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Effect of equatorial line nodes on the upper critical field and London penetration depth
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The upper critical field Hc2 and its anisotropy are calculated for order parameters with line nodes at the
equators, kz = 0, of the Fermi surface of uniaxial superconductors. It is shown that characteristic features
found in Fe-based materials (a nearly linear Hc2(T ) in a broad T domain, a low and increasing on warming
anisotropy γH = Hc2,ab/Hc2,c) can be caused by competing effects of the equatorial nodes and of the Fermi
surface anisotropy. For certain material parameters, γH (T ) − 1 may change sign upon warming, in agreement
with the recorded behavior of FeTeS systems. It is also shown that the anisotropy of the penetration depth
γλ = λc/λab decreases upon warming to reach γH at Tc, in agreement with data available. For some materials
γλ(T ) may change upon warming, from γλ > 1 at low T s to γλ < 1 at high T s.
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Iron-based superconductors are layered compounds with
nearly cylindrical Fermi surfaces, which at first sight should
have lead to high anisotropies of the upper critical field
and the London penetration depth. This, however, is not the
case. Most of these compounds have relatively low values
of γH = Hc2,ab/Hc2,c that increase on warming [1] and in
some materials even change from γH < 1 at low temperatures
to γH > 1 at high T s [2,3]. The anisotropy of the London
penetration depth is also low but decreases on warming
[4]. Originally, such behavior was attributed to multiband
physics similar to that of MgB2 [5]. However, in MgB2,
γH (T ) decreases on warming whereas γλ(T ) increases, just
the opposite to Fe-based materials.

Recently, the increasing γH (T ) had been associated with
the order parameter modulated along the c axis [6], even in
a single-band scenario, so that multiband effects per se are
not necessary to explain the observed behavior of Hc2(T )
and λ(T ). It is also known that some Fe-based materials
have gap nodes and there are models suggesting equatorial,
kz = 0, line nodes [7]. Such a gap structure is seen in the
angle-resolved photoemission spectroscopy (ARPES) data
on BaFe2(As0.7P0.3)2 [8,9] and was also explored for other
unconventional superconductors, for example, Sr2RuO4, to
understand anisotropic thermal conductivity [10,11].

Here we show that the competing effects of equatorial nodes
and the Fermi surface anisotropy might be responsible for
the observed behavior of Hc2 in these materials. Moreover,
equatorial line nodes cause the anisotropy of the London
penetration depth γλ to decrease on warming, the feature seen
in a number of materials for which data on λ anisotropy are
available [4]. The interplay of the Fermi surface effects and
those due to line nodes can result in the temperature-dependent
sign of γλ − 1, the prediction to be verified. In particular, this
interplay causes the in-plane superfluid density to change with
temperature in a “d-wave-like” fashion (linear at low T s),
while being rather flat at low T s for the c direction.

Studying the orbital Hc2(T ), we employ a version of
Helfand-Werthamer (HW) theory [12] generalized for clean
anisotropic superconductors [6]. It is based on Eilenberger
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quasiclassical formulation of the superconductivity [13] with
a weak-coupling separable potential V (k,k′) = V0�(k)�(k′)
and the order parameter in the form � = �(r,T ) �(k), where
k is the Fermi momentum [14]. �(k) determines the k
dependence of � and is normalized so that the average over the
Fermi surface 〈�2〉 = 1. This popular approximation works
well for one-band materials with anisotropic coupling and can
be generalized to a multiband case [6].

Within this theory, Hc2,c along the c axis of uniaxial crystals
is found by solving an equation [6]:

ln t = 2hc

∫ ∞

0
s ln tanh(st)

〈
�2μce

−μchcs
2 〉
ds , (1)

hc = Hc2,c

�
2v2

0

2πφ0T 2
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y

v2
0

, v3
0 = 2E2

F

π2�3N (0)
.

(2)

Here, t = T/Tc, vx,vy are Fermi velocities in the a,b plane,
EF is the Fermi energy, N (0) is the total density of states at
the Fermi level per spin, the velocity v0 = vF for the isotropic
case, and 〈. . .〉 stands for the Fermi surface average.

In principle, Eq. (1) can be used to evaluate hc(t) for any
order parameter anisotropy (any �) and any Fermi surface
(any μc). Both � and μc enter Eq. (1) under the sign of the
Fermi surface averaging and one does not expect fine details
of the Fermi surface to strongly affect the Hc2,c(T ) shape. For
this reason, describing Fermi surface shapes, we focus on the
simplest version of Fermi spheroids, for which the averaging
is a well-defined analytic procedure (see, e.g., [6,15]).

