphere. The gap δn(k) vanishes at two points on the
equator of the Fermi surface: ±k0 = ±kF ẑ × n. Hence, based
on this model, previous works concluded that the Eu states in
CuxBi2Se3 have point nodes.

However, we note that H0 is fully rotationally invariant
around the ẑ axis. This is an artifact of the first-order k · p

theory, which does not include any effect of crystalline
anisotropy. In reality, the crystal of CuxBi2Se3 only has a
discrete threefold symmetry, and this crystalline anisotropy
is solely responsible for pinning the direction of the Eu

order parameter n. This motivates us to take crystalline
anisotropy into account and reexamine the gap structure of Eu

pairing.
We find that the gap structure depends on the orientation

of the order parameter n relative to the crystal axes: The
point nodes remain present when n is parallel to twofold
axes, whereas they become lifted for n in all other directions,
resulting in a full superconducting gap. To illustrate this node
lifting explicitly, we add a “hexagonal warping” term of third
order in k to the Hamiltonian, which is allowed by the D3d

point group symmetry of CuxBi2Se3:

H = H0 + λ
∑

k

(k3
+ + k3

−)c†kσzszck, k± ≡ kx ± iky. (8)

Here x is along a twofold axis, or equivalently, normal
to a mirror plane, as shown in Fig. 1. This hexagonal
warping term arises from the spin-orbit interaction associated
with crystalline anisotropy and can be regarded as the bulk
counterpart of the warping term for topological insulator
surface states [25,31]. For λ �= 0, the Fermi surface becomes
hexagonally deformed, and more importantly, the orbital-
resolved spin polarization of Bloch states in k space becomes
modified.

By solving the mean-field Hamiltonian Hsc = H + Vn with
the same pair potential as before, we find the superconducting
gap in the presence of hexagonal warping,

δn(k) = �

√
1 − [k̃ · (ẑ × n)]2, (9)

where k̃ is still defined by Eq. (7), but k now lives on a new
Fermi surface determined by√

m2 + v2
(
k2
x + k2

y

) + λ2(k3+ + k3−)2 + v2
z k

2
z = μ.

It is clear from (9) that the gap δn(k) goes to zero only where
|n · (k̃ × ẑ)| = 1. Importantly, we note that for λ �= 0, |k̃ ×
ẑ| is less than 1 everywhere on the warped Fermi surface,
except at six corners of the hexagon on the kz = 0 plane (see
Fig. 1): ±k = kF ŷ and the star of ±k obtained by threefold
rotation, where |k̃ × ẑ| = 1. As a result, the zero-gap condition∣∣k̃ · (ẑ × n)

∣∣ = 1 is satisfied only when the nematic director n

kx 

ky 

FIG. 1. (Color online) (a) Crystal structure of CuxBi2Se3 viewed
from the c axis. Note that the x axis is normal to a mirror plane.
(b) Hexagonal Fermi contour at kz = 0 for the Hamiltonian (8).
(c) and (d) show the angle dependence of the anisotropic supercon-
ducting gap over the kz = 0 Fermi contour for the Eu order parameters
Vx and Vy , respectively, defined in (6). The presence of nodes in (c)
and the full gap in (d) are robust and model independent.

is parallel to one of the three twofold axes, such as n = ±x̂.
In this case, the nodes found previously remain present. In
contrast, for n = (cos θ, sin θ ) in all other directions, i.e., θ �=
0, ±π/3, or ±2π/3, the nodes are lifted by hexagonal warping,
resulting in a full gap.

We plot in Fig. 1 the superconducting gaps over the equator
of a hexagonlike Fermi surface, for two Eu pairings with
n = x̂ and ŷ, respectively, which are representative of the two
contrasting cases. It should be said that the quantitative gap
structures are model specific. For example, the gap anisotropy
depends on the amount of warping and the microscopic pairing
interaction. Nonetheless, the presence of nodes for n = x̂ and
a full gap for n = ŷ, which we have explicitly shown using the
model Hamiltonian (8) and the pair potential (6), are robust
and model-independent properties of the Eu superconducting
state in CuxBi2Se3, as we will show below.

Stable nodes have a deep origin in the symmetry and
topology of the gap function. In a T -invariant odd-parity
superconductor, a node in the gap occurs where the d vector
is zero. Importantly, we observe that when strong spin-orbit
coupling is present, as in CuxBi2Se3, the d vector �d(k) (whose
direction depends on the choice of pseduospin basis at k) is
generically a three-component vector field in k space, instead
of collinear or planar. This is simply because a crystalline
symmetry group alone is generally insufficient to make any
component of the d vector vanish everywhere in k space. Since
�d(k) = 0 requires satisfying three equations, it is vanishingly
improbably to find a solution on the two-dimensional Fermi
surface [32]. This implies that stable nodes in T-invariant odd-
parity superconductors are unlikely to occur in the presence of
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spin-orbit coupling, unless there is special crystal symmetry
protecting their existence.

An example of protected nodes arises when there is a
reflection symmetry with respect to a mirror plane, e.g.,
x → −x, and the odd-parity order parameter is invariant
under this reflection. In this case, �d(kx = 0,ky,kz) and �d(kx =
π/a,ky,kz) must be parallel to the normal of the mirror
plane, due to its pseudovector nature. Such a two-dimensional
uniaxial d-vector field on the kx = 0,π/a plane is allowed
to have lines of zeros, whose intersection with the Fermi
surface will generate stable point nodes in the superconducting
gap [32].

