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We constructed tight-binding models for the superconductor SrPtAs according to first principle calculations,
and by functional renormalization group we investigated the effect of electron correlations and spin-orbital
coupling (SOC) in Cooper pairing. We found that out of the five d orbitals, the (dxz,dyz) orbitals are the active
ones responsible for superconductivity, and ferromagnetic spin fluctuations enhanced by the proximity to the
van Hove singularity triggers f -wave triplet pairing. The superconducting transition temperature increases as
the Fermi level approaches the van Hove singularity until ferromagnetism sets in. Because of SOC, the spin
fluctuations have easy-plane anisotropy, and the d vector of the triplet pairing component is pinned along the
out-of-plane direction. Experimental perspectives are discussed.
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I. INTRODUCTION

Recently, SrPtAs was found to be a superconductor with a
transition temperature Tc ∼ 2.4 K [1]. This is a pnictide super-
conductor, but with a hexagonal lattice rather than the square
lattice in iron pnictides. The difference in lattice geometry can
lead to completely different electronic ground states. In square
lattices, collinear spin magnetic order is generally realized
(except for systems with ring exchanges), as in cuprates
and iron pnictides [2,3]. However, a hexagonal lattice would
lead to spin frustration, and even to ferromagnetism [4,5].
Since dynamic spin fluctuations can trigger unconventional
superconductivity (SC), the difference in lattice geometry is
expected to lead to novel SC. Interesting proposals have been
made, e.g., for NaxCoO2 which also possesses a hexagonal
lattice [6,7]. An even more profound aspect of SrPtAs is
that the conducting element Pt is heavy, hence there is a
significant atomic spin-orbital coupling (SOC) among the
5d orbitals. Such a coupling can break spin degeneracy (on
general momentum points), modify the Fermi surface topol-
ogy, and therefore modify low energy particle-hole excitation
spectra. As a result, the effect of SOC is an indispensable
factor for unconventional pairing. Moreover, the unit cell of
SrPtAs contains two distinct PtAs layers, each of which has
no inversion center, but the system has a global inversion
symmetry with respect to the bisecting plane between the two
layers. The lack of local inversion center opens the possibility
of singlet-triplet mixing [8–10]. This is similar to the mixing in
systems where even global inversion symmetry is absent [11–
13]. Combined with strong SOC, such superconductors can
exhibit enhanced Pauli limiting fields and a nonvanishing spin
susceptibility down to zero temperature [11,14–17]. There-
fore SrPtAs provides a playground to explore properties of
centrosymmetric superconductors with possible singlet-triplet
mixing.

Previous local density functional (LDA) calculations for
SrPtAs [18,19] show the system is quasi-two-dimensional.
There are three pairs of spin-split Fermi surfaces due to
SOC. Two of them are centered around the zone center,
contributing about 30% of the total density of states (DOS) at

the Fermi level. The remaining 70% comes from the third pair
of spin-split Fermi surfaces encircling the K and K ′ points.
A comprehensive symmetry analysis of the band-resolved
pairing symmetry reveals that SrPtAs may possess some
unconventional superconducting states, such as the A2u state
with a dominant f -wave component and the Eg state with
a dominant chiral d-wave component [8]. Recently, a muon
spin-rotation/relaxation (μSR) measurement for SrPtAs [20]
suggests time-reversal symmetry breaking (TRSB) and a
nodeless pairing gap. A nuclear magnetic resonance (NMR)
experiment [21] revealed that the spin-lattice relaxation rate
1/T1 shows a Hebel-Slichter peak below Tc, but the peak
is strongly suppressed in another NMR experiment [22].
Therefore the exact pairing symmetry is still unclear, let alone
the pairing mechanism.

The situation motivates us to study the paring mechanism
and pairing symmetry of SrPtAs at a microscopic level.
For this purpose we construct effective tight-binding models
according to LDA band structures. The correlation effects
are handled by the singular-mode functional renormalization
group (SM-FRG) [4,23–28]. The advantage of FRG is the
capability to survey all electronic instabilities at the same
time [29], and this has been applied with great success in the
contexts of cuprates [30], iron-based superconductors [31], and
more recently for topological SC in correlated systems [24].
As compared to the usual patch-FRG, our SM-FRG has the
additional advantages that it respects momentum conservation
exactly and is more straightforward to deal with orbital and
spin degrees of freedom.

In this paper, we find that out of the five d orbitals, the
(dxz,dyz) orbitals are the active ones responsible for SC, and
ferromagnetic spin fluctuations enhanced by the proximity to
the van Hove singularity (VHS) triggers f -wave triplet pairing.
The superconducting transition temperature increases as the
Fermi level approaches the VHS until ferromagnetism sets
in. Because of SOC, the spin fluctuations have easy-plane
anisotropy, and the d vector of the triplet pairing component
is pinned along the out-of-plane direction. Experimental
consequences of the SC are discussed.
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FIG. 1. (Color online) (a) and (b) are the spin-degenerate band
structure Fermi surfaces for the five band model without SOC. (c) and
(d) are spin-split band structure and Fermi surfaces for the two-orbital
model with SOC.

