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Nonequilibrium theory of tunneling into a localized state in a superconductor

Ivar Martin1 and Dmitry Mozyrsky2

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 5 February 2014; revised manuscript received 28 August 2014; published 25 September 2014)

A single static magnetic impurity in a fully gapped superconductor leads to the formation of an intragap
quasiparticle bound state. At temperatures much below the superconducting transition, the energy relaxation and
spin dephasing of the state are expected to be exponentially suppressed. The presence of such a state can be
detected in electron tunneling experiments as a pair of conductance peaks at positive and negative biases. Here we
show that, for an arbitrarily weak tunneling strength, the peaks have to be symmetric with respect to the applied
bias. This is in contrast to the standard result in which the tunneling conductance is proportional to the local (in
general, particle-hole asymmetric) density of states. The asymmetry can be recovered if one allows for either a
finite density of impurity states, or if impurities are coupled to another, nonsuperconducting, equilibrium bath.

DOI: 10.1103/PhysRevB.90.100508 PACS number(s): 05.60.Gg, 03.67.Lx, 73.50.Td, 74.50.+r

Introduction. Conventional s-wave superconductors are re-
markably robust with respect to nonmagnetic disorder [1]: The
potential scattering of electrons does not significantly affect
either the superconducting gap or the transition temperature.
On the other hand, even weak magnetic impurities have been
found to be strongly Cooper pair breaking, leading to a rapid
suppression of superconductivity [2].

An exact treatment of a quantum magnetic impurity in a
superconductor is a complex problem [3]. However, in the
case when the magnetic moment can be treated as static
(approximately the case for atoms with large spin S or when
conduction electrons only couple to one of the components
of the spin), within the BCS approximation, the problem
is easily solvable. The key result is the appearance of a
localized, so-called Yu-Shiba-Rusinov (YSR) quasiparticle
state [4–6]. For a finite density of impurities, these states fill the
superconducting gap, eventually destroying superconductivity.

The presence of YSR-like states in superconductors has
been confirmed by tunneling experiments [7,8] [see Fig. 1(a)].
The metal-insulator-superconductor junction experiment of
Ref. [7] on Mn doped Pb revealed a σ (V ) = dI/dV that
is symmetric with respect to the reversal of applied bias
(particle-hole symmetry), with a clearly visible intragap peak
whose energy and width remained approximately constant
but the intensity grew with increasing Mn concentration.
Remarkably, the normal-tip scanning tunneling microscopy
(STM) experiment of Ref. [8], which allows for focusing
on individual magnetic ions of Mn or Gd on the surface of
superconducting Nb, showed particle-hole asymmetric σ (V ).
The asymmetry was attributed to the asymmetry in the particle
and the hole content of the Bogoliubov quasiparticle associated
with the YSR state. This, however, raises a question of why
no such asymmetry had been observed in the earlier tunnel
junction experiment [7].

It is interesting to note that individual YSR states bear
a strong resemblance to the localized impurity, e.g., donor,
states in semiconductors. Each donor or acceptor state in a
semiconductor can be populated by at most two electrons
(including spin). Consequently, if one were to perform a
tunneling experiment in a semiconductor, as long as the bias
is insufficient to inject carries into the conduction or valence
band, the dc current will remain zero, e.g., after the tunneling

electrons populate the initially unoccupied localized states,
the current has to stop. What makes the YSR states different?
Just as in a semiconductor, the individual YSR states are
infinitely sharp resonances, since there are no continuum
states that they could hybridize with. Therefore, it would
seem that continuous tunneling into YSR states should be
impossible, in conflict with the experimental observations.
That YSR assumes classical impurity cannot be the issue,
since even for a quantum impurity, the spectrum has only one
bound quasiparticle state associated with every impurity [3].
The reason that the intragap tunneling through the localized
states in a superconductor is possible lies in the ability of a
superconductor to violate the particle conservation law: While
it is impossible to introduce a single electron with subgap
energy into the bulk of a superconductor, two injected electrons
with zero total energy can be absorbed by the condensate [9].