The general argument presented above explains the gap
structures of different Eu states of CuxBi2Se3 found in our
model studies. The rotationally invariant model H0 has the
artifact of being symmetric with respect to any vertical plane,
thus resulting in point nodes regardless of the nematic director
n [33]. However, the crystal of CuxBi2Se3 has only three mirror
planes that are 120◦ apart from each other, which is correctly
captured in the refined model (8) with hexagonal warping. For
n normal to a mirror plane such as n = ±x̂, the corresponding
order parameter Vx is invariant under the reflection x → −x;
hence the nodes located on the kx = 0 plane are protected by
this mirror symmetry. For n in all other directions, however,
the order parameter is not invariant under any reflection; hence
nodes are absent [34].

To capture the important effect of crystalline anisotropy
in Ginzburg-Landau theory, we must include higher-order
terms in the free energy (1), which start at the sixth
order,

F6 = κ[(�∗
+�−)3 + (�+�∗

−)3], �± ≡ �1 ± i�2. (10)

Depending on κ > 0 or κ < 0, n is pinned either parallel
or perpendicular to one of the three mirror planes, e.g.,
along the ŷ or x̂ axis. It is natural to expect that the fully
gapped state with n = ŷ has a lower free energy below
Tc than the nodal state with n = x̂. The nematic state
with n = ŷ has two degenerate gap minima at ±kF x̂, and
spontaneously lowers the point group symmetry from D3d

(rhombohedral) to C2h (orthorhombic). This crystal symmetry
breaking naturally leads to an anisotropic spin susceptibility.
Importantly, the C2h point group in the symmetry breaking
phase has only one principal axis—the twofold axis x̂ that
lies within the ab plane. It is exactly along this axis that the
change in Knight shift was found to be largest in the NMR
experiment [23]. This agreement lends additional support to
the Eu pairing symmetry we have identified. A quantitative
calculation of spin susceptibility in the anisotropic Eu state
depends on microscopic details, which we leave to future
study.

The anisotropic Eu state found here is a remarkable
realization of odd-parity pairing with a full gap, with no
known counterpart. For comparison, among the various phases
of superfluid 3He, the T-invariant B phase is isotropic,
while the anisotropic A phase is T breaking. Perhaps the
closest analog to CuxBi2Se3 is the A phase of UPt3 [35],
whose order parameter is real and breaks the sixfold crystal
rotational symmetry [36]; however, this phase is known to have
nodes.

Topological superconductivity. With an odd-parity pairing
symmetry and a full gap, the Eu superconducting state
in CuxBi2Se3 satisfies all the requirements for T -invariant
topological superconductivity stated in Ref. [10]. The exact
topology depends further on the nature of the Fermi surface.
At low doping, the normal state has an ellipsoidal Fermi
pocket centered at �, which under Eu pairing will become
a three-dimensional (3D) topological superconductor, with
Majorana fermion surface states on all crystal faces. At
high doping, the Fermi surface is most likely open and
cylinderlike, as indicated by recent photoemission [18] and
de Haas–van Alphen measurements [37,38]. If this is the
case, the Eu pairing will give rise to a quasi-two-dimensional
topological superconductor, which is equivalent to stacked
layers of 2D topological superconductors along the c axis,
corresponding to vz = 0 in our model (8). Side surfaces of
this state host an even number of 2D massless Majorana
fermions. The top and bottom surfaces are fully gapped,
but a step edge on these surfaces hosts 1D helical Majo-
rana fermions. It has been noted in a related context [18]
that the scenario of quasi-2D topological superconductivity
may explain both the point-contact and scanning tunneling
spectroscopy measurements. In either the 3D or quasi-2D
case, more direct evidence of Majorana fermions would be
desirable.

Experimental signatures. The ab-plane gap anisotropy of
the Eu pairing can be directly probed by directional-dependent
thermal conductivity [39] or tunneling spectra. Here we
focus on testing the Eu pairing symmetry in CuxBi2Se3 via
the subsidiary nematic order. Symmetry dictates a linear
coupling between a uniaxial strain εij in the ab plane and
the superconducting order parameter:

Fs = g

[
εxx − εyy

2
(|�1|2 − |�2|2) + εxy(�∗

1 �2 + �∗
2 �1)

]
.

As a result of this coupling, an uniaxial strain in the ab

plane acts as a symmetry breaking field for the nematic
order, which should be able to align the nematic director
of the superconducting order parameter near Tc, thereby
changing the pattern of the anisotropic Knight shift. In
addition, a small uniaxial strain should enhance the su-
perconducting transition temperature, irrespectively of its
direction. The investigation of such strain-related effects on
superconductivity seems within experimental reach [40] and
may shed light on the pairing symmetry of CuxBi2Se3.
Furthermore, the nematic order parameter allows for half-
integer disclination, around which the superconducting order
parameter changes sign. Hence these disclinations may trap
a half-integer flux quantum (h/4e). Finally, it would be
interesting to consider whether the nematic order or other
orders related to the Eu pairing can emerge prior to the
onset of superconductivity, similar to such phenomena in other
systems [41–44].
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