II. MODEL AND METHOD

Figure 1(a) shows the spin-invariant band structure for
SrPtAs obtained by using the Quantum-ESPRESSO pack-
age [32,33]. We then construct ten maximally localized
Wannier functions [34] centered at the two Pt sites in the
unit cell, each with five d orbitals (d3z2−r2 ,dxz,dyz,dx2−y2 ,dxy).
In agreement with the strong two-dimensionality found in
previous LDA calculations, we find the interlayer coupling
is weak. Thus we shall consider the one layer model (with one
atom per unit cell) for brevity, and will come back to the effect
of interlayer coupling before closing. The in-plane hopping
integrals are presented in Table I. The orbital-dependent on-site
energies are (7.577,8.178,8.178,8.787,8.787) eV, and finally
the Fermi energy is μ = 9.915 eV. We notice that although the
lattice is hexagonal, the effect of As atoms lowers the point
group symmetry to D3d , and actually to C3v in the effective
one-layer model. The two pockets (labeled as γ1 and γ2) around

TABLE I. Hopping integrals tμν(�) (in units of eV) where � =
(�x,�y) denotes an in-plane hopping vector and (μ,ν) the orbitals.
Combination of the C3v symmetry and tμν(�) = tνμ(−�) produces
all the in-plain hoppings up to the third neighbors. Here the five
d orbitals (d3z2−r2 ,dxz,dyz,dx2−y2 ,dxy) are labeled as (1,2,3,4,5) for
brevity.

(μ,ν)\(�x,�y) (1,0) (0,
√

3) (0, −√
3) (2,0)

(1,1) 0.029 0.009 0.009 0.010
(1,4) 0.005 0 −0.018 0
(1,5) 0.022 0 0 0
(4,4) 0.158 0.043 0.043 −0.022
(4,5) 0.135 0 0 0.020
(5,5) 0.701 −0.050 −0.050 0.080

(2,2) −0.456 0 0 −0.003
(2,3) −0.277 0 0 −0.003
(3,3) 0.185 −0.005 −0.005 0.003

the � point are derived from (d3z2−r2 ,dx2−y2 ,dxy) orbitals, and
the pockets around K and K ′ (labeled as α) are derived from
(dxz,dyz) orbitals. The α pocket is close to the VHS at M and
is expected to be more susceptible to correlation effects than
the other pockets.

In order to judge the relative importance of the various
orbitals, we first perform a SM-FRG study of the above
five-orbital model in the absence of SOC. We assume standard
local interactions with intraorbital repulsion U , interorbital
repulsion U ′, Hund’s rule spin exchange J , and pair hopping
J ′, with the details given in Appendix B, and apply the
Kanamori relations U = U ′ + 2J and J = J ′ to reduce the
number of independent parameters. These bare interactions
provide the initial values of the running interaction vertices
(versus a decreasing energy scale) in SM-FRG. A general
interaction vertex function can be decomposed as

V
α,β;γ,δ

k,k′,q →
∑
m

Sm(q)φα,β
m (k,q)

[
φγ,δ

m (k′,q)
]∗

, (1)

either in the particle-particle (p-p) or particle-hole (p-h)
channel. Here, (α,β,γ,δ) are dummy labels for orbital and
spin indices, q is the collective momentum, and k (or k′) is
an internal momentum of the Fermion bilinears ψ

†
k+q,αψ

†
−k,β

and ψ
†
k+q,αψk,β in the p-p and p-h channels, respectively. The

fastest growing eigenvalue S(Q) implies an emerging order
associated with a collective wave vector Q and eigenfunction
(or form factor) φ(k,Q). The divergence scale provides an
upper limit of the ordering temperature. In the spin-invariant
case one can further resolve spin-density-wave (SDW) and
charge-density-wave (CDW) in the p-h channel. In the p-p
channel Q = 0 is always realized at low energy scale due to
the Cooper mechanism. More technical details can be found
in the Appendix A and elsewhere [23,24].

III. RESULTS AND DISCUSSION

A. Five-orbital model without SOC

We first consider the case in the absence of SOC, where the
system is SU(2) invariant. The FRG flow versus the running
energy scale � (the infrared cutoff of the Matsubara frequency)
for U = 3 eV and J = U/4 is shown in Fig. 2(a). Since the

FIG. 2. (Color online) Results for the five-orbital model without
SOC. (a) FRG flow of 1/SSC,SDW versus �. (All interactions are in
units of eV.) The arrows indicate snapshots of the leading q/π for
SSDW during the flow. The inset shows |SSDW(q)| in the momentum
space at the final energy scale. The white hexagonal is the Brillouin
zone. (b) The gap function �(k) on the Fermi surfaces.
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CDW channel remains weak at low energy scales, we shall
not address it henceforth. The interaction in the SDW channel,
SSDW, is enhanced in the intermediate stage and levels off
at low-energy scales. The associated collective momentum Q
evolves from Q = (4/3,0)π (and its symmetry images) due to
high-energy particle-hole excitations between states around �

and K . It however settles down at Q = 0. The inset of Fig. 2(a)
shows SSDW(q) versus q at the final stage of the flow. A broad
peak around q = 0 is apparent. The form factor φSDW turns out
to be dominated by site-wise spins from the (dxz,dyz) orbitals,
in accordance with the VHS near the Fermi level in the α band.
The strong ferromagnetic fluctuations here are also consistent
with the magnetic solutions by LDA [19]. Attractive pairing
interactions, SSC (for Q = 0), are enhanced significantly as
SSDW grows (in magnitude). The cusp in the evolution of SSC

is a level crossing of (or change of pairing symmetry in) the
leading pairing function φSC(k). Eventually SSC diverges so the
system will develop SC below the divergence energy scale. To
describe the momentum dependence in the (matrix) function
φSC(k), we introduce the following lattice harmonics

cn = cos(k · bn), sn = sin(k · bn), (2)

where bn=1,2,3 are the principle translation vectors
(1,0), (−1/2,

√
3/2) and (−1/2, − √

3/2), respectively. Up
to a global scale, we find

φSC(k) ∼ (0.68 − 0.04
∑

n

cn)iτ2 − 0.14i
∑

n

snτ0, (3)

where the Pauli τ -matrices operate on (dxz,dyz) orbitals. The
other elements, including those from the other orbitals, are
about two orders of magnitude smaller than the leading one.
The gap function is clearly odd in orbital-momentum space,
with f -wave symmetry [35], thus the spin part must be a
triplet by fermion antisymmetry (with three-fold degeneracy
because of spin invariance). We can project the gap function
in the (spin-degenerate) band basis as �k = 〈k|φSC|k〉 where
|k〉 is a Bloch state. As shown in Fig. 2(b), �(k) is mainly on
the α pocket and has an f -wave symmetry in agreement with
the above analysis. The maximum amplitudes of |�(k)| on the
γ1 and γ2 pockets are about 400 times smaller than on the α

pockets. We conclude that the α band is active, while the γ1

and γ2 bands are passive for SC. This is an interesting analog
to the situation in Sr2RuO4, [27] except that TRS is respected
here.

B. Effective two-orbital model with SOC

It is possible to switch on SOC at this stage. However,
if all orbitals and form factors are to be kept the numerical
demand is beyond our limit. (The computational complexity
is discussed in Appendix A). Instead, we shall consider an
effective two-orbital model with the (dxz,dyz) orbitals and
SOC, guided by the above observation that the α band is
predominantly active. The validity of such a two-orbital model
is justified in Appendix B.

The atomic SOC can be written as HSOC =
− λ

2

∑
i ψ

†
i τ2σ3ψi . Here, the Pauli matrix σ acts on

spins. A fit to a relativistic band-structure calculation [19]
yields λ ∼ 0.24 eV. The spin-split band structure is shown in

FIG. 3. (Color online) The results for a two-orbital model with
SOC. (a) FRG flow of 1/Spp,ph versus �. The arrows indicate
snapshots of the leading q/π for Sph during the flow. The inset shows
|Sph(q)| in the momentum space at the final energy scale. The white
hexagonal is the Brillouin zone. (b) The gap function �(k) on the
Fermi surfaces.

Fig. 1(c), and the corresponding FS is shown in Fig. 1(d) for
μ = 9.85 eV.

In the presence of SOC, we apply the SM-FRG extended
for spin-resolved fully antisymmetrized interactions [24]. The
FRG flow for U = 3 eV and J = U/4 is shown in Fig. 3(a).
The interaction in the p-h channel, Sph, behaves qualitatively
similar to SSDW in Fig. 2(a). The inset shows Sph(q) versus q
at the final stage of the flow. There is a rounded hump at the
zone center, but it is otherwise similar to the inset of Fig. 2(a).
The form factor with the dominant momentum Q = 0 is given
by, with twofold degeneracy, φph(k,Q) ∼ 0.35τ0(σx ± iσy).
(Without SOC the form factor would be threefold degenerate.)
These form factors are clearly spinlike and are aligned in the
plane. The k independence in the leading term means the spin is
predominantly site-local. Thus ferromagnetic spin fluctuations
with easy-plane anisotropy survive against SOC, although the
global magnitude is weakened by roughly a factor of two as
compared to the case in the absence of SOC. Because of the
surviving ferromagnetic spin fluctuations, attractive pairing
interaction Spp is also induced and eventually diverges. To
reveal the spin and orbital contents explicitly, we now write
the matrix pairing form factor as φpp(k) = (gk + γk)iσ2 with
singlet and triplet parts gk and γk, respectively. For the case in
Fig. 3, we find

gk ∼ −
(

0.06 + 0.04
∑

n

cn

)
τ0 − 0.1

∑
n

snτ2

+ 0.09[(c3 − c2)τ1 + (2c1 − c2 − c3)τ3/
√

3], (4)

γk ∼ −0.34
∑

n

snτ0σ3 +
(

0.03 − 0.17
∑

n

cn

)
τ2σ3. (5)