This problem can be analyzed by means of a nonequilib-
rium Green’s function formalism for superconductors [10].
However, here we will follow a more physically transparent
approach, valid in the case of singlet superconductors: By
applying a partial particle-hole transformation, we convert the
problem of tunneling from a metallic tip to a YSR state into
the problem of tunneling between two nonsuperconducting
spinless reservoirs through a single resonant level [Fig. 1(b)].
Each transfer of a spinless particle between the reservoirs in
the equivalent model corresponds to the transfer of a pair of
electrons between the metallic tip and the superconductor. This
mapping allows us to see immediately that for a single impurity
σ (V ) has to be symmetric, regardless of the local particle-hole
content of the YSR state. The origin of this surprising result
is that since in the absence of coupling to the tip the YSR
state has zero energy width, any arbitrarily weak perturbation
can drive it out of equilibrium. The height of the peaks in
σ (V ) is of the order of conductance quantum, G0 = 2e2/h. In
contrast, the standard approach for calculating the tunneling
conductance assumes that the YSR remains in equilibrium
with the superconductor, leading to the erroneous conclusion
that for a single magnetic impurity the tunneling conductance
is simply proportional to the tunneling density of states [11].

Why do some experiments show a symmetric tunneling
density of states [7], and others do not [8]? The reason
for the observed asymmetry in Ref. [8] most likely lies in
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FIG. 1. (Color online) (a) Schematic representation of the prob-
lem: Electrons from an STM tip tunnel into a superconductor
containing a single YSR state. (b) Effective representation after
the particle-hole transformation on the spin-down tip electrons is
performed. (c) Differential conductance of the system. The punctured
line is the conductance of an “ideal” system, i.e., when the broadening
is caused by the coupling to the STM tip only. The solid line accounts
for the “extrinsic” broadening by an extra bath (other impurities or
additional normal reservoir).

the broadening of the resonant level due to the presence
of other nearby magnetic impurities, which allows electrons
to tunnel into multiple YSR states simultaneously, or due
to an additional relaxation channel for YSR states. The
latter can be modeled as a metallic reservoir that remains in
equilibrium with the superconductor and thus can easily absorb
quasiparticles injected into the YSR state. We will explicitly
model this possibility here.

Model. The Hamiltonian for an s-wave superconductor with
a magnetic impurity is [5]

H = HBCS + Himp, (1)

HBCS =
∫

dr

[ ∑
α

ψα(r)†
(

− ∇2

2m
− μ

)
ψα(r)

+�0ψ↑(r)†ψ↓(r)† + �0ψ↓(r)ψ↑(r)

]
, (2)

Himp = JS[ψ↑(0)†ψ↑(0) − ψ↓(0)†ψ↓(0)]. (3)

Here, ψα(r) is the annihilation operator for an electron with
spin α at location r , m is the mass of the electron, and
�0 is the unperturbed value of the superconducting order
parameter (assumed real and positive for concreteness). For
the impurity we assume a classical moment of size S polarized
in the positive z direction (in the continuum limit the value of
the coupling constant J is related to the atomic value by the
factor of the unit cell volume a3). This Hamiltonian can be
diagonalized by the Bogoliubov quasiparticles [12] γn, which
satisfy [H,γ

†
n ] = Enγ

†
n and can be expressed in terms of the

electronic operators as

γn =
∫

dr[un(r)ψ↑(r) + vn(r)ψ†
↓(r)]. (4)

The solution of the Bogoliubov equations for u(r) and v(r)
reveals that a static magnetic impurity leads to the formation
of a localized state inside the superconducting gap [6], with
the energy

E0 = −�0 sgn(J )
1 − (πN0J )2

1 + (πN0J )2
, (5)

and (u,v) that oscillate with the Fermi wave vector and
decay is space as exp(−r/ξ̃ )/r . The exponential decay is

governed by the length ξ̃ = vF /

√
�2

0 − E2
0 . Here vF is the

Fermi velocity and N0 is the normal-state density of states in
the superconductor. In general, u(r) �= v(r).