In general, Eq. (1) can be solved numerically, but if T → Tc,
the result is exact [6]:

hc = 8(1 − t)

7ζ (3)〈�2μc〉 , (3)

where ζ (3) ≈ 1.202. For the isotropic case � = 1, 〈μc〉 =
2/3, and one reproduces the HW slope near Tc in the clean
limit.

At T = 0, Eq. (1) was shown to yield [6]

hc(0) = e−C−〈�2 ln μc〉 , (4)
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FIG. 1. (Color online) h∗
c (t) for various Fermi surfaces and order

parameters. (Left panel) Fermi sphere and � = √
2n + 1 cosn θ with

n = 0,1,3. One sees that equatorial nodes cause a substantial increase
of h∗

c (0) and widen the domain of nearly linear behavior of h∗
c (t). Note

also a slight positive curvature at high T s for n = 1,3. (Right panel)
The lower group of three nearly coincident curves are for an s-wave
order parameter on a Fermi sphere and two prolate spheroids. The
upper group is for � ∝ cos θ , showing clearly that h∗

c (0) increases
with increasing ε, the ratio of effective masses mc/mab (of a squared
spheroid’s semiaxes).

where C ≈ 0.577 is the Euler constant. Hence we obtain the
HW ratio,

h∗
c (0) = Hc2,c(0)

TcH
′
c2,c(Tc)

= hc(0)

h′
c(1)

= 7ζ (3)

8eC
〈�2μc〉e−〈�2 ln μc〉,

(5)

where H ′
c2,c(Tc) ≡ dHc2,c/dT at Tc and h′

c(1) = (dhc/dt)t=1.
For the isotropic case this gives the clean limit HW value
h∗

c (0) = 7ζ (3)/48eC−2 = 0.727.
Thus both the order parameter symmetry and the Fermi

surface affect h∗
c (0). However, as shown at the right panel of

Fig. 1, for s-wave order parameters on Fermi spheroids, h∗
c (0)

remains close to 0.7 for all ratios of the spheroid semiaxes [6].
We also note that h∗

c (0) is nearly insensitive to the nonmagnetic
transport scattering, but it decreases fast in the presence of pair
breaking to reach 0.5 for the strong Tc suppression [16].

To study how the order parameter anisotropy affects
Hc2,c(T ) and h∗

c (0), we first consider the case of the Fermi
sphere. We are interested in kz-dependent order parameters,
which on the Fermi sphere implies that � depends on the polar
angle θ . We model equatorial nodes by setting � = �0 cosn θ .
Near the “equator” at θ = π/2, |�| behaves as |θ − π/2|n.
Clearly, the bigger the power n, the wider is the equatorial belt
where the order parameter is close to zero (we call the power
n the “node order”). It is readily shown that

�0 = √
2n + 1 , 〈�2μc〉 = 2(2n + 1)

4n2 + 8n + 3
,

(6)
〈�2 ln μc〉 = −C − ψ(n + 3/2) ,

where ψ is the digamma function. Thus we have

h∗
c (0) = 7ζ (3)

4

2n + 1

4n2 + 8n + 3
eψ(n+3/2), (7)

i.e., h∗
c (0) increases with increasing n. On the other hand, a

larger h∗
c (0) translates to a broader temperature range where

h(t) is close to being linear. We then expect the curve Hc2,c(T )
to have an extended linear domain for increasing n. To check
this we turn to the full temperature dependence hc(t) by solving
Eq. (1) numerically. The results are shown in the left panel
of Fig. 1. We estimate that h∗

c (t) deviates from the straight
line h∗′

c (1)(t − 1) by less than 1% in the domain t > 0.6 for
n = 0 (the s wave), t > 0.4 for n = 1, and t > 0.2 for n = 3.
Therefore increasing the node order causes “straightening” of
Hc2,c(T ), observed in pnictides [17] and some other materials
[18].

Performing calculations for Fermi spheroids, one should
evaluate properly Fermi surface averages. Details of this
procedure were worked out in [6,15]. Examples of h∗

c (t) so
obtained for a few values ε, the squared ratio of the semiaxes,
are given in the right panel of Fig. 1.