A few remarks are in order. First, the singlet part gk transforms
as s wave [35], but the amplitude is relatively small. The
dominant part is the τ0,2σ3 terms in γk describing f -wave
triplet pairing. The fact that these terms are triplets is because
the τ0 term (τ2 term) is odd in k (in the orbital space). The triplet
pairing is clearly triggered by ferromagnetic fluctuations. The
singlet and triplet components mix due to the lack of local
inversion symmetry as well as SOC, and we observe that they
transform identically upon joint spin-lattice rotations. One can
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FIG. 4. (Color online) (a) Spin susceptibility χxx,yy(blue dotted
line) and χzz(blue solid line) versus temperature for the f wave
derived from SMFRG, and χzz for s wave (red dash-dotted line) and
chiral dx2−y2 + idxy−wave (green dashed line). The change in χxx,yy

versus temperature and gap function is almost invisible for the SOC
scale λ = 0.24 eV. (b) The spin lattice relaxation rate 1/T1T versus
temperature for the f wave derived from SMFRG (blue solid line),
and for s wave (red dash-dotted line) and chiral dx2−y2 + idxy wave
(green dashed line), with Dynes factor η = 0.01Tc.

dub such a pairing as s∗ wave according to Ref. [28]. Second,
TRS is respected in the above pairing function. Thus we can
project it in the band basis as follows:

�k = 〈k|φpp(k)(| − k〉)∗ = 〈k|gk + γk|k〉, (6)

where |k〉 is a Bloch state and | − k〉 = iσ2K|k〉 is the time
reversal of |k〉. Since γk transforms similarly to SOC that
splits the bands, it causes a sign change of �(k) across
spin-split bands, as shown in Fig. 3(b) (color scale). However,
the pairing gap is nodeless on each spin-split Fermi pocket.
The s-wave-like sign structure versus rotations is consistent
with the previous analysis in the spin-orbital basis.

We emphasize that the above γk corresponds to a triplet
d vector along the z axis, pinned by SOC. This means
the total spin of the Cooper pair along the z axis is zero,
consistent with the easy-plane spin fluctuations mentioned
above, and implies that in the SC state the out-of-plane spin
susceptibility is suppressed, while the in-plane one can survive.
This is exactly the case shown in Fig. 4(a), following from
a mean field theory calculation using the pairing interaction
derived from SM-FRG (see Appendix C). We also show in
Fig. 4(a) the spin susceptibilities if the gap function is given
by a fully gapped singlet s wave (red dash-dotted line) and
the chiral dx2−y2 + idxy wave (green dashed line) suggested
elsewhere [8,36]. We find that the change in χxx,yy versus
temperature is almost invisible because of the large SOC scale
λ = 0.24 eV [37]. On the other hand, χzz drops exponentially
right below half of Tc for our f -wave and the s-wave gaps.
In contrast, it is quasilinear down to Tc/4 for the chiral
dx2−y2 + idxy wave gap (which is small on the inner α pocket,
and in fact vanishes at the K and K ′ points). In Ref. [21], the
Knight shift result is well fitted by an s-wave gap, but it may
also be well fitted by the f -wave gap according to the above
results. Figure 4(b) shows the nuclear spin-lattice relaxation
rate 1/T1T versus temperature using the pairing function
derived from SMFRG (blue solid line), or given by the s-wave
(red dash-dotted line) and chiral dx2−y2 + idxy-wave (green
dashed line) gap. (See Appendix C for technical details.) In

μ (eV)
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V
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FIG. 5. (Color online) A schematic phase diagram in (U,μ)
space with J = U/4. The hexagram indicates the case discussed
in the text, and the dashed lines indicate equal-value contours for the
SC critical scale �c, which changes from 0.01 meV to 0.1 meV to 1
meV from right to left. The ferromagnetic order sets in near the VHS
(highlighted by the arrow).

the calculation we used a Dynes factor η = 0.01Tc to account
for quasiparticle relaxation. We find that 1/T1T has a small
peak below Tc for our f -wave pairing, while there is a strong
peak for the s-wave pairing. The peak is minute for chiral
dx2−y2 + idxy-wave pairing. Experimentally, a Hebel-Slichter
peak is found in Ref. [21] but is barely visible in Ref. [22].

We have performed systematic calculations by varying
the bare interaction parameters and the doping level (or the
Fermi level). The results are summarized as a schematic phase
diagram in Fig. 5. The pairing scale �c increases with hole
doping (or decreasing Fermi energy), until the ferromagnetic
phase is approached in the immediate vicinity of the VHS,
and in a large regime �c ∼ 0.1 − 1 meV, of the same order of
the experimental Tc. We have chosen a fixed ratio J/U = 1/4
here, but the results are qualitatively robust down to J/U =
1/12. However, if we set U = U ′ and J = 0 (up to a small J ′),
we find d-wave pairing as in Ref. [36]. (A direct comparison
to our results is not applicable since the “local” interaction in
Ref. [36], defined in the band basis, is not necessarily local in
the orbital basis due to orbital hybridizations. Moreover, this
interaction is assumed to bear a pseudo-spin symmetry that is
apparently absent in the more fundamental local interactions
defined in the orbital basis.)