In addition to the localized states, there is a continuum of
Bogoliubov’s quasiparticles both for En > �0 and En < −�0.
The fermion operators can be expanded in terms of all Bo-
goliubov quasiparticles as ψ↑(r) = ∑

n un(r)γn and ψ
†
↓(r) =∑

n vn(r)γn. Hence, the local density of electronic states
is N↑(ω) = ∑

n u2
n(r)δ(ω − En) and N↓(ω) = ∑

n v2
n(r)δ(ω +

En). Note, that a single YSR level contributes two delta
functions at energies ±E0 with weights u2

0 and v2
0 that

correspond to spin-up and spin-down states, respectively.
According to the standard theory of electron tunneling from

a metallic contact [11], at zero temperature the differential
tunneling conductance σ (V ) is proportional to the density
of states in the sample at E = V , which in the case of
YSR states would correspond to, in general, asymmetric
delta function peaks. However, as we discussed above, such
treatment neglects the possibility of having a nonequilibrium
distribution function, which, in fact, leads to a qualitatively
different result.

The tunneling between an atomically sharp tip and the
sample can be described by the tunneling Hamiltonian,

H ′ = Htip + t[d†
σ (r0)ψσ (r0) + ψ†

σ (r0)dσ (r0)], (6)

where r0 corresponds to the location where the tip and sample
wave functions overlap, with the matrix element t , and Htip =∑

kσ (εt
k − μt )d†

kσ dkσ is the Hamiltonian of the tip, with modes
dk . The tunneling part of the Hamiltonian can be conveniently
expressed in terms of the Bogoliubov quasiparticles. Since we
are interested in the subgap conductance due to the YSR state,
out of the full expansion we only need to keep terms related
to it, ψ↑(r0) → u0(r0)γ0 and ψ

†
↓(r0) → v0(r0)γ0. In the spin-

down channel this leads to terms of the form d
†
↓γ

†
0 , which do not

conserve the number of particles. A significant simplification
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occurs if one performs a particle-hole transformation of spin-
down electrons in the tip, d̃↓ = d

†
↓. For the spin-down holes,

εt
k → −εt

k , μt → −μt (relative to the chemical potential of
the superconductor), and the state occupation numbers nk →
1 − nk . In the new basis, the tunneling Hamiltonian becomes

tu(r0)d†
↑(r0)γ0 − tv(r0)d̃†

↓(r0)γ0 + H.c.

The fully transformed Hamiltonian, which includes the
superconductor, the tip, and the tunneling between them, now
conveniently conserves the number of particles. It corresponds
to the problem of tunneling of spinless particles between two
reservoirs through a resonant level. The couplings to the two
reservoirs are in general different due to the factors u(r0),v(r0).
Schematically, the equivalent representation is illustrated in
Fig. 1(b). The right reservoir corresponds to spin-up electrons,
and the left reservoir to spin-down holes. Notice that the
process in which a particle is transferred from the right
reservoir to the left one, in terms of the original electrons,
corresponds to transferring two electrons (with spin up and
spin down) into the superconductor, with the help of the YSR
state. The initial and final energy of the spinless particle is the
same; in the original language this corresponds to selecting
two electrons with a total energy equal to zero (relative to the
superconductor’s μ).

The problem of tunneling through a resonant level is very
well known [13]. The key quantities that enter are the tunneling
rates between the level and the reservoirs, �1 = πNtu2

0(r0)t2

and �2 = πNtv2
0(r0)t2. The sum of these two rates determines

the resonant level broadening. Interestingly, even when �1 �=
�2, the particle current through the resonant level does not
depend on the direction of bias, reaching the maximum value
of (2e/�)[2�1�2/(�1 + �2)] for large bias. The ratio of the
current to the level width, measured in voltage units, gives, up
to a constant, the differential conductance. Since the magnitude
of the current does not depend on the direction of bias, subgap
σ (V ) is symmetric with respect to the sign of V . With the
numerical prefactors included, we find

σ (±E0) = 2e2

h

4�1�2

(�1 + �2)2
= G0

4u2
0v

2
0(

u2
0 + v2

0

)2 . (7)

Thus the maximum value of conductance, which is achieved
at the spatial locations r where u0(r) = v0(r) is equal to one
quantum of conductance, and the spatial map of σ (±E0) can be
used to determine the spatial dependence of the quasiparticle
particle-hole content, u0(r)/v0(r).