Similar to Eq. (1) for Hc2,c(T ), one can obtain an equation
for Hc2,ab(T ), or directly for the anisotropy parameter γH =
Hc2,ab/Hc2,c [6]. In fact, γH (t) satisfies Eq. (1), in which,
however, hc(t) is now known and μc is replaced with

μb = v2
x + γ 2

Hv2
z

v2
0

. (8)

The left panel of Fig. 2 shows γH (t) for equatorial line nodes
with n = 1,2,3. One sees that for this type of node on a
sphere (i) γH < 1, i.e., Hc2,c > Hc2,ab, and (ii) γH increases
on warming, the feature ubiquitous for the Fe-based materials.

On the other hand, in materials such as pnictides, the Fermi
surfaces are warped cylinders and Hc2,ab > Hc2,c; γH (t) > 1
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FIG. 2. (Color online) γH = Hc2,ab/Hc2,c and γλ = λc/λab for
the Fermi sphere and order parameters shown in the legend.
Thus the values of both γH and γλ are suppressed by equatorial line
nodes; the suppression is stronger for higher node orders. Besides, the
nodes cause γH (T ) to increase upon warming, whereas γλ decreases
with increasing T , the feature reported, e.g., for Nd-1111 [4].
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FIG. 3. (Color online) (Upper panel) Anisotropy parameters γλ

and γH for the order parameter ∝ cos θ for two spheroidal Fermi
surfaces, ε = 0.35 and 0.70. (Lower left panel) The crossing of
hc(t) and ha(t) near t∗ = 0.4 for ε = 0.35. (Lower right panel) The
crossing of λaa(t) and λcc(t) near t∗ = 0.3 for ε = 0.70; both λaa(t)
and λcc(t) are in units of c/ev0

√
2πN (0). Note the linear temperature

dependence of λaa at low T s and a flat ‘‘s-wave-like” behavior of λcc.

but it is not large. Qualitatively, one can model these Fermi
surfaces as prolate spheroids, for which it was shown that
γH > 1 for s-wave order parameters [6,15]. Thus the effect of
equatorial nodes on γH is the opposite to that of prolate Fermi
surfaces. It is of interest therefore to study order parameters
∝ cosn θ on prolate spheroids. Figure 3 shows examples for
spheroids with ε = 0.35 and 0.70 and the order parameter
∝ cos θ . Remarkably, for ε = 0.35, γH − 1 changes sign near
t∗ ≈ 0.4 so that ha < hc for t < 0.4 and otherwise at higher
temperatures.

We now turn to the London penetration depth. The inverse
tensor of squared penetration depth for the general anisotropic
clean case reads [19,20]

(λ2)−1
ik = 16π2e2N (0)T

c2

∑
ω>0

〈
�2vivk

β3

〉
. (9)

Here � = ��, β = √
�2 + �2ω2, and �(T ) satisfy the self-

consistency equation:

− ln t =
∞∑

n=0

(
1

n + 1/2
−

〈
�2√

ψ2�2 + (n + 1/2)2

〉)
, (10)

where ψ = �/2πT .

Fermi velocities v, N (0), and �(k) are the input parameters
for evaluation of λaa and λcc. N (0) is not needed if one is
interested only in the ratio γλ = λcc/λaa:

γ 2
λ = λ−2

aa

λ−2
cc

=
∑

n

〈
�2v2

a/η
3/2

〉
∑

n

〈
�2v2

c /η
3/2

〉 ,

(11)
η = ψ2�2 + (n + 1/2)2 .

In particular, this gives

γ 2
λ (0) =

〈
v2

a

〉
〈
v2

c

〉 , γ 2
λ (Tc) =

〈
�2v2

a

〉
〈
�2v2

c

〉 , (12)

showing that the order parameter anisotropy causes γλ to
depend on T in a one-band situation [19,21], the property
commonly associated with many bands.

The right panel of Fig. 2 shows γλ evaluated with the help of
Eq. (11) for a Fermi sphere and � ∝ cosn θ with n = 0,1,2,3.
Hence the equatorial line nodes cause γλ(t) to decrease on
warming, a behavior opposite to the increasing γH (t) shown in
the left panel. One also sees that the two anisotropy parameters
meet at Tc, thus confirming consistency of the analytic and
numerical procedures for evaluation of two physically different
quantities: the high field Hc2(T ) at the second-order phase
transition and the low-field penetration depth λ(T ).