Finally we discuss the influence of interlayer coupling. The
interplane pairing turns out to be negligible, and the only
effect in the double-layer model is that the singlet component
gk changes sign from one layer to the other. Therefore
the global symmetry of the gap function becomes the A2u

representation of the D3d group, consistent with the symmetry
analysis in Ref. [8]. In addition, we find the spin correlation is
ferromagnetic within the plane, but is antiferromagnetic across
the plane, in agreement with the LDA calculation [19].

IV. SUMMARY

We investigated the pairing mechanism in the SrPtAs
superconductor. We find that out of the five d orbitals, the
dxz,yz orbitals are active for superconductivity, and the triplet
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pairing is driven by FM-like spin fluctuations in SrPtAs.
We remark that the pairing function given here respects
TRS in the bulk. However, TRSB at grain boundaries is
possible and was actually argued as one of the possibilities
in the μSR experiment [20]. Another possibility is that the
strong ferromagnetic fluctuations at low energies behave as
instantaneous magnetic moments to fast probes and can also
cause muon spin relaxations. Finally, we did not consider the
electron-phonon coupling, given the unconventional pairing
revealed in the μSR experiment. While we can not rule
out the role of electron-phonon coupling in driving the
superconductivity, our results do provide a clear picture as
to what correlation would lead to if it were the main driving
force.

ACKNOWLEDGMENTS

We thank M. Sigrist for communications, and C. Platt, W.
Hanke, and R. Thomale for communications and previous
collaborations. The project was supported by NSFC (under
Grant No. 10974086 and No. 11023002) and the Ministry
of Science and Technology of China (under Grant Nos.
2011CBA00108 and 2011CB922101). The numerical calcu-
lations were performed in the High Performance Computing
Center of Nanjing University.

APPENDIX A: THE SM-FRG METHOD

The technical details of SM-FRG have appeared in parts
(for cases with or without SOC) in Refs. [4], [23], and [24]
and will be rewritten here for self-completeness. The idea of
FRG [29] is to perform continuous perturbation theory in terms
of the change of the phase space. Starting from a high energy
window, one obtains the one-particle-irreducible (1PI) vertex
functions and asks how they change if the infrared limit of
the energy window is lowered infinitesimally. This process
is repeated versus a running energy scale, i.e., the infrared
cutoff �, resulting in a flow of the 1PI vertex functions. The
�-dependent vertex functions provide an effective description
of the system at the energy scale �. A diverging four-point
vertex function implies an instability of the normal state toward
an emerging order, and the critical scale �c is an estimate of
the upper limit of the ordering temperature.

Consider a generic four-point vertex function � in the
interaction ψ

†
k1

ψ
†
k2

(−�1234
k1,k2,k3,k4

)ψk3ψk4 . The minus sign be-
fore � is a convention for later convenience. The labels 1,
2, 3, and 4 represent orbital-spin indices, and the momentum
conservation requires k1 + k2 = k3 + k4. Figures 6(a)–6(c)
are rearrangements of � in the pairing (P), crossing (C), and

FIG. 6. A generic four-point vertex �1234 is rearranged into P ,
C, and D channels in (a)–(c), respectively. Here k,q,p are momenta,
μ,ν,σ,λ are spin indices, and m,n denote the basis functions.

direct (D) channels, each with a collective momentum q. The
dependence on the other two momenta can be decomposed as

�1234
k+q,−k,−p,p+q →

∑
mn

fm(k,1,2)Pmn(q)f ∗
n (p,4,3),

�1234
k+q,p,k,p+q →

∑
mn

fm(k,1,3)Cmn(q)f ∗
n (p,4,2), (A1)

�1234
k+q,p,p+q,k →

∑
mn

fm(k,1,4)Dmn(q)f ∗
n (p,3,2).

Here {fm} is a set of orthonormal basis functions of the internal
momentum k (or p) and a pair of orbital-spin labels. For brevity
we shall suppress the orbital-spin labels in fm unless indicated
otherwise. The momentum dependence in fm is given by

fm(k) =
∑

r

fm(r) exp(−ik · r), (A2)

where fm(r) may be chosen to transform according to an
irreducible representation of the underlying point group G

(which is C3v in the main text), and r is a bond vector
connecting the fermion bilinear, e.g., the two ψ’s (or two
ψ†’s) in Fig. 6(a), or one ψ and one ψ† in Figs. 6(b) and 6(c).
We notice the decoupling in each channel respects momentum
conservation exactly, since three and only three independent
momenta are accessed. On the other hand, if the basis functions
form a complete set in momentum, spin and orbital spaces, the
above decomposition is exact in each channel, and P , C, and
D are simply different aliases of �.