Extra bath. We now turn to the case when the magnetic im-
purity is not fully isolated within the superconductor. To allow
for additional relaxation, we introduce a gapless bath, whose
chemical potential is pinned to the chemical potential of the
superconductor, into which the YSR state can decay with rate
�0. Such a bath can originate from a finite electronic density of
states inside the superconducting gap, possibly forming other
nearby magnetic impurities or metallic contacts. It is naturally
present in unconventional superconductors which have a
gapless spectrum, e.g., superconducting cuprates [14–16]. If
the rate �0 is much faster than �1,2, the YSR state will remain in
equilibrium with the superconductor, and we expect to recover
the “standard” result where σ (V ) is proportional to the density
of states in the superconductor.

We study this problem within the normal-state nonequi-
librium Green’s function formalism. The current through the
system is fully determined by the resonant level Green’s
function [17], which in this case is

G>(ω) = −2i

∑
i=0,1,2 �i[1 − ni(ω)]

(ω − E0)2 + (�0 + �1 + �2)2
, (8)

G<(ω) = 2i

∑
i=0,1,2 �ini(ω)

(ω − E0)2 + (�0 + �1 + �2)2
, (9)

with n1(2)(ω) being the Fermi distribution functions for
the reservoirs of spin-up electrons and spin-down holes,
e.g., Fig. 1(b), n1(2)(ω) = {1 + exp [(ω ± V )/T ]}−1, and n0

is the distribution function for the bulk of the supercon-
ductor, n0(ω) = [1 + exp (ω/T )]−1. The retarded (advanced)
components are GR(A) = [ω − E0 ± i(�1 + �2 + �0)]−1. The
current through the YSR level is given by

I (V ) = ie

�

∫
dω

2π
{(�1 − �2)G<(ω)

+ [�1n1(ω) − �2n2(ω)][GR(ω) − GA(ω)]}, (10)

which is twice that of the case of a conventional resonant
level [13]. The corresponding differential conductance σ (V ) =
dI/dV at zero temperature has a simple two-Lorentzian form,

σ = 2G0

[
2�1�2 + �0�1

(V − E0)2 + �2
T

+ 2�1�2 + �0�2

(V + E0)2 + �2
T

]
, (11)

with �T = �0 + �1 + �2. If �0 � �1,2, the heights of the
Lorentzian peaks at ±E0 are proportional to u2 and v2,
respectively, which is the standard density of states result [see
Fig. 1(c), solid line]. Only when �0 	 �1,2 is the symmetric
σ (V ) recovered, e.g., Eq. (7). Finite temperature does not
change this conclusion.

In view of this result, we conclude that in the STM
experiment of Ref. [8], the impurity states cannot be con-
sidered as isolated. A likely reason is that the density of the
surface coverage by magnetic atoms was rather high and led
to line broadening, larger than the YSR broadening due to
coupling to the metallic tip. On the other hand, the planar
tunnel junction experiment of Ref. [7] showed YSR peaks
whose width was independent of the Mn concentration, up
to 250 ppm. This is a strong indication that the linewidth
was dominated by the coupling to the metallic lead. Indeed,
symmetric σ (V ) was observed in this case, consistent with
the dilute limit (no extra bath), in which tunneling current
drives YSR states out of equilibrium. We note here that since
the the crossover from asymmetric to symmetric σ (V ) occurs
when �0 ∼ �1,2, varying �1,2 in STM experiments by means
of changing the tunneling distance and lateral tip location can
be used to determine the broadening �0. In the context of
unconventional superconductors, this technique can be applied
to extract information about the local electronic environment
of magnetic atoms, in a way similar to NMR [18].

Measurement of impurity spin. Spin-polarized tunneling
into the YSR state can be used to measure the impurity
spin orientation. Upon impurity spin reversal, the Bogoliubov
quasiparticles transform as En → −En and (un,vn) → (vn, −
un). A spin-polarized STM tip can be modeled by assuming
different densities of states for up and down electrons,
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Nt
↑ �= Nt

↓. If the impurity spin is up, then �1↑ = πt2u2
0(r0)Nt

↑
and �2↑ = πt2v2

0(r0)Nt
↓; for an impurity spin down, �1↓ =

πt2v2
0(r0)Nt

↑ and �2↓ = πt2u2
0(r0)Nt

↓. Since �i↑ �= �i↓ for
|u(r)| �= |v(r)|, the value of the current for the two impurity
states will be different, and hence can be used to determine the
spin orientation.