The combined effect of the Fermi surface shape and of the
order parameter � = �0 cos θ on both γλ and γH is shown on
the upper panel of Fig. 3. The Fermi surface parameters ε are
chosen to demonstrate interesting situations: while γλ > 1 at
all temperatures for ε = 0.35, the anisotropy γH , being less
than unity under t∗ ≈ 0.4, exceeds 1 above this temperature.
Such a behavior has been recorded for FeTeS [2,3].

For ε = 0.7 we have γH < 1 at all temperatures, whereas
γλ > 1 at t∗ < 0.3, but becomes less than unity above this
temperature. The transverse magnetization of a material in the
mixed state with such γλ placed in a field tilted relative to
the principal crystal directions should change sign at t∗ [22].
The same is true for the torque experienced by the crystal.
In other words, the sign change of γλ − 1 can be detected by
measuring the sign and angular dependence of the transverse
magnetization or torque [23,24].

Figure 4 shows that temperatures t∗, at which γH − 1 and
γλ − 1 change sign, vary as functions of the Fermi surface
shape ε: with increasing ε these temperatures grow if one goes
to a “less prolate” Fermi shape.

A popular quantity in analysis of penetration depth data is
the superfluid density defined as λ−2 normalized on its value
at T = 0. This quantity for two principal directions is plotted
in Fig. 5 for an equatorial node, � = �0 cos θ , on a sphere and
spheroid with ε = 0.5. Interestingly, the node presence results
in ρaa(t) being qualitatively similar to the known d-wave
linear low-temperature behavior, whereas a direct numerical
check shows that ρcc − 1 ∝ t3. In fact, this behavior has been
discussed considering properties of UBe13 [25].

Interestingly, the order parameter � = �0 cos θ on prolate
Fermi surfaces causes suppression of the specific heat jump
at Tc, �C/Cn = 1.43/〈�4〉 [26,27]. For example, if ε =
0.1, we estimate �C/Cn ≈ 1.07. Also, since for this type
of order parameters 〈�〉 = 0, similar to the d wave, Tc

should be suppressed in the same manner by magnetic and
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FIG. 4. (Color online) γH (t) and γλ(t) for the order parameter
∝ cos θ and the Fermi surface shapes ε indicated. One sees that γH −
1 changes sign in the domain 0.3 < ε < 0.45, whereas γλ − 1 in the
region 0.45 < ε < 1.

nonmagnetic impurities [28]. The data on electron-irradiated
crystals of Ba(Fe1−xRux)2As2 (x = 0.24) qualitatively support
this statement, although multiband Fermi surfaces complicate
the picture [29].

Concluding, we reiterate that despite profound simplifica-
tions, such as a single-band ellipsoidal Fermi surface and the
order parameter with equatorial nodes, our model reproduces
qualitative features of anisotropic Hc2(T ) and λ(T ) often
seen in real materials, notably, Fe-based superconductors.
We do not claim that our model describes all properties of
this diverse family of materials. We do, however, point to
the potentially important role of competing equatorial nodes
and Fermi surface anisotropy. Fine details of Fermi surfaces
and order parameters enter the theory of Hc2(T ) and λ(T )
only as averages over the Fermi surface and thus do not
justify the formal complications of taking them into account.
Also, as far as Hc2(T ) and λ(T ) are concerned, the single-
and multiband scenarios give similar results, as shown in our
previous study [6]. Here we reproduced a number of features
ubiquitous for Fe-based superconductors, the origin of which
until now was not even questioned. In particular, we find that
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FIG. 5. (Color online) Superfluid densities ρaa = λ2
aa(0)/λ2

aa(t)
(the lower curves) and ρcc = λ2

cc(0)/λ2
cc(t).

the equatorial line node causes an extended domain of nearly
linear Hc2(T ), anisotropy of which increases on warming.
By studying competing effects of equatorial nodes and of the
Fermi surface anisotropy, we find that, nearly cylindrical Fermi
shapes notwithstanding, materials with equatorial nodes can be
only weakly anisotropic. For certain combinations of material
parameters both γH − 1 and γλ − 1 may change sign on
warming so that Hc2,ab < Hc2,c at low T s while Hc2,ab > Hc2,c

at high T s. A similar situation may occur for the anisotropy
of the London penetration depth, which can be probed by
torque or transverse magnetization measurements in large
fields. We also find that the nodes in question cause different T
dependencies of different components of the superfluid density
tensor. These predictions call for experimental verification.
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