In the absence of SOC, spin conservation enables us to
set the spin labels μ = λ and ν = σ in Fig. 6, and in fact
they can be suppressed completely. Under this convention, the
one-loop contributions to the flow of the 1PI vertex functions
are shown in Fig. 7, where (a) and (b) are flows in the pairing
and crossing channel, and (c)–(e) in the direct channel. We
denote such contributions as, in matrix form,

∂P/∂� = Pχ ′
ppP, ∂C/∂� = Cχ ′

phC,
(A3)

∂D/∂� = (C − D)χ ′
phD + Dχ ′

ph(C − D),

where the collective momentum q is left implicit for brevity,
and

(χ ′
pp)mn = ∂

∂�

∫
dωn

2π

∫
d2p
SBZ

f ∗
m(p)G(p + q,iωn)

×G(−p, − iωn)fn(p)θ (|ωn| − �)

= − 1

2π

∫
d2p
SBZ

f ∗
m(p)G(p + q,i�)

×G(−p, − i�)f ∗
n (p) + (� → −�),

(A4)

(χ ′
ph)mn = ∂

∂�

∫
dωn

2π

∫
d2p
SBZ

f ∗
m(p)G(p + q,iωn)

×G(p,iωn)fn(p)θ (|ωn| − �)

= − 1

2π

∫
d2p
SBZ

f ∗
m(p)G(p + q,i�)

×G(p,i�)fn(p) + (� → −�),

where G is the free fermion Green’s function, and SBZ is
the total area of the Brillouin zone. Here � > 0 is the
infrared cutoff of the Matsubara frequency |ωn|. As in usual
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FRG implementation, the self-energy correction and frequency
dependence of the vertex function are ignored.

We observe that ∂P , ∂C, and ∂D contribute independently
to the full change d�, which should be reinterpreted as dP ,
dC, and dD in the respective channels. This can be formally
written as

dK/d� = ∂K/∂� +
∑

K ′ 	=K

P̂KK ′ [∂K ′/∂�], (A5)

for K = P, C, and D. Here P̂KK ′ is a projection operator via
Eqs. (A1): It brings the vertex in the K ′ channel into the form
of the generic �, which is subsequently decomposed into the
K channel. In Eq. (A5) the projected terms are overlaps among
the three different channels. It is those terms that allow pairing
to be induced by virtual particle-hole scattering processes.
We remark that without the mutual overlap, the flow would
correspond to ladder approximations in separate channels. By
taking care of the channel overlap, the full flow in each channel
is a faithful representation of the flow of � if the decomposition
in each line of Eq. (A1) is exact. Clearly FRG treats all channels
on equal footing, and the reliability goes far beyond the scope
of simple ladder approximation that overestimates a particular
channel while ignoring the others.

At each energy scale �, the effective interaction in the
superconducting (SC), spin-density wave (SDW), and charge-
density wave (CDW) channels are given by VSC = −P ,
VSDW = C, and VCDW = C − 2D, respectively. To see the
leading instability, we perform singular-value decomposition
at each collective momentum q, for V = VSC/SDW/CDW,

Vmn(q) →
∑

i

Si(q)ξi(m)ηi(n), (A6)

(a) (b)

(d) (e)

P CP C

D C C D

m m′ n′ n m m′ n′ n

m m′ n′ n m m′ n′ n

(c)

D D
m m′ n′ n

FIG. 7. One loop diagrams contributing to the flow of the the
four-point vertex function in the pairing channel (a), crossing channel
(b), and direct channel (c)–(e). Here m,m′n,n′ denote basis functions,
while the momentum and orbital indices are left implicit. The open
arrows indicate the flow of the collective momentum. The slashed
lines are single-scale fermion propagators. The slash can be placed
on either internal line associated with the loop.

FIG. 8. One loop diagrams contributing to the flow of the the fully
antisymmetrized four-point vertex function in the pairing channel
(a), crossing channel (b), and direct channel (c), respectively. Here
m,m′n,n′ denote form factors, and μ,ν,σ,λ denote spin and orbital
indices.

where Si(q) is the singular value of the ith singular mode,
and ξi and ηi are the right and left eigenvectors of V (q),
respectively. We fix the phase of the eigenvectors by re-
quiring Re[

∑
m ξi(m)ηi(m)] > 0 so that Si < 0 corresponds

to an attractive mode. In the pairing channel q = QSC = 0
addresses the Cooper instability. In the SDW/CDW channel,
the potential ordering wave vector q = Q is chosen where
S(q) is maximally attractive. An eigenmode is associated with
a form factor via Eq. (A1),

φ
α,β

i (k) =
∑
m

ξi(m)fm(k,α,β). (A7)

Here we make it explicit that (α,β) is a pair of orbital labels
associated with the fermion bilinear in the respective channel.
In terms of such form factors, we can rewrite the interaction
vertex as, for a given q,

V
α,β;γ,δ

k,k′,q =
∑

i

Si(q)φα,β

i (k)
[
φ

γ,δ

i (k′)
]∗

. (A8)

The real-space counterpart of the form factor,

φ
α,β

i (r) =
∑
m

ξi(m)f α,β
m (r), (A9)

determines the real-space structure of a candidate order param-
eter. For example, in the SC channel the most attractive mode
φSC(r) describes pairing on bond r, and in the SDW/CDW
channel φSDW/CDW(r) describes spin/charge order on bond r.
Thus both site-local (r = 0) and bond-centered (r 	= 0) order
parameters (and their combinations) in any channel can be
captured. Notice that since ξ evolves during the FRG flow, so
does φ. The FRG automatically determines the most attractive
mode with the best form factor. We call such an FRG scheme
the singular-mode FRG (SM-FRG).