Thus, the presence of the YSR state enables the measure-
ment of the local moment orientation. However, as we will
now show, it also leads to dephasing of the local moment.
From the Hamiltonian (1), the effective magnetic field acting
on the local moment is

hz = J [ψ†
↑(0)ψ↑(0) − ψ

†
↓(0)ψ↓(0)], (12)

with the main contribution to the fluctuation of hz deriving
from the YSR state; the delocalized Bogoliubov quasiparticles
can be neglected at low temperatures, as we will show below.
That leaves

hz = J
[
u2

0(0)2 + v2
0(0)

]
γ
†
0 γ0 − Jv2

0(0). (13)

[Notably, within the YSR approximation, the transverse field
components are zero since they involve operator combinations
γ 2

0 = (γ †
0 )2.] The spin dephasing time T2 is related to the

fluctuations of this field as

1

T2
∼ S2

∫ ∞

−∞
dt〈[hz(t) − 〈hz〉][hz(0) − 〈hz〉]〉,

i.e., its determination reduces to an evaluation of the zero-
frequency correlation function of the YSR level occupation
number. The zero-frequency fluctuations of occupancy reach
maximum in the sequential tunneling regime. These fluctua-
tions can be easily determined from the classical rate equations
to be �1�2/(�1 + �2)3, which for the dephasing rate yields

1

T2 seq
∼ J 2S2

�

(
a

ξ0

)6

(we assumed here that �1 ∼ �2 ≡ �). For instance, in the
case of Nb, the ratio of the coherence length to the lattice
constant ξ0/a ∼ 100. Taking J ∼ 1 eV, and tunneling rate
� ∼ 1010 s−1, which corresponds to the tunnel current of about
0.1 nA, the dephasing time is 10−8 s.

In the low-bias regime, such that |E0| � (T ,V ) � �, the
fluctuations can be found using the same Green’s function
formalism as we used to determine the current. In this regime,

1

T2 l.b.
∼ �3 max(T ,V )

E4
0

1

T2 seq
,

which, for the same tunneling rate and E0 of the order of �0 ∼
1 meV, gives T2l.b. ∼ 10−4 s. In this regime, the dephasing rate
is proportional to �2. We can see that the contribution of the
delocalized states in the superconductor to spin dephasing can
be neglected, as can be seen from the following qualitative
argument. Let us consider each delocalized state in the same
way as we did the YSR state. Since these states are delocalized,
their broadening will scale as u2(0),v2(0) ∼ 1/V . The number
of these states is proportional to the sample volume V , and
hence their overall contribution to dephasing will scale as 1/V ,
vanishing for nonmicroscopic samples. Moving the tip away
from the sample, one can recover the dephasing and relaxation
rates that are governed by thermal excitations, whose density
is ∼e−�0/T . This long dephasing rate makes localized spin
states in superconductors an appealing framework for various
quantum computing applications, including those based on
Majorana fermions [19,20].

The results obtained here apply not only to YSR states, but
to any other localized intragap states in superconductors, e.g.,
states in the vortex cores [21]. The importance of YSR states
has also been discussed in the related context of tunneling
through quantum dots, when a Coulomb blockade enforces
odd occupancy [10,22–25]. Outside the strongly correlated
Kondo regime and in the limit of weak coupling to the metallic
lead, an approximately symmetric differential conductance
is commonly observed [22]. The tunability of quantum dot
systems provides an opportunity to study the crossover from
the weakly correlated YSR regime to the strongly correlated
Kondo regime. We thus expect that future experiments will be
able to test the range of validity of our theory.

Experimentally it has been found that using a supercon-
ducting tip provides a way to enhance the features associated
with tunneling though the YSR state [25,26]. Theoretically,
this problem can also be mapped onto tunneling of spinless
particles between two reservoirs with energy dependent densi-
ties of states. Unlike in the normal tip case, however, the peaks
that appear due to YSR states at ±(|�tip| + |E0|) are in general
no longer symmetric [27], even in the absence of an additional
bath. This is consistent with experimental findings [26].
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