In the presence of SOC, the spins are not conserved during
fermion propagation, and we need to associate a pair of spin
indices in fm. We also need to antisymmetrize the vertex
functions explicitly so that the running vertices satisfy fermion
antisymmetry. In this case, the matrices C and D are not
independent, since D = −C. In the following, D is used for
bookkeeping purposes. Figures 8(a)–8(c) show the one-loop
contributions to the flow of the 1PI vertex functions, with

∂P/∂� = Pχ ′
ppP/2,

∂C/∂� = Cχ ′
phC, (A10)

∂D/∂� = −Dχ ′
phD,
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where χ ′
pp and χ ′

ph are formally identical to that in Eq. (A4).
As in the spin-conserved case, the full flow equations are given
by Eq. (A5). We notice that the theory reduces to the previous
case if spin invariance is assumed in the starting Hamiltonian.

The effective interaction in the particle-particle (pp) and
particle-hole (ph) channels are given by Vpp = −P/2 and
Vph = C, respectively. By singular-value decomposition as in
Eq. (A6) we determine the leading instability in the pp and ph
channels. The (matrix) form factor φα,β (k) can be constructed
for leading eigenmodes as in Eq. (A7), except that here α and
β include spin labels also.

A few remarks are in order. First, an emerging collective
mode is always associated with a short-range order parameter.
For example, the conventional s-wave pairing in the BCS
model is local in real space (since the pairing function is
independent of momentum), the conventional spin ordered
phase is associated with site-local spins. In cuprates, the
d-wave pairing occurs primarily on nearest-neighbor bonds,
and the s±-wave pairing in iron pnictides occurs on bonds up to
the second neighbors. These examples show that in practice it
is sufficient to limit r in the basis function fm(r) within a given
range in order to capture the leading ordering tendencies. We
emphasize that the truncation for r does not limit the collective
momentum q (or equivalently the setback distance between
two fermion bilinears). This is important for us to address the
thermodynamic limit. In our calculations we choose r up to
the second neighbors, and we checked that longer bonds do
not change the results qualitatively (and even quantitatively).
Second, the number of basis functions fm is N = NrN

2
o N2

s

where Nr is the number of r’s used for fm(r), and No/s

is the number of orbitals/spins. In the spin-invariant system
the spin label does not enter the flow equations explicitly, so
effectively Ns = 1, while in the presence of SOC we take full
account of spins, so that Ns = 2. In any case the computational
complexity in the loop integrations scales as N4, and hence
scales as N8

o N8
s . The quick increase of the complexity versus

the number of orbitals is the main computational difficulty
in the SM-FRG. Finally, we remark that our SM-FRG works
in the orbital-spin basis. So all relevant bands are taken into
account. But the result can be easily transformed into the band
basis by simple unitary transformations.

APPENDIX B: RANDOM PHASE APPROXIMATION FOR
THE FIVE-ORBITAL MODEL WITH SOC

As discussed in the above, the computational complexity
of the SM-FRG scales as N4

r N8
o N8

s . This forbids us from
including all of the five orbitals while retaining all lattice
form factors up to the second neighbor bonds (so that Nr =
13). In order to judge the relative importance of the five
orbitals in the presence of SOC, we compromise to keep
the onsite form factor only (so that Nr = 1), and ignore
the overlaps between the pp and ph channels. This enables
analytical solution to the flow equations, and the result is
identical to that from the standard ladder approximation in
the respective channels, except for the infrared energy cutoff.
In the ph channel, it is usually referred to as the random
phase approximation (RPA). We should remark that in the
present setting, there is no divergence in P for repulsive bare
interactions, but divergence in C (or in the ph channel) is likely

for the RPA scheme overestimates favorable instabilities. We
avoid such a divergence by choosing a suitably low energy
scale �, at which we transform −P�/2 and C� − C∞ into
the band basis. (The subtraction of the initial value C∞ is
necessary to remove double counting. The subscript � will be
henceforth suppressed for brevity.) We rewrite all of them in
the form of pair scattering. They contribute independently to
VSC(k,n; k′,n′), the pairing interaction for a (k′, − k′) electron
pair on the n′ band to be scattered into a (k, − k) pair on the n

band. The collection of contributions here can be understood
as accounting for the channel overlaps once and forever.
The pairing interaction is then substituted into the linearized
Eliashberg equation

−
∑
n′

∫
d2k′

SBZ

VSC(k,n; k′,n′)T
∑
ωn

×Gn′ (k′,iωn)Gn′(−k′, − iωn)φn′(k′) = λφn(k) (B1)

to get the leading eigenmode of Cooper pairing with the largest
eigenvalue λ. Here T ∼ � is the temperature, Gn(k,iωn) is
the Green’s function in the n band, and ωn is the Matsubara
frequency. The procedure described here is equivalent to that
in the conventional RPA scheme [38,39].

To proceed, we need to specify the atomic SOC involving
all of the five d orbitals, HSOC = −λ/2

∑
i ψ

†
i L · σψi . Here, σ

are Pauli matrices. L = (Lx,Ly,Lz) is the angular momentum,
with the following nonzero matrix elements in the basis ψt =
(d3z2−r2 ,dxz,dyz,dx2−y2 ,dxy),

L25
x = −L52

x = −L34
x = L43

x = i;

L13
x = −L31

x =
√

3i;

L35
y = −L53

y = L24
y = −L42

y = −i;
(B2)

L12
y = −L21

y = −
√

3i;

L23
z = −L32

z = −i;

L45
z = −L54

z = −2i.

A fit to a relativistic band-structure calculation yields λ ∼
0.24 eV. On the other hand, the local interaction Hamiltonian
is given by

HI = U
∑
iα

niα↑niα↓ + U ′ ∑
i,α>β

ni,αni,β

+ J
∑

i,α>β,σσ ′
c
†
iασ ciβσ c

†
iβσ ′ciασ ′

+ J ′ ∑
i,α 	=β

c
†
iα↑c

†
iα↓ciβ↓ciβ↑ (B3)

with intraorbital repulsion U , interorbital repulsion U ′, Hund’s
rule spin exchange J , and pair hopping term J ′. We apply the
Kanamori relations U = U ′ + 2J and J = J ′ to reduce the
number of independent parameters. We set U = 1 eV and
J = U/4 here for illustration.

Figure 9(a) shows the leading eigenvalue of the RPA-
enhanced ph-channel susceptibility χ (q) (a matrix in the spin-
orbital basis). It is peaked around the zone center, consistent
with the strong ferromagnetic spin fluctuations found in
the effective two-orbital model in Sec. III B. Figure 9(b)
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FIG. 9. (Color online) The RPA results for U = 1 eV, J = U/4.
(a) The leading eigenvalue of the matrix susceptibility χ (q) as a
function of q in the Brillouin zone. (b) The leading gap function on
the Fermi surfaces.

shows the gap function on the Fermi surfaces for the leading
attractive eigenmode of VSC(k,n; k′,n′), obtained along the line
described above. The gap function on the α pockets around K

and K ′ is closely similar to that in the effective two-orbital
model in Sec. III B. Moreover, the pairing amplitude on the
γ1,2 pockets is about 1/40 of that on the α pockets. This ratio
is larger than that for the five-orbital model without SOC in
Sec. III A, apparently arising from the interband proximity
effect caused by the SOC. Yet the ratio is still small enough for
us to identify the α pockets as the active bands. Since the latter
are dominated by the dxz/yz orbitals, the effective two-orbital
model in Sec. III B serves as a useful minimal model.

APPENDIX C: MEAN FIELD CALCULATIONS IN THE
SUPERCONDUCTING PHASE

If the pp channel is leading, the effective low-energy
Hamiltonian is given by

H = H0 + Veff

N

∑
k,k′

B
†
kBk′ (C1)

where Veff < 0 is the pairing interaction, N is the number of
lattice sites, and B

†
k is the pairing operator

B
†
k = �

†
kφSC(k)(�†

−k)T , (C2)

with the form factor φSC(k) determined by SM-FRG. Here �†

is a spinor creation field for all orbital/spin degrees of freedom.

The mean-field Hamiltonian can be written as

HMF = H0 +
∑

k

(�B
†
k + H.c.), (C3)

subject to the self-consistent condition

� = Veff

N

∑
k

〈Bk〉. (C4)

In the calculation, we choose Veff so that the mean field Tc is
close to the FRG divergence scale.

The uniform spin susceptibility χαα = χαα(q → 0) is
given by

χαα(q) = − T

N

∑
k,ωn

Tr[G(k,iωn)γ αG(k + q,iωn)γ α], (C5)

where G and γ α are the Green’s function and spin vertex
(of polarity α) in the Nambu space. The trace is taken in the
spin-orbital-Nambu space.

The spin-lattice relaxation rate 1/T1T is associated
with the low frequency dynamics of local spins and is
given by

1

T1T
= − lim

ν→0

∑
αβ

gαβ

ν
ImTr[γαGloc(iωn + iνn)

×γβGloc(iωn)]|iνn→ν+i0+

= − λ2
∑

α

∫
dω

∂f

∂ω
Tr[γαA(ω)γαA(ω)]. (C6)

Here gαβ = λ2δαβ is taken as the hyperfine coupling matrix
element, f is the Fermi function, and Gloc is the local Green’s
function, which can be expanded as

Gloc(iωn) = 1

N

∑
k,m

|k,m〉〈k,m|
iωn − Ek,m

=
∫

dω
A(ω)

iωn − ω
, (C7)

where |k,m〉 is the eigenstate, and we defined a local spectral
matrix

A(ω) = 1

N

∑
km

|k,m〉〈k,m|δ(ω − Ek,m)

→ 1

N

∑
km

η

π

|k,m〉〈k,m|
(ω − Ek,m)2 + η2

. (C8)

In the last line we approximate the delta function by a
Lorentzian with a Dynes factor η.
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